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ABSTRACT 

A generalization of the method of calculating the state of equilibrium of a multicomponent 
system, using a hill-climbing minimization procedure, is proposed. Moreover, an original 
method of calculating values for partial free energies from the state of equilibrium has been 
made an essential part of the general schedule. 

INTRODUCTION 

In most cases, the state of equilibrium of a multicomponent system is 
obtained through the minimization of the Gibbs free energy after all the 
independent variables have been prescribed. Several methods of calculation 
have already been used, in particular those of Hillert [l-3], Eriksson [4], 
Jansson [5], Sundman and Agren [6]. Most of these methods deal with the 
constraints of the system by producing supplementary unknowns. 

A different method, using a hill-climbing minimization procedure [7], has 
been applied for many binary and ternary systems by Ansara [8]. In this 
method, the number of independent internal variables, which depends on the 
number and the nature of the phases, is reduced to its minimum value by 
means of constraints. 

Here, a generalization of this method of calculation has been developed 
based on an automatic choice of the variables in relation to which the 
minimization will be done, and which yields the compositions of the phases 
in equilibrium in a multicomponent system. Moreover, an original method of 
calculating values for partial free energies has been made an essential part of 
the general schedule. We noted that these values must be known before 
analysis of the tendency for precipitation of other phases in relation to the 
calculated equilibrium can be made. 
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EQUILIBRIUM STATE OF AN N-COMPONENT SYSTEM WITH Cp PHASES 

A multicomponent system, containing Q, phases at a given temperature 
and submitted to an unchanging pressure, can be defined by 

P,n + P,n + . . . +Pfn+ . . . +P,n 

where P, is the fraction of n initial moles in phase f and satisfies the relation 

/=8 
c P,=l 0) 

/=I 

Taking the phases separately, one can determine the Gibbs free energy of the 
system, AG, which is equal to the summation of the Gibbs free energy of 
each phase, referred to the pure components in the same structural state. It 
can be expressed as 

AG= i P,aG/=‘~lPi(acJ-AGm)+AG’ (2) 
/=l f=l 

In order to define the Gibbs free energy of the system, the Gibbs free 
energy of each phase, AGJ, should be known as a function of temperature 
and composition. Usually, AGf can be written at constant pressure 

AGf= AG’(xl/,x{, . ..xf. . ..~jG_~.xh, T) (3) 
Or in a condensed form 

AC/= AG’( x;/, T) 

withi=l, . . ..N. 

(4) 

Since x,/ is the atomic fraction of i in phase f, we have 

~x!=l (5) 
/=1 

In eqn. (3) the Gibbs free energy of phase f can be related to the pure 
components in a given structural state. In eqn. (4), the atomic fractions x{ 
may be constants, dependent variables or independent variables, according 
to the nature of the phase. The following inequality is proved by the number 
of independent variables, N/, of phase f 

0 < N,( < N - 1 (6) 

The dependent variables are expressed by linear combinations of the inde- 
pendent variables and the constants of the phases, as will be explained later. 

On the assumption that the atomic fraction in phase f is 
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and that 

9 

n; = c nl (8) 
f=l 

the atomic fraction of component i of the initial melt is related to the 
different atomic fractions of the same component in the different phases by 
the equation 

xi= i P,xi,x~+yp,(,/-,:) 
f=l f=l 

with i= 1, . . . . N. These relations are called the generalized lever rule. 
The compositions of the phases at the equilibrium are obtained by 

minimizing the Gibbs free energy of the system [expressed by eqn. (2)] in 

relation to the independent variables and on the assumption that the lever 

(9) 

rule holds, using a hill-climbing technique described by, Nelder and Mead 

[71. 

GENERAL DESCRIPTION OF THE METHOD OF CALCULATION 

In order to calculate the Gibbs free energy of the system one must 
calculate at each step of the minimization [shown by eqn. (2)], each atomic 
fraction xf of the different phases in equilibrium and the $I - 1 values of Pf, 
which are related by the N - 1 equations (9) (according to the relation 
CjZyxi = 1, the N equation is a linear combination of the other N - 1 
equations). 

