Note

THE FORMATION AND STABILITY OF GASEOUS POCI

M. BINNEWIES

Anorganisch-Chemisches Institut, Westfälische Wilhelms-Universität, 4400 Münster (F.R.G.) (Received 11 March 1983)

The formation of POCl by the reaction

$$POCl_{3(g)} + 2 Ag_{(g)} = POCl_{(g)} + 2 AgCl_{(g)}$$
(1)

has been shown by mass-spectrometric and matrix-IR investigations [1]. The heat of formation of $POCl_{(g)}$ has been derived from appearance-potential measurements. In comparison with the heats of formation of the gaseous compounds NOCl [2], AsOCl [3], SbOCl [3], POF [4], POBr [5] and PSCl [6], the value obtained for the heat of atomisation, ΔH_{at}^0 (POCl), of 955 kJ mole⁻¹ seems somewhat too high. This may be caused by the uncertainty of the appearance-potential measurements. Because the value for the heat of formation of POCl_(g) is fundamental to the thermodynamic properties of derived compounds like PO₂Cl [7], we have measured the equilibrium (1) by means of a combination of Knudsen-cell evaporation and mass-spectrometric analysis of the equilibrium gas and derived the heat of reaction (1).

EXPERIMENTS AND EVALUATION OF DATA

The Knudsen cell assembly has been described earlier [8]. Mass-spectrometric analysis of the equilibrium vapour was carried out using an Extranuclear Quadrupol mass-spectrometer (ionisation by electron impact, 70 eV). The reaction of $POCl_3$ with solid silver was carried out in a quartz glass Knudsen cell (diameter of the orifice 1 mm). The temperature was measured by a Pt/Rh–Pt thermocouple.

At room temperature the well-known mass-spectrum of POCl₃ was observed [intensities (arbitrary units) in brackets]: P⁺ (115), PO⁺ (847), PCl⁺ (242), POCl⁺ (207), PCl⁺ (49), POCl⁺ (3620), POCl⁺ (740). All the ions observed must be formed by fragmentation of POCl⁺₃. To calculate the pressures from the measured intensities, the assembly must be calibrated. This was done by measurement of the saturation pressure of liquid silver. The values obtained were: T(Ag) = 1408 K, I(Ag) = 1000, $p(Ag)_{1408} = 8.14 \times 10^{-5}$ atm [9]. From these values, the proportional factor, *c*, in the equation p = cIT can be calculated at 7.78×10^{-11} . Using this value, calculation of

equilibrium pressures from the intensities is possible.

At temperatures above 1100 K, ions formed by POCl₃ can no longer be observed. Under such conditions, the mass spectrum shows the formation of POCl_(g) and AgCl_(g) (the identity of POCl was established by appearancepotential measurements, AP(POCl) = 11.3 eV, and matrix IR-investigations [1]). For calculation of the equilibrium constant of reaction (1), one should observe both POCl_(g) (and AgCl_(g)) and POCl_{3(g)} in the mass spectrum. From the mass spectrum at room temperature, the ions which are formed by the fragmentation process of POCl₃ are known. Using the basic peak $(POCl_2^+)$, the total intensity $\Sigma I(POCl_3)$ of all ions formed by POCl₃ is given by $I(POCl_2^+)/f[f = I(POCl_2^+)/\Sigma I(POCl_3)]$, where $\Sigma I(POCl_3)$ is the sum of the intensities of all ions formed by fragmentation of POCl₃; in our case, f = 3620/5860 = 0.6177]. The total intensity of all ions formed by fragmentation of POCl must be given by the difference between the sum of the intensities of all P-containing ions and $I(POCl_2^+)/f$. The total intensity of AgCl is given by $I(Ag^+) + I(AgCl^+)$. With the calibration factor, c, the observed mass spectra of the equilibrium vapour lead to the partial pressures of POCl, POCl₃ and AgCl and to the equilibrium constant according to reaction (1). We made 18 different measurements at various temperatures between 900 and 1100 K. A second-law evaluation of measurements does not seem suitable in this case, because the error in the intensity of POCI may be too great. We therefore prefer a third-law evaluation of the data. The mean value of log K_n at 1000/T = 1.0000 was -8.89. Using the entropy and specific heat of POCl, which we have calculated by statistical methods (see later), in combination with the values for $\text{POCl}_{3(g)}$ [10], $\text{AgCl}_{(g)}$ [11] and $\text{Ag}_{(s)}$ [9], we have calculated for reaction (1) $\Delta S_{298}^{0} = 361.2 \text{ J K}^{-1} \text{ mole}^{-1}$ and $\Delta C_{p,298} = -18.1 \text{ J K}^{-1} \text{ mole}^{-1}$. This result together with 1000/T =1.0000 and log $K_p = -8.89$ (p atm) leads to a value for the heat of reaction, $\Delta H_T^0(1) = 509.5 \text{ kJ mole}^{-1}, \ \Delta H_{298}^0(1) = 522.2 \text{ kJ mole}^{-1}.$ In combination with the heats of formation of $\text{POCl}_{3(g)}$ and $\text{AgCl}_{(g)}$ given in the literature [2,9], the heat of formation of $\text{POCl}_{(g)}$ can be calculated as $\Delta H_{298}^0(\text{POCl}_{(g)}) = -215.1 \text{ kJ mole}^{-1}$. This value, in combination with literature data for $\Delta H_{298}^0(O_1) = 249.4 \text{ kJ mole}^{-1}$ [2], $\Delta H_{298}^0(P_1) = 333.9 \text{ kJ mole}^{-1}$ [2] and $\Delta H_{298}^{0}(Cl_1) = 121.0 \text{ kJ mole}^{-1}[2]$ leads to a value of 919.4 kJ mole $^{-1}$ for the heat of atomisation: this value is somewhat lower than reported earlier (955 $kJ mole^{-1}$ [1].

