# CHEMISTRY AND STRUCTURAL CHEMISTRY OF PHOSPHIDES AND POLYPHOSPHIDES, PART 32. HEAT CAPACITY MEASUREMENTS OF LIP<sub>15</sub> AND KP<sub>15</sub> \*

R. SANTANDREA, E. GMELIN, C. SANTANDREA and H.G. von SCHNERING

Max - Planck - Institut für Festkörperforschung, 7000 Stuttgart 80 (F.R.G.) (Received 4 March 1983)

### ABSTRACT

The heat capacities of  $\text{LiP}_{15}$  and  $\text{KP}_{15}$  were measured in the temperature range 2-470 K using adiabatic and differential scanning calorimetry. The thermodynamic functions for these compounds were calculated from the heat capacity data. The absolute entropies of  $\text{LiP}_{15}$  and  $\text{KP}_{15}$  at 298 K were found to be 386.0 J K<sup>-1</sup> mole<sup>-1</sup> and 411.4 J K<sup>-1</sup> mole<sup>-1</sup>, respectively.

#### INTRODUCTION

While various phosphides of the alkali metals have been prepared and structurally characterized by von Schnering and co-workers [1], knowledge of the thermochemical properties of these substances remains sparse. In particular, evaluation of vaporization studies performed at high temperatures requires information concerning the heat capacities and absolute entropies of such compounds. The decompositions of alkali metal phosphides having the general formula  $MP_{15}$  (M = Li, Na, K) are currently being investigated [2]. To date, no thermodynamic data for these compounds is available.

The work reported here is concerned with measurement of the heat capacities of two such phosphides, namely,  $\text{LiP}_{15}$  and  $\text{KP}_{15}$ , in the temperature range 2–470 K. These compounds are isostructural, having a triclinic crystal structure of space group PI [3,4]. The experimentally measured heat capacities were used to calculate the various thermodynamic functions such as the standard enthalpy, entropy and Gibbs energy of  $\text{LiP}_{15}$  and  $\text{KP}_{15}$ . These thermodynamic functions will be used later in conjunction with vapor pressure measurements to determine the stabilities of these compounds.

<sup>\*</sup> For Part 31, see ref. 9.

### EXPERIMENTAL PROCEDURES

The compounds  $\text{LiP}_{15}$  and  $\text{KP}_{15}$  were synthesized by heating lithium, potassium and red phosphorus in quartz ampoules according to the methods described by Wichelhaus [3] and von Schnering and Schmidt [4]. X-Ray powder diffraction patterns obtained for the reaction products were found to be identical to the triclinic diffraction patterns of  $\text{LiP}_{15}$  and  $\text{KP}_{15}$  reported by Wichelhaus [3] and Schmidt [5], respectively.

The specific heats of these compounds were measured in the temperature range 2-100 K using an adiabatic calorimeter [6]. A Perkin-Elmer DSC-2 differential scanning calorimeter [7] was used to measure the heat capacities in the range 100-470 K. Adiabatic calorimetry measurements were performed using pressed pellets of LiP<sub>15</sub> and KP<sub>15</sub> weighing approximately 2.1 and 2.8 g ( $\pm 0.1$  mg), respectively. The pellets were 10 mm in diameter and had a thickness of 5 mm. The adiabatic calorimeter data acquisition system [6] and sample holder which were employed [8] have already been described. The error in the smoothed  $C_n$  data is estimated to be less than 0.8%  $(\Delta T/T < 2 \times 10^{-3})$ . For the differential scanning calorimetry measurements, finely powdered samples weighing from 5 to 13 mg were loaded into aluminum pans. Experimental data were fed on-line into a HP 9825 computer via a  $4\frac{1}{2}$  digit voltmeter which increases the resolution of the DSC-2 by a factor of 5 with respect to the signal observed on an ordinary strip chart recorder. The temperature scale of the calorimeter was calibrated by observing melting and transition points of indium and various organic material standards. A sapphire sample was used as a calorimetric standard. The temperature error in these measurements did not exceed  $\pm 0.25$  K while the absolute calorimetric error of the computed molar specific heat is less than 1.5%. The molecular weight of  $LiP_{15}$  and  $KP_{15}$  were taken as 471.9 and 504.1, respectively.