The number of independent variables can be defined by the relation 

where N,/ is the number of independent variables of phase f, @ - 1 is the 
number of unknown P,, and N - 1 is the number of independent equations , 
(9). 

In a simplified form, it becomes 

Ncs’= ; N;-(&,) 
” (10) 

f=l 

In order to choose the N,jS’ independent variables, yl, y2, . . . , yK , . . . , y,,,; s,, 
(N - a) variables must be eliminated from the C{1FN,’ variables of the 

system. 
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STRATEGY FOR THE CHOICE OF INDEPENDENT VARIABLES OF THE MINIMI- 
ZATION PROCESS 

This strategy is complex and is made in an automatic way; it is composed 
of two main steps: 

(1) numbering eqns. (9) with the order of increasing number of indepen- 
dent variables and making the lines of constants appear in the first equa- 
tions; 

(2) suppressing (N - @) variables in the system with the new numeration. 
Three particular examples are described in order to explain fully why 

these steps are necessary. 

Examples of the choice of variables 

Example I 
Let us consider a two phase equilibrium in a quaternary system. Relation 

(2) can thus be written 

AG= P,AG’+(l- P,)AG2 

Equations (9) become 

x1 = p,x; + (1 - P,)xf 

x2 = p,x; + (1 - P,)xS 

x3 = P,xi + (1 - PJX; 

In the description of the two phases, it has been supposed that the atomic 
fractions x;’ are independent variables, so N,: = N,: = 3. The number of 
independent variables of the problem is equal to 6 - (4 - 2) = 4 [eqn. (lo)]. 
One should therefore eliminate two variables from the six independent 
variables of the system. In view of eqns. (9), x: and x: are chosen as 
variables for the calculation of PI, and xi and xi are then eliminated by 
retaining x2’ and xi as variables. The first equation gives 

p, = (x1 -x:)/(x: - x:> 

The last two equations are constraints and allow xi and xi to be expressed 
once P, has been calculated 

x; = [x2 -(l- P1)x;]/P1 

x: = [x3 - Cl- P,)x:I/P, 

The Gibbs free energy of the system is expressed by (2) as a function of 
the four independent variables xl, xf, x;, xf. AG(x:, xf, x:, x,“) is mini- 
mized in relation to these variables. 
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Example 2 
Let us consider again a two-phase equilibrium in a quaternary system. In 

the description of the two phases, it.has been supposed that xi = (Y, xi = p, 
x: = yxi + S ((Y, fi, y and 6 being real constants), the other atomic fractions 
xi, X\ and xi being independent variables; so N,t = 1, N,! = 2. The number 
of independent variables of the probIem is equal to 3 - (4 - 2) = 1. One 
must therefore eliminate two variables from the three independent variables 
of the phases. The equations are numbered following the increasing number 
of independent variables and the constants are made to appear in the first 
equations, which are used to calculate P,. Elimination of one variable in the 
third equation (9) is done in the same way as in example 1, after xi has been 
chosen as the variable of the problem. 

x; = [x3 - (1 - P,)xZ]/P, 

This step is achieved after calculating P,. 
On the contrary, elimination of the single variable x: in the second 

equation cannot be made by the relation 

x5 = (x2 - P,P)/(l - Pi) 

since the first equation which should allow P, to be calculated gives 

P,=(x,-x;)/(cu-xf) 

Also, x: is dependent on xi which is known only after P, has been 
calculated. A linear combination of the first two equations gives 

X1 - YX, = P,(a - VP) +(1 - PJ(x: - Yx;) 

x1-yx2=P,(cu-yp)+(l-P,)6 

so that 

P, = (x1 - YX, - Wb -VP - 1) 

Once P, has been calculated xf = (x2 - P,fi)/(l - PI) and xf = yxz + 8 can 
be determined. The single variable of the minimization is x32 and AC is 
minimized in relation to xf. 

