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ABSTRACT 

The paper describes how to obtain an analytic approximation to the transfer function of a 
conduction calorimeter, namely, a procedure to identify the calorimetric system. In this case 
Pade approximants are used on the Laplace transform of the thermogram. The feasibility of 
the method is tested on two models which span the frequency range usually attained by actual 
calorimeters. The influence of random noise and baseline drift have also been analyzed. The 
results show that three or four time constants are correctly obtained. 

INTRODUCTION 

Several techniques which provide for an approach to thermogenesis (power 
released inside a calorimetric cell as a function of time) are now of widespread 
use in different fields [l-7]. At the same time, the introduction of relative 
scales [8] has allowed a systematic analysis of the quality of the resultant 
thermogenesis in terms of the signal-to-noise ratio of the device and its first 
time constant [9,10]. The application of such methods and criteria has made. 
it possible to obtain important dynamic results in solid-solid transforma- 
tions [ 11,121 and liquid mixtures [ 12,131. 

Generally speaking, two broad categories may be introduced to char- 
acterize the deconvolutive methods: whether they use the sampled thermo- 
gram corresponding to a Dirac dissipation (or, equivalently, its numeric 
Fourier Transform) or some sort of approximated transfer function. In the 
latter case, inverse filters [3,4], methods based on optimal control [S], etc., 
require a previous model of the system, that is, a mathematical expression 
for the transfer function of the system or, in other words, the sequence of 
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poles and zeros which define it. In fact, for most applications, partial 
approximations to the transfer function render exceptional results allowing, 
at the same time, on-line corrections. In this way, such electronic correctors 
only require two or three time constants which is enough in most cases 
because the more important part of the spectrum of the signal which is to be 
deconvoluted lies in low or intermediate frequencies. 

Nevertheless, the obtention of an experimental transfer function under 
conditions equivalent to those existing during the actual experience is 
extremely difficult [7]. In this way, it is well known that an identification 
based on Joule calibration may produce not altogether true values of the 
zeros of the system. What is more, in both cases mentioned (phase transi- 
tions and liquid mixtures) the heat capacity of the sample is changing during 
the experiment so not only do we encounter the classical problems concern- 
ing the identification of the system but also the transfer function is changing 
in time [ 141. This means that, whereas there is still a causal relation between 
input and output signals, the system is no longer time invariant. 

Acting on these assumptions, present identification methods aim at find- 
ing only the main poles and zeros of the device because it is expected that 
the resultant analytical model represents the actual transfer function up to a 
certain frequency not far from the limit imposed by the experimental noise. 
The procedures used up to date in calorimetry aim, essentially, at fitting the 
larger time constants and zeros from the last part of the exponential decay of 
the pulsed transfer function. Successive time constants may then be obtained 
by iterating this process after having filtered from the transfer function the 
poles already calculated [3,4]. However, as is easily understood, such a 
procedure does not lead to a unique solution, but, on the contrary, to a set of 
solutions which can be obtained by different workers but that are equivalent 
from the point of view of the method. 

Consequently, it would be convenient to consider more systematic meth- 
ods presenting, simultaneously, their limitations concerning, mainly, the 
deconvolution to be performed subsequently with the model obtained. In the 
present work an approximation to the transfer function in Laplace space 
using Pade approximants is presented. The performance of the method is 
checked on analytic models chosen in such a way that their spectrum vs. a 
relative frequency scale cover the whole range attained by actual calorime- 
ters. It is then expected that the results obtained in these models and the 
analysis which will be carried out subsequently, can be extended to all 
experimental systems. Finally, the effect of random noise on the transfer 
function or a slight indetermination in the experimental base line on the 
performance of the method is also investigated. 
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APPROXIMATION USING PADE APPROXIMANTS. ALGORITHM 

A heat flux calorimeter whose cell contents do not change behaves, within 
a certain range, as a linear system whose pulsed response may be written as 

s(t) = fJ a, exp( -f/T,) 
i= 1 

Taking the Laplace transform the transfer function of the device is 

N 

n ( 7i*x + 1) 

L[s(t)] = TF(x) = S i; (x = Laplace variable) 

IJI(‘iX+ ‘1 
i=l 

where S = ZiM_,airi is the static gain of the system. The constants 7, and T,* 
are commonly referred to as the poles and zeros of the system, respectively. 