#### **RESULTS AND DISCUSSION**

The temperature dependence of the experimentally measured heat capacities  $C_p(T)$  of LiP<sub>15</sub> and KP<sub>15</sub> are represented graphically in Fig. 1. For the sake of clarity, a continuous line is used to represent the large number of experimental points. As shown in the figure, neither phosphide underwent any type of phase transition in the temperature range studied and the heat capacities of these compounds conform to Neumann-Kopp's rule near 300 K. At higher temperatures,  $C_p(T)$  of both compounds have identical values, increasing nearly linearly due to anharmonic lattice vibrations. The inset in Fig. 1 depicts the low temperature behavior of the heat capacities. expressed in terms of  $C_p/T$  vs.  $T^2$  plotted in the temperature range 0–20 K. The low-temperature limiting values of the Debye temperature are  $\theta_0(\text{LiP}_{15}) =$ 



Fig. 1. Specific heat of LiP<sub>15</sub> (-----) and KP<sub>15</sub>(-----) as a function of temperature. The insert gives the low-temperature molar heat capacity  $C_p/T$  vs.  $T^2$ .

238.3 K and  $\theta_0(KP_{15}) = 220.0$  K, which were calculated from the formula

$$C_{p} = \frac{12\pi^{4}}{5} Nkn \left(\frac{T}{\theta}\right)^{3}$$
(1)

for  $T \le 6$  K, where N is Avogadro's number, k is Boltzmann's constant and n is the number of atoms per molecular unit. As expected, there is no indication of any additional contribution to the lattice specific heat, such as an electronic term, as shown by the adherence of these compounds to the Debye  $T^3$  law.

The more than 1000 experimental data points, including 280 points at  $T \leq 100$  K were fitted to the  $C_p(T)$  curve in three different segments. Five to eight parameters were used in conjunction with the general equation

$$C_p = \sum_{i=1}^n p_i T^{i-1}$$

to fit the specific heat to the curve. The standard deviation of the polynomial fit is less than 0.5%. Tables 1 and 2 list the absolute temperatures and molar heat capacity values taken from the smooth curves depicted in Fig. 1. Integration of the heat capacity curves yields the standard enthalpy increment,  $H_T^0 - H_0^0$ , the standard entropy,  $S_T^0$ , and the function  $G_T^0 - H_0^0$ , respectively. The values of these functions for LiP<sub>15</sub> and KP<sub>15</sub> are also listed in Tables 1 and 2. The standard entropy values of LiP<sub>15</sub> and KP<sub>15</sub> at 298.15 K, obtained from the integration of  $C_p(T)$  data, are  $386.0 \pm 2.0$  J K<sup>-1</sup>

