
Thermochimica Acta, 70 (1983) 123-131 
Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands 

123 

THERMOGENESIS: IDENTIFICATION BY MEANS OF 
MODULATING FUNCTIONS 

J. ORTIN *, V. TORRA 

Departament de Termologia, Facultat de CiPncies, Palma de Mallorca (Spain) 

T. CASTAN and E. CESARI 

Departament de Termologia, Facultat de Fisica, Barcelona 28 (Spain) 

(Received 22 April 1983) 

ABSTRACT 

This paper describes how to obtain an analytic approximation to the transfer function of a 
conduction calorimeter, namely a procedure to identify the calorimetric system. In this case 
modulating functions are used directly on the thermogram. The method is used twice: to 
obtain the time constants and the amplitudes. Its feasibility is tested on two models which 
span the frequency range usually attained by actual calorimeters. The influence of random 
noise and baseline drift have also been analyzed. The results show that three or four time 
constants are correctly obtained. 

INTRODUCTION 

This work, a continuation of that described in ref. 1, presents an identifi- 
cation method based on modulating functions. The method allows an 
analytic approximation to the transfer function of a heat flux calorimeter. Its 
performance has been tested on the same analytic models used in ref. 1. 

APPROXIMATION USING MODULATING FUNCTIONS. ALGORITHM 

The pulsed response of a heat flux calorimeter may be well approximated 
by a finite series 

N 
s(t)= C a,exp(-f/Ti) 

i= 1 
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which may be regarded as the solution to a differential equation 

s(t)+A,s(t)+ . ..+Aj#‘(t)=O 

where the coefficients A,, . . . , A,,, are functions of the time constants of the 
system 

A,= Fri,A2= f ri5 ,..., A,=f& 
i=l 1 =i<j i=l 

Once the pulsed response is known, the identification of the system is 
carried out by determining the coefficients A,, . . . , A, which define the 
differential equation. The obvious way is to derive numerically s( t)N times 
in N different times, thus obtaining a system of linear equations which can 
be solved immediately. Nevertheless, s(t) is a sampled function affected also 
by random components so the noise waveform is considerably amplified 
after each derivative. What is more, high frequencies are cut off because of 
the derivation step required by high order derivatives. 

The modulating function method (MFM) offers an alternative way of 
facing the problem. This method is a general technique to obtain the 
coefficients of a linear differential equation [2]. A modulating function (MF) 
of order N is defined as any function cp( t) well behaved inside [0, T] which 
verifies q(t) = cp’( T) = . . . = cpcN+‘)( t) = 0 for t = 0 and t = T. 

A useful choice for our pu@oses is found to be [3] 

q(t)= t”(T- t)P 

where n, p > N. If we multiply the differential equation by cp( t) and 
integrate over (0,T) we obtain 

/rqs dt + j’A,qi dt + . . . + j7A,cps”“’ dt = 0 
0 0 0 

The integrals containing derivatives of s(t) may be integrated successively by 
parts in such a way that the derivatives are charged on the MF. We obtain 

4[cps],T, -A,[&,... 
which are zero because of the very definition of MF. Finally, the equation 
reduces to 

J 
T T 
cpsdt-A, +sdt+A, 

0 J 0 j 0 
‘qjsdt- ...+(-l)‘N+‘)ANjT cN’sdt=O 

OT 

The calculations may now be carried out with N different MF (different 
values of p and n), thus obtaining a system of linear equations whose 
solution is the set of N coefficients Ai. The time constants are now found to 
be the roots of 

7N - A,T(~-‘)+ A,T(~-~)+ . . . + (- l)‘N’AN = 0 

Note how the algorithm does not require the calculus of the successive 
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derivatives of s(t), thus not leading to a noise amplification [the derivatives 

of ‘p(t) may be calculated analytically]. The MF and their derivatives behave 
as weight functions in the integrals of s(t) (Fig. 1). On the other hand, the 

Fig. 1. Characteristic shape of an MF with n = 5, p = 5 (A) and its successive derivatives (B, 
C, D, E). The thermogram of model M9 is also shown but re-scaled by a factor of 10-5. The 
sampling period of the thermogram is At = 0.5 s, whereas the Ar used to calculate the MF is 

0.1 s. 

integrals performed somewhat smoothen the noise present in the thermo- 
gram. Another advantage of the method is that it only requires a part of the 
thermogram and, in principle, its accuracy is not modified. This allows 
suppression of that part of the experimental thermogram which is consider- 
ably affected by noise, i.e. those intervals where the signal/noise ratio is 

especially low. 
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Once the time constants of the system have been calculated using this 
method, the corresponding amplitudes,could be obtained using a least-squares 
approximation. The calculations performed clearly show that it is more 
convenient to use again the MF. We are now led to the following system of 
equations 

f aj/Tqj e-t/Tf dt = iTqjs dt (j= l,...,N) 
i= I 0 

where yj are different MF chosen following the criterion previously given. 