Generally speaking, a Pade approximant is a rational function 

PN(x)/Q,&) where 4,(x) and Q,d 1 x are polynomials in x of degrees N 
and M, respectively, and it is symbolically denoted by [M, N]. The rational 
function [M, N] is said to be a Pade approximant of a given function f(x) if, 
and only if, the power series expansion of [M, N] is identical to that of f(x) 
up to order x”+N [15]. Let the approximant be 

p,(x) 
It PnXfl 

n=O 

Qwo= 5 q Xn (qo=l) 
n 

0) 

n=O 

The requirement that the series expansion of the approximant and of f(x) 
coincide up to xN+M leads to a set of linear equations whose solutions are 
the coefficients { p,,} and (4,). It is obvious that the functional dependence of 

TF(x1 and ]M,Nl( > x is identical, so once the coefficients { p,} and (q,} are 
known, the roots of the corresponding polynomials are simply related to the 
zeros and poles of the system, respectively. 

It should be pointed out here that the Pade approximation technique, or 
equivalently, the continued fractions method, may produce unstable reduced 
models even if the system were stable [ 161. These problems usually come out 
when the system step response has a large overshoot at the beginning due to 
the presence of large poles [17]. However, this will not be of much concern 
here because such an overshoot never appears in actual calorimetric thermo- 
grams and, even though low order models we have obtained by this method 
are actually unstable, the instability usually disappears after increasing the 
order of the model. Moreover, there exist general methods to obtain stable 
reduced models which will not be discussed here [ 171. 
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The actual procedure used to obtain the coefficients (p,,}, {q,} is not based 
on the series expansion of f(x), but on a least-squares fit on the Laplace 
transform of the true response by a rational function of the form (1). We 
first calculate the transfer function of the system from its sampled pulse 
response by calculating numerically (trapezoidal rule) the integral 

TF( x) = Soms( t) eexr dt 

for a given set of values of the variable x. The method requires the values of 
the function TF(x;) f S(xi), where 8(x,) is a certain error assigned to each 
point. The following functional is minimized 

P 

4 

pb;> 

2 

x2 = 

i=l 
TF(xi) - Q(~,) /‘txi> I I 

= i$I [Q( .,t( _)]’ [ g %J/TF(x;) - t P&j’ 
x, x, ” 0 n=O 

where p is the total number of points considered in the approximation. The 
N+M+ 1 parameters{p,), n=O ,..., N; (q,}, n= l,..., Marein this case 
the unknowns. If the functional is minimized with respect to this set of 
parameters-assuming that Q(xi) is known-the following system of N + 
A4 + 1 linear equations is obtained 

o=$J i=l [ecx,iItxjj12 ~~~q~x:TF(xi)-IP~x: 
[ I 

m=“~.**,N 

x;TF( xi) 

[Q~xi)‘(xi)12 
q,xi”TF(xi) - 5 p,x; 

I 
n = l,...,M 

n=O 

These are solved by iteration using the well-known weighted minimax 
algorithm, i.e. if the Q( xi) were actually known, the solution to this system 
of equations would yield the coefficients ( p,}, { 4,). Nevertheless, we make 
an initial guess concerning the parameters {q,} and iteratively solve the set of 
equations till the assumed and obtained {q,) converge. Such an iterative 
procedure is most conveniently expressed in terms of matrices. Let us 
re-write the set of equations as 

AC=B 

where 

C,=P,-l s=l ,...,N- 1 

Cs=qs_(N+,) s=N+2,...,N+M+ 1 
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The matrix A, whose dimension is (N + A4 + l)( N + A4 + l), is defined as 