| T   | $C_p$      | $(H_T - H_0^\circ)$ | $S_T^*$   | $-(G_T^{*} - H_0^{*})$ |  |  |
|-----|------------|---------------------|-----------|------------------------|--|--|
| (K) | (JK mole ) | (J mole )           | (JK mole) | (J mole )              |  |  |
| 7   | 0.79       | 1.40                | 0.266     | 0.46                   |  |  |
| 8   | 1.15       | 2.36                | 0.394     | 0.79                   |  |  |
| 9   | 1.62       | 3.74                | 0.555     | 1.26                   |  |  |
| 10  | 2.21       | 5.64                | 0.755     | 1.91                   |  |  |
| 11  | 2.92       | 8.19                | 0.998     | 2.78                   |  |  |
| 12  | 3.76       | 11.5                | 1.287     | 3.92                   |  |  |
| 13  | 4.72       | 15.8                | 1.625     | 5.38                   |  |  |
| 14  | 5.79       | 21.0                | 2.014     | 7.19                   |  |  |
| 15  | 6.97       | 27.4                | 2.453     | 9.42                   |  |  |
| 16  | 8.24       | 35.0                | 2.942     | 12.1                   |  |  |
| 17  | 9.59       | 43.9                | 3.482     | 15.3                   |  |  |
| 18  | 11.02      | 54.2                | 4.070     | 19.1                   |  |  |
| 19  | 12.51      | 65.9                | 4.706     | 23.5                   |  |  |
| 20  | 14.05      | 79.2                | 5.386     | 28.5                   |  |  |
| 25  | 22.88      | 170.5               | 9.422     | 65.1                   |  |  |
| 30  | 30.92      | 303.5               | 14.25     | 124.0                  |  |  |
| 35  | 40.42      | 481.7               | 19.72     | 208.7                  |  |  |
| 40  | 49.86      | 707.5               | 25.75     | 322.2                  |  |  |
| 45  | 58.72      | 979.3               | 32.13     | 466.7                  |  |  |
| 50  | 67.08      | 1294                | 38.76     | 643.9                  |  |  |
| 60  | 83.93      | 2048                | 52.45     | 1099                   |  |  |
| 70  | 103.6      | 2982                | 66.82     | 1695                   |  |  |
| 80  | 123.4      | 4188                | 82.91     | 2445                   |  |  |
| 90  | 140.3      | 5498                | 98.32     | 3351                   |  |  |
| 100 | 160.0      | 7002                | 114.1     | 4413                   |  |  |
| 120 | 185.9      | 10485               | 145.8     | 7014                   |  |  |
| 140 | 208.5      | 14411               | 176.0     | 10235                  |  |  |
| 160 | 234.3      | 18848               | 205.6     | 14053                  |  |  |
| 180 | 255.5      | 23753               | 234.5     | 18456                  |  |  |
| 200 | 273.6      | 29049               | 262.4     | 23426                  |  |  |
| 225 | 293.8      | 36145               | 295.8     | 30461                  |  |  |
| 250 | 313.6      | 43736               | 327.8     | 38203                  |  |  |
| 275 | 335.1      | 51839               | 358.6     | 46785                  |  |  |
| 298 | 344.7      | 59672               | 386.0     | 55351                  |  |  |
| 300 | 345.4      | 60363               | 388.3     | 56125                  |  |  |
| 325 | 354.6      | 69108               | 416.3     | 66185                  |  |  |
| 350 | 367.0      | 78121               | 443.0     | 76929                  |  |  |
| 375 | 381.6      | 87477               | 468.8     | 88328                  |  |  |
| 400 | 395.1      | 97192               | 493.9     | 100363                 |  |  |
| 425 | 403.2      | 107186              | 518.1     | 113015                 |  |  |
| 450 | 403.0      | 117283              | 541.2     | 126260                 |  |  |
| 470 | 396.9      | 125290              | 558.6     | 137260                 |  |  |

Calculated thermodynamic parameters for  $LiP_{15}(s)^{a}$ 

<sup>a</sup> The absolute error in heat capacity is less than 1.5% for  $T \ge 100$  K and 0.8% for T < 100 K