Example 3 
For a two-phase equilibrium in a quinary system, eqns. (9) are 

x1 = p,x; + (1 - Pl)Xf 

x2 = p,x; + (1 - P,)xf 

x3 = P,xi + (1 - P,)xi 

x4 = P,xi + (1 - PJXZ 

In the description of the two phases, it has been supposed that xf = (Y, 

Xl ' = j3, xi 7 y, xi = 8x: + E (a, p, y, 6 and E being real constants), the other 
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atomic fractions xi, x32, xi, xi being independent variables; so N,! = 2, 
N,? = 2. The number of independent variables of the problem is 4 - (5 - 2) 
= 1. One must therefore eliminate three variables from the four independent 
variables of the phases. The equations are numbered in the same way as in 
example 2. The first equation contains only constants and yields Pl [P, = (x1 

- /3)/(a - /?); a + /3]. The other equations are then considered as con- 
straints and one variable in each line should be taken off. Elimination of one 
variable in the last equation is made in the same way as in examples 1 and 2, 
after which xi is chosen as an independent variable of the problem. 

xf, = [x4 - (1 - P,)x,‘]/P, 

On the contrary, eqn. (2) contains no independent variable; x2’ depends on 
xi. Therefore, in order to take account of the constraint constituted by eqn. 
(2), one must eliminate the independent variable x32 on which X; depends 
and which belongs to eqn. (3). Elimination of x32 by means of xf is made in 

two steps 

Xf = (x2 - P,Y)/(l - p,) 

followed by 

x3’ = (xi - E)/S 

A variable in eqn. (3) is then eliminated; xi having already been taken off xi 
will be expressed by 

xi = [x3 - (1 - P,)x:]/P1 

The single independent variable of the problem is therefore x4’ and in the 
present case the two eliminated variables X: and xi are found to be in the 
same equation. 

Numbering the equations of the generalized lever rule 

Equations (9) are numbered in the order of increasing number of indepen- 
dent variables and such that the lines of constants appear in the first 
equations., In fact, in example 3 the first line contains only constants 
[xi = CUP, + /3(1 - PI)]. PI is fixed by this equation which must be placed in 
the first position. Moreover, it is noted that the existence of two lines of 
constants in this case makes the problem impossible unless the following 
condition is fulfilled by the atomic composition of the system (x1, x1). For 
x2 = cY’P* + /!3’(1 - Pl) 

(x1 - Pm - PI = (x2 - P’Vb - P’) 

Relations (9) become 

x,i= 5 P,x~=x~+yPf(x~-x;) 

f=l , f=l 
(11) 
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in whichj is the new index of the numeration. 
The following inequality is obtained from the number of independent 

variables, N,,(j), of the different phases in line j. 

j1 Gjz * N,,(j,) G N,,(jA (12) 

Later, the new index j will be assigned to the components. 
The choice of the variables y,, y,, . . . , y, of the minimization will be done 

by eliminating N - Cp independent variables by means of the lines whose 
indexes are j, j 2 0, making possible, on the one hand, calculation of the P, 
values by means of the first 0 - 1 equations, and on other, the remaining 
atomic fractions of the different phases by means of the last N - 0 equa- 
tions, considered as constraints, and by means of the relations of dependence 
which are specific to the phases. 

Techniques for eliminating an independent variable in a line 

Let us consider a line j, j >, 0: x, = E{Z;“T/x{. Later, 
variable xJf, will be linked to the variable xi if xi depends 

x;=,x;+px/f2+ . . . 

the independent 
f 

On xjz 

Two cases must be distinguished as, according to the number of independent 
variables of the line j, N,(j) may be zero or non-zero. 

N&i) f 0 
Let us suppose that xj is the independent variable that we will suppress. 

Two cases must be distinguished 
(1) xj is not linked to any dependent variable 
xl. can be taken off and expressed by means of the previously calculated 

values of P, and by means of the other atomic fractions of the different 
phases of line j. 

Xf = [xj-;<P,x;],P, 

These last variables (xi, f # 1) will have been chosen previously as 

independent variables of the minimization if they are independent, or if they 
are dependent, the independent variables which are linked to these variables 
will be chosen as independent variables in order to calculate them. Therefore 
it will no longer be possible to eliminate another variable in the same line. 