Specific heat and entropy

The specific heat and entropy of $\text{POCl}_{(g)}$ have been calculated using: the formula weight of POCl; the interatomic distances d(P-O) = 143.9 pm and p(P-Cl) = 206 pm (ab initio calculation by Ahlrichs [11]); the bond angle 109°C (ab initio calculation by Ahlrichs [11]); and the measured frequencies, 1257.7 cm⁻¹, 489.4 cm⁻¹ and 308.0 cm⁻¹ [1]. The calculated data for C_p and S^0 are given in Table 1.

Т (К)	$\frac{C_p}{(\mathbf{J} \mathbf{K}^{-1} \operatorname{mole}^{-1}]}$	S^{0} (J K ⁻¹ mole ⁻¹)	
200.00	42.17	257.06	
250.00	44.48	266.73	
273.16	45.35	270.70	
298.16	46.23	274.72	
300.00	46.32	275.01	
350.00	47.82	282.25	
400.00	49.12	288.73	
450.00	50.24	294.55	
500.00	51.21	299.91	
600.00	52.72	309.41	
700.00	53.85	317.61	
800.00	54.68	324.85	
900.00	55.31	331.33	
1000.00	55.77	337.19	
1100.00	56.15	342.54	
1200.00	56.44	347.44	
1300.00	56.69	351.96	
1400.00	56.90	356.18	
1500.00	57.07	360.12	
1600.00	57.20	363.80	
1700.00	57.28	367.27	

Specific heat and entropy data for POCl_(g)

TABLE 1

REFERENCES

- 1 M. Binnewies, M. Lakenbrink and H. Schnöckel, Z. Anorg. Allg. Chem., 497 (1983) 7.
- 2 D.R. Stull, JANAF Thermochemical Tables, 1971.
- 3 M. Binnewies, Z. Anorg. Allg. Chem., in press.
- 4 R. Ahlrichs, M. Binnewies and H. Schnöckel, Angew. Chem., to be published.
- 5 M. Binnewies and H. Schnöckel, High Temp. Sci., to be published.
- 6 M. Binnewies, Z. Anorg. Allg. Chem., in press.
- 7 M. Binnewies, Z. Anorg. Allg. Chem., to be published.
- 8 M. Binnewies, Z. Anorg. Allg. Chem., 437 (1977) 25.
- 9 O. Kubaschewski, E.Ll. Evans and C.B. Alcock, Metallurgical Thermochemistry, Pergamon Press, Oxford, 1967.
- 10 K.K. Kelley, Contribution to the Data on Theoretical Metallurgy, Washington, 1960.
- 11 R. Ahlrichs, private communication, 1982.