| $\overline{T}$ | <u> </u>                                        | $(H^0 - H^0)$                  | <b>C</b> 0                                      | $-(G^0 - H^0)$                  |
|----------------|-------------------------------------------------|--------------------------------|-------------------------------------------------|---------------------------------|
| $(\mathbf{K})$ | $(\mathbf{I}\mathbf{K}^{-1}\mathbf{mole}^{-1})$ | $(I_T I_0)$<br>$(I_mole^{-1})$ | $(\mathbf{I}\mathbf{K}^{-1}\mathbf{mole}^{-1})$ | $(\mathbf{U}_T - \mathbf{H}_0)$ |
|                |                                                 | (5 mole )                      |                                                 |                                 |
| 0              | 0.96                                            | 1.72                           | 0.329                                           | 0.58                            |
| 0              | 1.43                                            | 2.90                           | 0.486                                           | 0.99                            |
| 10             | 2.05                                            | 4.03                           | 0.689                                           | 1.57                            |
| 10             | 2.84                                            | 7.06                           | 0.945                                           | 2.38                            |
| 11             | 5.78                                            | 10.4                           | 1.258                                           | 3.47                            |
| 12             | 4.07                                            | 14.7                           | 1.033                                           | 4.92                            |
| 13             | 0.09                                            | 20.2                           | 2.070                                           | 0.//                            |
| 14             | 7.43                                            | 20.9                           | 2.370                                           | 9.08                            |
| 15             | 0.00                                            | 33.1                           | 2.121                                           | 11.9                            |
| 17             | 10.42                                           | 44.7<br>55.0                   | 5.754<br>A A25                                  | 10.5                            |
| 18             | 12.07                                           | 55.9                           | 4.433                                           | 19.5                            |
| 10             | 15.65                                           | 83.6                           | 5.071                                           | 24.3                            |
| 20             | 17.74                                           | 100.4                          | 5.971                                           | 29.8                            |
| 25             | 27 59                                           | 214.1                          | 0.828                                           | 30.2<br>82.5                    |
| 30             | 37 47                                           | 376.5                          | 17.76                                           | 02.J<br>156.3                   |
| 35             | 48 01                                           | 590.0                          | 24.32                                           | 261.2                           |
| 40             | 58.90                                           | 857.2                          | 31 44                                           | 400.4                           |
| 45             | 69.21                                           | 1178                           | 38.00                                           | 5763                            |
| 50             | 79.24                                           | 1550                           | 46.81                                           | 790.7                           |
| 60             | 95.71                                           | 2426                           | 62 74                                           | 1338                            |
| 70             | 115.9                                           | 3479                           | 78.93                                           | 2046                            |
| 80             | 137.2                                           | 4749                           | 95.85                                           | 2920                            |
| 90             | 163.7                                           | 6225                           | 113.2                                           | 3964                            |
| 100            | 173.6                                           | 7871                           | 130.5                                           | 5183                            |
| 120            | 200.0                                           | 11623                          | 164.7                                           | 8137                            |
| 140            | 222.0                                           | 15844                          | 197.2                                           | 11759                           |
| 160            | 243.5                                           | 20512                          | 228.2                                           | 16015                           |
| 180            | 263.0                                           | 25573                          | 258.1                                           | 20880                           |
| 200            | 278.9                                           | 30997                          | 286.6                                           | 26329                           |
| 225            | 296.3                                           | 38187                          | 320.5                                           | 33922                           |
| 250            | 314.0                                           | 45824                          | 352.7                                           | 42339                           |
| 275            | 337.1                                           | 53966                          | 383.7                                           | 51544                           |
| 298            | 352.1                                           | 61902                          | 411.4                                           | 60689                           |
| 300            | 353.2                                           | 62607                          | 413.7                                           | 61514                           |
| 325            | 365.0                                           | 71589                          | 442.5                                           | 72220                           |
| 350            | 375.3                                           | 80843                          | 469.9                                           | 83268                           |
| 375            | 385.5                                           | 90353                          | 496.2                                           | 95706                           |
| 400            | 395.7                                           | 100118                         | 521.4                                           | 108427                          |
| 425            | 404.4                                           | 110125                         | 545.6                                           | 121766                          |
| 450            | 408.9                                           | 120304                         | 568.9                                           | 135700                          |
| 460            | 408.7                                           | 124393                         | 577.9                                           | 141434                          |

Calculated thermodynamic parameters for  $KP_{15}(s)^{a}$ 

TABLE 2

<sup>a</sup> The absolute error in heat capacity is less than 1.5% for  $T \ge 100$  K and 0.8% for T < 100 K.

mole<sup>-1</sup> and  $411.4 \pm 2.0$  J K<sup>-1</sup> mole<sup>-1</sup>, respectively.