(2) xj is linked to one or more dependent variables 
(2a) none of these variables lies in the @ - 1 first equations: xj can be 

suppressed (see above) and the dependent variables which are linked to X: 
will be expressed, after the calculation of x:, by means of the relation 

xJ,=,x)+fix:,+ . . . (j>(D) 
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The variables x:2 will have been chosen previously as independent variables 
of the problem. 

(2b) One or more of these variables lie in the 0 - 1 first equations: let xj., 
be this variable ( j, < @ - 1). We can only suppress xf if the linear combina- 
tion of the lines j, jr, j, is realizable (cf. example 2), which means the 
resulting line x,, - c_xx~-C~J~~X~~ contains only variables defined before calcu- 
lation of the values of P,. For this to be possible, two conditions have to be 
satisfied by the linej: 

CY, none of the independent variables of the linej has yet been suppressed; 
p, none of the dependent variables of the line j is linked to an already 

suppressed independent variable, because the latter cannot be calculated 
before Pf. 

Once these two conditions are satisfied, the independent variables xJZ 
which is linked to xj, have to be examined. 

If j, < G-i - 1, th e variables xJ2 are taken as independent variables of the 
minimization, 

Ifj, 2 Cp, linej, must satisfy the same conditions ((Y, /3) as linej. It follows 
that the variable xj2 will be suppressed in linej, in this step of the operation. 

If all the conditions necessary to suppress the variable xj are satisfied, the 
other variables of line j are then calculated in the same way as in (1). 

N,(j) = 0 
After the numeration, a line j (j 2 @) may contain only constants or 

dependent variables [N,(j) = 01. An independent variable must be eliminated 
in another line by means of a dependent variable of line j (cf. example 3). 

Let x.j be a dependent variable 
4 

x,;. = c CXpx) + cQ+r 
P=, /’ 

We will therefore suppress one variable out of the independent variables 
x,:,. If this elimination is possible, xj will be calculated by means of the 
relation 

x) = [x,-xP,x+P, 

and the suppressed independent variable x/‘, will be calculated by 

The following conditions must now be satisfied for x:, to be suppressed. 
(a) The variable of line j, which is calculated by means of the constraint 

established by line j, must not have been suppressed already because the 
calculation requires that all the other atomic fractions be known. 
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(b) x:, can be eliminated if another independent variable of linej, is taken 
off, in order for the constraint of line j, to be verified. Thus, the variables x/‘,,, 

. . . x,: must be examined in order to see if one of these variables can be 
suppressed later on. 

(c) xj, must not be linked to a dependent variable which lies in the Q - 1 
first equations because it has to be known before the calculation of the 
values of Pr. This inconvenience cannot be palliated by a linear combination, 
because another variable must be taken off in line j,. 

In the event that xj, cannot be suppressed, x:;, . . .xi; will be analyzed. In 
the case of impossibility, a new dependent variable x/’ of line j will be 
analyzed. 

General algorithm 

The data related to the description of the different phases are contained in 
a file which is read by the program. In that file an indicator is used for each 
component of each phase to distinguish the constants, the dependent varia- 
bles and the independent variables. The program then calculates the number 
of variables of the minimization (10) and then, after the equations of the 
generalized lever rule have been numbered (see above), composes a table of 
independent variables which is linked to the dependent variables of the 
Q - 1 first equations. Then, N - Cp variables are eliminated by means of the 
N - @ last equations (see above) with the new numeration and, when 
possible, in the order: 

(1) taking off an independent variable which is not linked to any depen- 
dent variable; 

(2) taking off an independent variable which does not involve a linear 
combination of the lines; 

(3) taking off an independent variable which involves a linear combina- 
tion of the lines, the indices of the lines which are implicated in the linear 
combination and the order of calculation of the concerned variables being 
memorized. 

For the lines which contain only dependent variables, the independent 
variable is suppressed in another line as described above. The independent 
variables which are conserved in the precedent algorithm are then numbered. 
These variables, named y,, y2 . . . , yNAs,, are the variables of the minimization. 