A,, = i x;+~-‘/Z s,t= l,...,N+ 1 
i= 1 

A,, = i - x;+~+-~TF( xi)/Z 
s=N+2,...,N+M+ 1 

i=l t=l ,...,N+ 1 

A,, = i - x;+~-‘~-~TF~(x~)/Z s,t=N+2,...,N+M+ 1 
j=‘l 

and the vector B 

B, = i x;-‘TF( xi)/Z s=l ,...,N+ 1 
i=l 

B, = i x;-‘+‘TF2(xi)/Z s=.N+2,...,N+M+ 1 
i=l 

and Z = [Q(x,)~(x,)]~. The iteration is now defined as 

C(k+l), [A(k)]-‘B(k) 

where the matrix Ack) is calculated from the polynomial Qkk’( x) obtained in 

the previous iteration. C(O) is defined arbitrarily *. 

RESULTS 

The performance of the method has been tested on two analytic models 
chosen in such a way that they span all the frequency range attained by 
actual conduction calorimeters. These models have been defined as 

M8 

7, 

192.0 
49.0 
18.0 
4.0 
2.0 
1.2 
0.4 
0.3 

7 * 

M9 

ai 7i ri* a, 

0.4866 x lo6 192.0 64.0 0.2957 x IO6 
- 0.7895 x lo6 49.0 6.0 0.1577 x 106 

0.3254 x lo6 9.0 - 0.3407 x lo6 
- 0.2805 x lo5 4.0 -0.2945 x lo6 

0.6227 x lo4 1.2 0.2197 x lo6 
-0.7310x 103 0.4 -0.5979x lo5 

0.3281 x 10’ 0.3 0.2193 x IO5 
-0.4715 x 100 

S(~)lnax = 192680.0 S(~)lnax = 333571.0 

Their sensibility is S = X2 ,ai~i = 0.605 x lo8 in arbitrary units. The models 

* Flow diagram and source listing are available on request. 
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TABLE 1 

X2. poles and zeros given by the routine in successive iterations 
The model approximated is M9 whereas the routine is searching six poles and three zeros. 

Iteration 1 2 3 4 5 

X2 O.l8E-11 0.63E-13 0.21E-14 O.llE-13 0.72E-13 

Poles 193.41 192.01 192.00 192.00 192.00 

53.66 49.07 49.06 49.06 49.06 

7.18 8.70 8.70 8.71 8.71 

-0.12 3.00 2.98 3.01 3.00 

Complex 1.78 1.79 1.78 1.78 

Complex -0.44 - 0.40 -0.41 -0.41 

Zeros 69.29 64.06 64.05 64.05 64.05 
1.39 5.09 5.08 5.11 5.10 

- 0.05 - 0.43 - 0.39 - 0.40 - 0.40 

roughly simulate the transfer function-corresponding to two different 
locations of the heat sources-of the calorimeter JLM-El (see ref. 9). In this 
case the thermogram units would be nV. Random noise and baseline drift 
have also been added to both models in order to reproduce better the usual 
experimental conditions. The various models are denoted as 

M8 (resp. M9) + 50 N: random noise ranging f 50 units (signal/noise 2: 70 

dR); 
M8 (resp. M9) + 50 D: linear drift where the last ordinate is shifted by 

+50 units; 
M8 (resp. M9) + 50 N + 50 D: random noise plus baseline drift. 
The routine has always handled 30 points (not equally spaced); the 

variable step has been chosen to be Ap = 0.3065 X lo-*. The domain in 
p-space covered in the approximation was (0, 350 Ap) in the case of model 
M8 and related variants, and(O, 700 Ap) in model M9. These values give the 

TABLE 2 

Change in x2 with the order of the model which is approximated to M9 + 50 N + 50 D 
The value shown always corresponds to the sixth iteration. M and N are the number of poles 
and zeros, respectively. Note how this table belongs to one of the most unfavorable cases, 
namely, a model with random noise and baseline drift. 