At low temperatures the ratio of the Debye temperature,  $\theta_0$ , of LiP<sub>15</sub> to that of KP<sub>15</sub> was found to have a value of 1.08. In the case of cubic mono or diatomic compounds, the relationship

$$\frac{\theta_0(1)}{\theta_0(2)} = \frac{a_2}{a_1} \left[ \frac{M_1}{M_2} \right]^{1/2}$$

where  $M_1$  and  $M_2$  are the molecular weights of compounds 1 and 2, and  $a_1$ and  $a_2$  are their respective lattice parameters, is valid at low temperatures  $(T \le \theta_0/50)$ . Empirically, more complex substances, such as KNO<sub>3</sub> and NaNO<sub>3</sub>, generally obey the equation

$$\frac{\theta_0(1)}{\theta_0(2)} = \left[\frac{M_2}{M_1}\right]^{1/2}$$

In such instances all atoms contribute to the low-temperature lattice vibrations. This contribution may be in the form of the vibration of an individual atom, or as part of a strongly bonded cluster of atoms which acts as a single, heavy unit. In the case of the phosphides LiP<sub>15</sub> and KP<sub>15</sub>, the individual, light-weight, covalently bonded phosphorus atoms are not expected to noticeably contribute to the specific heats of these compounds at low temperatures ( $T \le \theta/10$ ). The ratio  $[M(\text{KP}_{15})/M(\text{LiP}_{15})]^{1/2}$  has a value of 1.02, and the foregoing equality is not fulfilled, indicating that not all atoms participate in the soft vibrational modes at low temperature. von Schnering and Schmidt [4] reported that each alkali metal cation has six nearest phosphorus neighbors, which are distributed among four separate  $P_{15}^{-}$  units. Taking the lattice vibrations of these six nearest neighbors and the metal cation into account, the ratio  $\left[\theta_0(\text{LiP}_{15})/\theta_0(\text{KP}_{15})\right]$  takes on a value of 1.08, which is in excellent agreement with the experimentally obtained value given earlier. This result indicates that the covalent bonding within the  $P_{15}^{-}$  units and the ionic interaction between the metal cation and the polyanion produce two distinctly separate sets of vibrational excitations within the lattice. At low temperatures, inter-chain vibrations, which are partially transmitted through the alkali metal cation, occur, as evidenced by the behavior described. At higher temperatures ( $T \ge \theta/10$ ), intra-chain vibrations, that is vibrations propagated through the covalently bonded phosphorus chains, are the dominant vibrational modes. The unusual temperature dependence of the Debye temperatures,  $\theta(T)$ , of LiP<sub>15</sub> and KP<sub>15</sub> are caused by these high-frequency vibrations. The Debye temperatures of these compounds increase almost threefold from low temperature to room temperature [at 50 K,  $\theta(\text{LiP}_{15}) = 370$  K,  $\theta(\text{KP}_{15}) = 345$  K; at 200 K,  $\theta(\text{LiP}_{15}) = 580$ K,  $\theta(KP_{15}) = 565$  K] as a result of intra-chain lattice vibrations.

Dilatometery experiments of  $KP_{15}$  were also performed near room temperature in an effort to calculate the difference between  $C_p$  and  $C_v$ . The increase in volume of  $KP_{15}$  was found to be directly proportional to the absolute temperature in the range 291–373 K. The coefficient for the thermal expansion of KP<sub>15</sub> is  $(4.9 \pm 0.2) \times 10^{-6}$ .

#### ACKNOWLEDGEMENTS

The authors wish to thank W. Giering and M. Schwarz for their assistance during the synthesis of the materials used in our study and Ms. C. Fowler for the preparation of the manuscript. The support of the Deutsche Forschungsgemeinschaft and the Fond der Chemischen Industrie is also gratefully acknowledged.

## REFERENCES

- 1 H.G. von Schnering, in A.L. Rheingold (Ed.), Homoatomic Rings, Chains and Macromolecules, Elsevier, Amsterdam, 1977.
- 2 R.P. Santandrea and H.G. von Schnering, to be published.
- 3 W. Wichelhaus, Dissertation, University of Münster, 1973.
- 4 H.G. von Schnering and H. Schmidt, Angew. Chem., 79 (1967) 323.
- 5 H. Schmidt, Dissertation, University of Münster, 1970.
- 6 E. Gmelin, Thermochim. Acta, 29 (1979) 1.
- 7 M.J. O'Neill, Anal. Chem., 38 (1966) 1331.
- 8 E. Gmelin and K. Ripka, Cryogenics, 21 (1981) 117.
- 9 T.K. Chattopadhyay and H.G. von Schnering, Z. Kristallogr., in press.