CALCULATION OF THE PARTIAL GIBBS FREE ENERGIES OF THE COMPONENTS 
IN THE (P-PHASE EQUILIBRIUM 

Principles of the calculation of the partial Gibbs free energies 

The state of equilibrium of a given multiphase system is represented in an 
N dimensional space ( Xi, i = 1 to N - 1, Y) by a point, labelled *S, whose 



xj = *x; + c 
j-=1 

A*G = A*G+ i- 

pf( *x;- *x; 1 j=l ) . . ..N- 1 

@-I 
c P,( A*Gf - A*G*) 
f=l 

(13) 

The superscript * indicates that the corresponding values are calculated at 
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coordinates are defined by the N relations 

the equilibrium. 
Equations (13) define a point, labelled *S, which represent a Q-phase 

equilibrium in an N-component system in an N-dimensional space whose 
coordinates are (x1, x2, . . . , xi, . . . xN_ 1, AG). When the whole composition 
of the system varies, this point defines a $ - l-dimensional space, contained 
in an hyperplane tangential to the hypersurfaces representing the Gibbs free 
energies of the different phases of the system. The point of tangency of 
phase f has the coordinates *xjf, A*Gf, with j = 1, . . ., N - 1. If this 
hyperplane can be defined, the partial Gibbs free energies of the compo- 
nents, y = AGi, with i = l-N, are calculated using the intersections of this 
hyperplane with the straight lines xj = a,,, where Sjj is the Kroenecher’s 
symbol (c?,~ = 1 if i = j, Sij = 0 if i Zj). 

Equation of the N - 1 -dimensional hyperplane tangential to the hypersurfaces 
representing the Gibbs free energies of the 9 phases in equilibrium 

A hyperplane in an N-dimensional space is completely defined by a point 
and N - 1 independent director vectors. Any vector which is tangential to a 
hypersurface representing a phase f at the point (*xi, A*Gf) is contained in 
the hyperplane which is tangential to the f phases m the equilibrium state. 

Especially, if x;’ is 
coordinates are 

an independent variable of phase f, the vector whose 

with j = 1, . . ., N - 1, can be taken as a director vector of the tangential 
hyperplane. 

The Q, - 1 first director vectors are chosen by taking a free system of 
Q - 1 vectors contained in the linear variety defined by relations (13). This 
system is completed by N - Q vectors which are tangential to the hyper- 
surfaces of equation AGf = AGf( xf) at equilibrium. 

Determination of the Cp - 1 first director vectors 
Equations (13) define a parametric representation of the Q, - 1 dimen- 

sional space which has been previously described. The independent parame- 
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tersareP,,P,, . . . . P,_,.The@-lvectors~,,~z, . . . . vk, . . . . ?+,,whose 

components are 

*Xk _ *xt 
1 

--__-------- 

*xk - *x? 
J J 

--____--_--- 

* k * + XN-I- XN-1 

A*Gk - A*G+’ 

(14) 

constitute a system of independent directors of this space. 
As these Q - 1 first equations (13) are independent, a new parametric 

representation of the space can be obtained, whose independent parameters 

are x1, x2, . .., x@_~, by writing 

[P,] =[*xk/-*x$l[xk-*xt] 
in this matrix notation, [P,] and [x,-*x:] are columns with @ 

* / 
[ xk- *x,“] a square matrix of Q - 1 order. The inverse matrix 

b,,f], SO that 

[ pf] = [ mk,/] rxk - *xt] 

The expression of P, can be 

k=+-1 

Pf’ c mk,f(xk - *x:1 
k=l 

withf=1,2, . . . . B-1. 

written as 

(15) 
- 1 lines and 
will be noted 

(16) 

(17) 

The new parametric representation is 

xk=xk, with k = 1 ) . . ..+-1 
f=t#a-1 k=+-1 

x1= *xf+ 
c c m,,~(x,-*x~)(*xf-*x~) 1=+, . . ..N-I 

f=l k=l 

f=c#n-1 k=#-1 

/&=A*@+ c c mkJ (xk-*xf)(A*G’-A*G’) 
f=l k=l 

So, it follows 

x,=x,Withk=l, . . ..$--1 
k=c$-I 

x, = c al kXk + KI 

k=l ’ 

l=+, . . ..N-1 

k=#-1 

AG= c aN kXk + Kh 
k=l ’ 

