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ABSTRACT 

A general deconvolutive method developed from Optimal Control Theory is presented and 
applied to flux or conduction calorimetry. It requires a previous identification of the system 
and gives very similar results to equivalent inverse filters (i.e. using the same model). 
Nevertheless, on the one hand the thermogenesis has to be obtained off-line (inverse filters 
allow on-line deconvolution) but on the other, the method can handle time-varying systems. 

INTRODUCTION 

The present paper proposes a new deconvolution method in conduction 
calorimetry which is based on a technique developed in Automatics: Optimal 
Control Theory concerning a tracking problem [ 11. The basis of the method 
is described and the mathematical tools are established. An identification 
procedure of the transfer function of a calorimetric device is then explained 
[2] so as to test this deconvolutive technique in flux calorimetry. The results 
obtained are compared with those given by equivalent inverse filters. 

DECONVOLUTION AND OPTIMAL CONTROL 

Let y(t) be the response given by a certain experimental system (signal 
which is recorded by the measuring apparatus) corresponding to an input 
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signal u(t). If the device behaves linearly, let TF( t) be its impulse response 
(transfer function). Then the following convolution equation 

y(t) = u(t) * TF(t) 

holds. The equivalent block diagram is shown in Fig. 1. 
Very many deconvolutive techniques build up or develop a new system, 

linear or not, in series with the experimental system in such a way that the 
resultant output signal is the best approximation to the actual input u(t) 

(Fig. 2). This is the case, for instance, for inverse filters [3,4]. In most cases, 
however, we lack any precise information on u(t) so we can adopt a 
somewhat different method: we look for a certain z?(t) whose convolution 
with TF( t) produces a good approximation j(t) to the actual response y(t). 
Figure 3 illustrates such a procedure. 

In order to test the quality of the response 9( t) calculated, a criterium in 
terms of the error function c(t) = y -3 will be defined. Consequently, the 
deconvolutive technique presented in this paper is based on the following 
facts: a given input signal a(t) gives rise, through a model of the system, to a 
response $( t ) which should be as close as possible to the actual output signal 
recorded y(t). We accept now that ti( t) will be a valid approximation to the 
actual input u(t). In other words, we deal with a function _$( t) which pursues 
a reference function y(t). This is a well-known problem in the frame of 
Automatics [5]. 

Fig. 1. Block diagram of the linear system defined by TF(r). v(t) is the response to the input 

u(t). 
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Fig. 2. Block diagram of the on-line inverse filter. 
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Fig. 3. Schematic representation of the tracking problem. C(t) is the simulated input which 
gives rise to the ouput P(t) through a model of the system. r(t) is the error function to be 
minimized. 
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Firstly, we represent the system by means of its state equation rather than 
by its transfer function.. Now, the state equation is a matrix expression 
equivalent to the differential equation which rules the process under study 
[5]. An example of how the state equation can be calculated from a model 
for the TF is shown in Appendix 1. 

Generally speaking, whether the system changes in time or not, we may 
express its state equation as follows 

k=A(l)x+B(t)u 

y = C(t)x 

where, x E R”, u E R, y E R, n being the order of the system; A, B, C are 
matrices of proper dimensions; x is the state vector associated with the A, B, 

C matrices; u is the input, and y is the output. 
If we assume that our model is exact, then 

i =A(t)% + B(t)ti 

p = c( t)rz 

Now, we can state the problem as how to calculate ti so that it would 
minimize a given efficiency criterium. The more convenient choice is 

J =+iT[q(t)c2 + r(t)2i2]dt 

where q(t) > 0, r(t) > 0 Vt E [O,T], because it leads by straightforward 
calculus of variations [5] to an analytical solution 

1 fi* =- 
Y 

‘B(v - Kx) 

where K(t) is a symmetric matrix verifying a Riccati equation 

li;= -KA -TAK+ KB;TBK+TCqC 

K(T) = 0 

and v(t) is a vector defined by the linear equation 

It should be noted that both differential equations must be solved by 
backward integration because the constraints refer to the time T where the 
process ends. This is why the second equation requires the whole output y(t) 
and consequently an on-line deconvolution cannot be carried out. This 
deconvolutive procedure finally results in solving the afore-mentioned set of 
differential equations and its applicability includes systems changing in time. 
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IDENTIFICATION OF THE MODEL 

The state equation of the calorimetric system may be obtained, concerning 
a time-independent system, from an analytical model of its transfer function. 
One simple way of obtaining such a model deals with the plot of the 
response to a step input. 