RESULTS 

In order to analyze the feasibility of the method we have used the same 
analytic models described in ref. 1: 

M8 M9 

7, ai ‘i ai 

192.0 0.4866 x IO6 

49.0 -0.7895 x lo6 
18.0 0.3254 x lo6 
4.0 -0.2805 x lo5 

2.0 0.6227 x lo4 
1.2 -0.7310 x IO3 
0.4 0.3281 x 10’ 

0.3 -0.4715 x loo 

s(t) max = 192680.0 

192.0 0.2957 x lo6 
49.0 0.1577 x lo6 

9.0 -0.3407 x IO6 
4.0 -0.2945 x lo6 
1.2 0.2197 x lo6 
0.4 -0.5979 x lo5 
0.3 0.2193 x lo5 

s(t) max = 333571.0 

N 

Their sensibility is S = c air, = 0.605 x 10’ in arbitrary units. The models 
i=l 

roughly simulate the transfer function-corresponding to two different 
locations of the heat sources-of the calorimeter JLM-El [ 11. In this case the 
thermogram units would be nV. Random noise and baseline drift have also 
been added to both models in order to reproduce better the usual experimen- 
tal conditions. The various models are denoted as: 

M8 (resp. M9) + 50 N: random noise ranging f 50 units (signal/noise = 70 

dR); 
MS (resp. M9) + 50 D: linear drift where the last ordinate is shifted by 

+ 50 units; 
M8 (resp. M9) + 50 N + 50 D: random noise plus base line drift. 
The first point to be considered is the order of the transfer function which 

will be approximated to the given models. We have used in what follows a 
four-order approximation because we feel that this order will be adequate for 
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the identification of actual calorimetric systems. Experimental limitations 
(noise) bring about an upper bound for the attainable spectrum of the 
calorimeter, so a low order model may well approximate the transfer 
function within this limited frequency domain. All mc lels have een re- 
duced to unit surface and the sampling period selected has been At = p.5 s. 
Previous tests have shown that the value of T selected does not affect the 
accuracy of the results provided that T > 27,. It should also be pointed out 
here that the sampling period selected represents, in fact, a lower bound for 

(a) 
dB 

0 

0 

rad 

Fig. 2. Transfer functions of models (a) M8 and (b) M9 together with A, transfer function of 
the approximation given by the MFM algorithm (MFM) to models M8 +50 N (a) and 
M9 + 50 N (b); B, transfer function of the approximation given by the MFM algorithm 
(MFM) to models MS + 50 D (a) and M9 + 50 D (b); C, transfer function of the approxima- 
tion given by the MFM algorithm (MFM) to models M8+50 N + 50 D (a) and M9+ 50 
N+50 D (b). The time constants and their corresponding amplitudes which define the 
approximation are given in Tables 1 and 2. 
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the time constants that can be identified. The MF actually used are defined 

by 

n 5556 
p 5795 

concerning the calculus of the time constants, and by 

n 1257 
p 5555 

concerning the amplitudes. In the latter case the integration step is 5 At 
which is enough for all the ,present purposes saving, on the other hand, 
computer time. The time scale has been re-scaled by a factor of l/5 to avoid 
an uncontrolled increase in the MF. Moreover, the MF have been divided in 
actual calculations by 1016. The results obtained are presented in Tables 1 
and 2. 

The results show that the present version of the method gives, at least, 
three significant time constants and their corresponding amplitudes. More- 
over, the selection of the model order is not especially critical insomuch as 
the larger time constants do not change when the order of the approximation 
is increased. However, concerning more complex systems, approximating a 
higher order model is strongly recommended for it ensures the correctness of 
the larger time constants. Note how in Tables 1 and 2 the fourth time 
constant is wrong (there is up to a 30% error) because this time constant 
must include in our fourth order model the contribution arising from the 
lower ones. After having increased the order of the approximation, at the 
cost of more computing time, the value of the fourth time constant improves 

(Table 3). 
Finally, Fig. 2 shows, for both models and their corresponding modifica- 

tions, their frequency spectra together with the approximations given by the 
MFM. 

CONCLUSIONS 

Details of the calculations can be summarized as follows: double precision 
- 16 digits-has been used throughout the routine. T has been taken to be 
500 s which means taking 1000 points of the thermogram because the actual 
sampling period is At = 0.5 s. During the calculations the time scale is 
divided by five and the thermogram surface is set equal to one. The MF are 
divided by lO”j to avoid excessive growth in their numeric values. In our case 
T= 47,. 

The algorithm presented based on modulating functions gives in a sys- 
tematic way the more relevant exponential terms in the development of s(t). 
The method uses the sampled pulse response of the system together with the 
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order of the model to be approximated, which has to be fixed in advance. 
In a similar fashion to that reported in ref. 1, the method gives an 

approximation to the transfer function not especially sensitive to the per- 
turbations introduced and it is an adequate representation of the transfer 
function within the frequency domain usually attainable in actual calorime- 
ters. (The signal/noise ratio is the same as that used previously: 70 dB [l]). 
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