(19) 
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and 

/=f#-1 

al,k = c mk,,(*+*$) I=+, . ..N-1 

f=l 

k=l ) . ..+- 1 

f=.$--1 

(20) 

. 

aN,k = c m,,J A*Gf - A*G+) (21) 
f=l 

e-1 

K, = *Xf - c * + 
al,k xk (22) 

k=l 

K; = A*G+ - c +/(*xt 
k=l 

(23) 

In the ne_w p?rametric_representtion, the free system of N - 1 independent 
vectors W,, W,, . . . , W,, . . . , W,_ 1 is defined by a matrix of N lines and 
Q, - 1 columns. 

1, 
0, 

b, 
0, 

i 

0, 

%.l ’ 

'N.1) 

. . . 

1, 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 

. . . 0, 

. . . 0, 

1, 
0, 

. . . 0, 

%.k ’ 

%,k 9 

aN.k 3 

. . . . . . 0 

. . . 0 

. . . 1, b 

. . . . . . 1 

. . . 
%.9-l 

. . . ~l,.#r 1 

. . . &N,@- 1 

The elements of coiumn k are the components of the vector Wk. 

(24 

Determination of the remaining N - Q, director vectors 
When choosing the independent variables of the problem, one indepen- 

dent variable of one of the phases of the system was suppressed for each of 
the N - @ last lines of the lever rule. Let z/ be this variable. The vector W, 
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defined by 

(25) 

will be taken as a director vector 0: the ta_ngential hyperplane. So the 
remaining N - Q, director vectors are W,, . . . W,_,. 

In the event that all the suppressed variables for the N - Q last lines are 
independent variables of these lines, i.e. if zf = x/ for line 1, the matrix of 
vectors W,, . . . , W,_, has the form 

1, 
0, 1, 

. . ) 

. . . . 
0, . . . . 

0, . ..) 

0, 0, 
0, 0, 

b, 1, . . . . 0, 0, 

b, 0, .I., l,O, 

%.+-I, 1, 

a/,1 3 a/,kr . . . ) ak-1 t 0, 

aN-l.l . . . , aN--l,k? ..-, 

aN.l 1 aN,kT . . . . 

aN-1,+-l? 0, 

aN.+- 1) aN.+' 

. . , 0, . . . . 0 

. . . . 0, . . . . 0 

.,.) 0, . . . . 0 

. ..) 0, ,.., 0 

. ..) 0, . ..) 0 

. . . . 1, . . . . 0 

. . . . 0, . . . . 1 

. . . . a,aJ,1, . ..1 aN,N-l 

(26) 

This matrix is formed by N lines and N - 1 columns and will be designated 
as[cri,,],withi=l, . . . Nandp=l,..., N-l. 

The N - 1 vectors are then independent. In the event that several of the 
suppressed variables for line 1 are not independent variables of this line, it 
may be possible that the system formed by the vectors is not a free system. 
The vector which is correlated to the suppressed variable will be replaced by 
a vector which is correlated to another independent variable of line 1. If, 
following this process, a system of N - 1 independent vectors cannot be 
constructed, the tangential hyperplane at equilibrium cannot be defined. 

Equation of the hyperplane 
A system of N - 1 independent vectors, tip, has been determined. These 

vectors are director vectors of the hyperplane tangential to the hypersurfaces 
representing the Gibbs free energies of the @ phases at equilibrium. 



186 

The vectorial equation of the hyperplane can be written as 

N-l 

f = *&if+ c wpGp 
p=l 

(27) 

where v is a vector of the hyperplane, *S represents the equilibrium state of 
the system, and { ~,}~=r,:,,,,_t are parameters of RN-‘. This equation can 
be replaced by the followmg relations in N-dimensional space. 