Hudzouic’s method [2] 

The response to a step input is obtained by numeric integration 
(trapezoidal rule) of the experimental pulse response. Figure 4 shows both 
outputs: the impulse response and its corresponding integration. Hudzovic’s 
method now yields a transfer function of any order where all the time 
constants are different. It starts by drawing the tangent to the inflexion 
point. This procedure allows calculation of the parameters 6, T,, T, and the 
delay 7. These parameters together with the characteristic abacus of the 
method give the order of the transfer function and the different time 
constants. In our case we obtain a third-order model whose transfer function 

Fig. 4. Pulse and step response of the experimental system. The latter has been obtained by 
integrating the former. It is also schematically shown how to obtain the parameters 6, T,, T,, 

and 7 used in the Hudzovic’s identification method (see ref. 2). 
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reads 
e-12.5s 

G(s)= (1 + 189S)(l + 43S)(l + 25s) 

The exponential term in G(s) accounts for a pure delay (or dead time) of 
12.5 s in the experimental response. 

APPLICATION TO CONDUCTION CALORIMETRY 

This deconvolutive technique is now used to calculate the thermogenesis 
from various experimental records obtained from a flow or conduction 
calorimeter whose transfer function has been previously modelled. If the 
power is released far from the thermoelements, the transfer function consists 
only of poles [6], so Hudzovic’s method is well suited to the identification of 
the system. The model of transfer function obtained has already been given. 
If the power is released near the detector system, the transfer function 
includes zeros which cannot be neglected. Hudzovic’s method then fails to 
give the transfer function. Let us consider in this case 

(1 + 64s)(l + 6s) 

G(s)= (1 + 192s)(l +49s)(l +9x) 

This model has been obtained from the experimental transfer function 
corresponding to a power released near the detector system. The method has 
been discussed elsewhere [4,6]. Figure 5 compares modulus and phase in 
frequency space, s = 2rjv,, of both analytical models and the corresponding 
transfer functions which are obtained by Fourier Transformation, through 
the FFT routine, of the experimental pulse responses. 

As mentioned earlier, the first step after having chosen the model for the 
transfer function should be to write the state equation of the system. To this 
purpose we take the phase variables to be the state variables 

x1 =Y x,=j, x3 =ji 

Then the state equations are (see Appendix 1 for detailed calculations) 
(1) Axial dissipation 

0 1 0 0 
x= 

i 

0 0 1 x+ 0 U 

- 0.03937 - 0.50597 - 1.37094 II I 0.03937 

Y’[ 1 0 0 IX 
(2) Dissipation near the detector system 

0 1 0 0 
k= 0 

1 
0 1 

- 0.0945 - 1.1810 - 2.7345 II I 
x+ 0 U 

0.0945 

Y’[ 1 3.5 0.96 ]x 
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dv = 4.1383~10-4Hz dv= 4.883.10-4Hz 

Fig. 5. Comparison between the experimental TF(s) (A) and the corresponding model G(s). 
Left: Axial dissipation. Right: Dissipation near the detector system. 
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Fig. 6. How the choice of the parameter r influences the calculated thermogenesis. (A) Power 
released at an axial heating resistence in the calorimeter JLM-El. We have used a sequence of 
four rectangular pulses of 15.76 mW whose widths are 8 s, 8 s, 16 s, and 16 s, respectively, 
separated by the same interval of time (measurement L96). (B) Reconstructed thermogenesis 
r?* corresponding to r = 2 x 10e4. (C) Reconstructed thermogenesis ti* corresponding to 
r=3X10p6. 
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During the calculus the e/ffective time scale has been contracted 20 times 
to avoid numeric problems in handling the matrices A, B and C. The 
matrices given above are already referred to the new scale. This choice of 
scale will also obviously affect the time constants of the model. The 
parameter 4 has been set equal to 1 and, in order to save memory occupa- 
tion, K(0) is calculated from K( 7’) through backward integration, and then 
K is assumed to be constant [K(t) = K(0) V,t] when calculating li*. This is 
quite a good approximation within the interval (0, 4T/5), which is enough to 
obtain the thermogenesis. Figure 6 shows how critical the choice of r in the 
efficiency criterium can be. 

The results given by this method have been compared with those corre- 
sponding to equivalent inverse filters, i.e. filters consisting of the same poles 
and zeros which define our present model [3,4]. Figure 7 shows the thermo- 
genesis corresponding to different sequences and different locations of the 
heat sources. The results from the same thermograms, under equivalent 
conditions, are similar. A previous smoothing of the thermogram could 