N M 

4 5 6 7 8 9 

0 0.26E-05 0.76B06 0.64E-06 0.47E-06 0.24E-06 0.11 E-06 

1 0.47E-09 0.25B09 0.59E-10 O.l7E-10 0.29E-11 0.73E-12 

2 0.27E-09 0.69E-09 0.45E-12 0.85E-13 0.32E-13 O.l3E-12 

3 0.79E- 10 0.62E-12 O.l4E-12 0.27E-12 0.80E-11 0.90E-05 
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loo_ 
A A- =4,803~10-~Hz 

a P 

ad 

(b) 

loO_ 

A Av= 4.883 x VT4 Hz 

C 

Fig. I. Transfer function of the models (a) MS and (b) M9 together with A, transfer function 
of the approximation given by the Pade algorithm (P) to models MS + 50 N (a) and M9 + 50 
N (b); B, transfer function of the approximation given by the Pade algorithm (P) to models 
MS + 50 D (a) and M9 + 50 N (b); C, transfer function of the approximation given by the 
Pade algorithm (P) to models M8 + 50 N + 50 D (a) and M9 + 50 N + 50 D (b). The poles and 
zeros which define the approximation are given in Table 3. 

ratios 

TFWAP) = 70 dB TfvOOAP) = 85 dB 

TF(p=O) ’ TF(p=O) 

The first item to be dealt with is the order of the transfer function which is 
to be approximated, that is, the number of poles and zeros desired. Once this 
number is fixed, Cck) converges in seven or eight iterations, that is, x2 
continually decreases towards a nearly stationary minimum and the coeffi- 
cients { p,} and {q,} remain unchanged (Table 1). The poles and zeros thus 
obtained may be real or complex numbers. The occurrence of complex poles 
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is interpreted to be a consequence of having approximated too low an order 
model. As a general criterium only the real poles and zeros have been kept, 
provided that -those of the modulus of the complex were small. 

We next obtain x2 to successively higher order models. Its value is seen to 
decrease with increasing order whereas, simultaneously, the complex poles 
and zeros either disappear or are considerably reduced. The crucial feature is 
that the main poles and zeros remain constant throughout the different 
approximations (from a certain minimum order upwards). Table 2 shows the 
evolution of x2 under a change in the number of poles and zeros given by the 
routine. It is seen there how a stationary value is attained. Further increase 
in the order of the model leads to an increase in x2. The poles and zeros 
which remain unchanged, being x2 near its minimum, are regarded as the 
best approximation to the transfer function given by the present method. 

Finally, Table 3 presents the poles and zeros obtained in all the models 
considered. They have been obtained following the criteria mentioned earlier. 
Figure 1 shows the frequency spectrum of the models and their approxima- 
tions. 

CONCLUSIONS 

Details of the calculations can be summarized as follows: double precision 
- 16 digits-has been used throughout the routine. The numeric Laplace 
transform uses 4100 points of the thermogram sampled with At = 0.5 s. The 
transform has been calculated each Ap = 0.3065 X 10m2 s-l. The least- 
squares approximation handles 30 points not equally spaced in order to 
cover 35OAp in the case of model M8 and 7OOAp in model M9. In all cases 
only six or seven iterations have been performed. 

The algorithm which has been presented succeeds in finding the more 
relevant poles and zeros of the transfer function of an analytic model 
previously calculated. The algorithm needs the sampled transfer function of 
the device given in Laplace space and the order of the model which is to be 
approximated. 

The method has proved to be not especially sensitive to disturbances on 
the model. Thus the existence of random noise (s/n = 70 dB) and baseline 
drift do not considerably affect the values of the poles and zeros obtained. 
Obviously, the worse the experimental conditions-larger noise or drift-the 
higher the uncertainty in the time constants. Nevertheless, three time con- 
stants are easily found. 

The results suggest that the method gives enough time constants-poles 
and zeros-so as to have an adequate representation of the transfer function 
of an actual calorimeter up to its frequential limit imposed by the existence 
of experimental noise or due to a certain indetermination in the location of 
the heat sources. 
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