I o=N-I 

xi= xi+. c wp’yi,P withj= 1, . . . . N- 1 
p=l 
p=N-I 

Y= A*G + c w,,‘yN,P 
p=l 

(28) 

Calculation ‘of the partial Gibbs free energies of the components in the Q-phase 

equilibrium 

The ensemble of relation (28) is a parametric 
tangential hyperplane. The Cartesian equation of the 

N 

Y= c x;y 

representation of the 
hyperplane is 

(29) 
i=l 

where Y = AGi represents the partial Gibbs free energy of component i 

referred to a given structure of component i. Y can be identified as the 
Gibbs free energy of the system when X, is the whole composition of the 
system and as the Gibbs energy of phase f when Xi is the composition of 

phase f at equilibrium. 
The quantities Y = AGi are calculated by using the intersection of the 

tangential hyperplane with the straight lines whose equations are 

x, = 6i,j 

Si, j being the Kronecker symbol. 
From substitution in relations (28), it follows 

p=N-1 

8;.,=xj+ c wp,iaj,p withj= 1, . . . N - I 
p=l 
N-l 

q = A*G + c wp.i”N,p 
p=l 

(30) 

(31) 

As the N - 1 vectors GP are independent, the matrix [cYJ,~] can be inversed 
and the inversed matrix is labelled [J4’j,P], with j, p = 1, . . . N - 1. 
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It can be written 

j=N-1 

Op.i = C Pj,p('i,j - xj) 
j=l 

and it follows that 
o=N-I .i=N-1 

r, = Ac, = A*G + ’ c ” c ,8,.,( tJj - xj) (Y~,~ 

(34 

(33) 
p=l j-1 

This formula defines in a more general manner the partial Gibbs free energy 
of a component i referred to a given structure for the phases in equilibrium 
in a multicomponent system. These quantities are needed to study the 
stability of the calculated equilibrium related to the other phases of the 
system which can precipitate. 

STUDY OF THE STABILITY OF AN @-PHASE EQUILIBRIUM RELATED TO THE 
OTHER PHASES OF THE SYSTEM 

Gibbs rule, which defines the variance or number of independent varia- 
bles on which the state of a system depends, is given by 

v=zV+2-+ (34) 

This indicates that the maximum number of phases which can coexist at the 
equilibrium is equal to N at a given temperature and pressure. Moreover, in 
a multicomponent system, the number of phases which can exist may be 
numerous, the possible phases being either the stable or metastable phases of 
the lower order limiting systems, or the specific multicomposed phases. The 
problem is therefore to search through all the possible phases for those 
which are stable at a given temperature and pressure. For a given whole 
composition, the more stable equilibrium corresponds to a minimum of the 
Gibbs free energy of the system. 

The stability of an Q-phase equilibrium related to the other phases of the 
system has been studied by defining a new quantity 8’) which characterizes 
the tendency towards precipitation of phases f related to this equilibrium. 

Let us consider 0 phases in an N-component system. Equation (29) 
having been taken into consideration, the system will be stable relative to 
any phase f of the multicomponent system which is characterized by its 
Gibbs free energy AG’cx() if the quantity 8”’ defined by 

SC’) = AGf( x() - 5 x/r, (35) 
i=l 

is positive for each value of the independent variables of phase f, i.e. 

d”’ = minimum [ W] > 0 (36) 

related to the independent variables of phase f. 
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CONCLUSION 

The method which has been presented here yields at any temperature and 
for a given pressure the state of equilibrium of a multicomponent system, i.e. 
the compositions of the phases in equilibrium and the activity of each 
component. It allows analysis of the tendency for precipitation of the other 
phases of the system. This method has already been successfully applied to 
several quaternary or quinary systems, especially for the C-Cr-Fe-Ni [9] 
and C-Cr-Nb-Ni-W [lO,ll] systems. The principal advantage of this 
program is to yield execution times which are very rapid for most of the 
cases studied up to now. 

One drawback of the program is the fact that for each phase in equi- 
librium, the Gibbs free energy must be known as an explicit function of the 
composition and temperature. For phases which have internal variables 

other than the composition, it is necessary to think of generalizing the 
automatic choice of these new variables or calling at each step of the 
minimization a subroutine which allows calculation of the Gibbs free energy 
for each phase. However, it seems that this drawback is not fundamental 
because the method of calculation never depends on the thermodynamic 
model which has been used for the description of each phase. 
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