Fig. 7. Three different sequences of input pulses and the corresponding deconvolution: 
pursuit method (middle) and numeric inverse filtering (down). (A) Axial dissipation (measure- 
ment A3). Power released W = 3.956 mW. Sequence of 32 s-32 s-64 s-64 s; r = 3 x 10p6. (B) 
Dissipation near the detector system (measurement L99) Power released W = 10.08 mW. 
Sequence of 8 s-8 s-16 s-16 s; r = 2X 10m4. (C) Dissipation near the detector system 
(measurement A4) Power released W = 5.696 mW. Sequence of 32 s-32 s-64 s-64 s; 
r=2X10m4. 
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suppress the fluctuations which appear in the result. 
The pursuit deconvolution method does not allow an on-line reproduction 

of the thermogenesis but it is equally sensitive to the experimental noise as 
inverse filters. However, the method is based on state equations, thus 
allowing for further generalization to non-stationary systems when the state 
matrices are time-dependent. Non-stationary systems are just beginning to 
be dealt with in flux calorimetry both theoretically and experimentally [7]. 

CONCLUSIONS 

A general off-line deconvolutive method developed from Optimal Control 
Theory, which can be applied to a wide variety of deterministic linear 
systems, has been presented and tested on experimental records given by 
flux or conduction calorimeters. The method requires a previous model or 
identification of the system carried out, in our case, through standard 
graphic techniques. The efficiency criterion which has actually been chosen 
leads to an analytical solution of the problem, thus avoiding iterative 
calculus. The existence of experimental noise does not hamper the applica- 
tion of the method; on the other hand, it admits further generalization to 
deal with time-varying systems. 

APPENDIX 1 

How to calculate the state matrix 

We start from a model for the transfer function of the system. We will 
restrict ourselves to a third-order system but generalization to higher order 
systems is straightforward. 

Let us first consider a transfer function consisting only of three poles 

G(S)=$$=(l+ 71s )(l+l )(1+ 72s 73s ) 

The denominator may be rewritten to 

G(s) = 
1 

(Ys3 + ps2 + ys + 1 

with 

y = 7, + r2 + r3 = c ri 
i=l 
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The transfer function is then 

u(s)=(as3+ps2+ys+ l}Y(s) 

The inverse transform of this expression, if v(t) and its first derivatives are 
zero at t = 0, yields 

u(t)=ap+pji+yj+y 

Taking for granted the following state equation 

k=Ax+Bu 

y=cx 

and choosing as state variables 

Xl =Y x2=j x3 =y 

the matrices A, B and C are given by 

0 1 
k= 0 0 

-l/ff -v/a 

v=[ 1 0 0 lx 
1 U 

Note that this equation is equivalent to the differential equation given above. 
Secondly, if the model consists of poles and zeros 

it can be decomposed into 

y(s) w v(s) -- G(sJ=C’o= v(s) u(s) 

with 

V 1 

u= (1 + r,s)(l + r2s)(l + r3s) 

+1+ r*,s)( 1 + 7*2s) 

Let us choose now as state vector 

x, = 2) x2 = i, x3 = ii 

The inverse Laplace transform of V/U leads to the same result as before, so 
the matrices A and B remain unchanged. But, concerning the zeros, let us 
write 

Y= (1 ++)(1 + +)v= {&+$Js+ l>V 

from which + = 7:. $ and J/ = 7: + r2 . * Taking the inverse transform 

y(t)=q5d+#O+v 
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Consequently the state matrix C changes to 

_Y=[l 4 @lx 

REFERENCES 

1 G. Thomas, Proceedings of the Journees d’Etude sur 1’Analyse et la Deconvolution des 
Signaux en Spectroscopic et Calorimetrie, Cadarache (B. du Rh.), France, 1980, Societt 
Chimique de France, Marseille, Nice, 1981. 

2 P. Hudzovic, Revue Francaise d’Automatique, Informatique et de Recherche Operationelle 
No. J-3, Nov. 1973, pp. 133-139. 

3 E. Cesari, P.C. Gravelle, J. Gutenbaum, J. Hatt, J. Navarro, J.L. Petit, R. Point, V. Torra, 
E. Utzig and W. Zielenkiewicz, J. Therm. Anal., 20 (1981) 47. 

4 E. Cesari, V. Torra, J.L. Macqueron, R. Prost, J.P. Dubes and H. Tachoire, Thermochim. 
Acta, 53 (1982) 1. 

5 M. Athans and P.L. Falb, Optimal Control, McGraw-Hill, New York, 1966. 
6 E. Cesari, J. Ortin, P. Pascual, V. Torra, J. Vifials, J.L. Macqueron, J.P. Dubes and H. 

Tachoire, Thermochim. Acta, 48 (1981) 367. 
E. Cesari, V. Torra, J.L. Macqueron, R. Prost, J.P. Dubes and H. Tachoire, Thermochim. 
Acta, 53 (1982) 17. 

7 E. Cesari, J. Vifials and V. Torra, Thermochim. Acta, 63 (1983) 341. 


