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For an ‘n-order’ reaction, we may write 

Rt =A exp( -E/RT)(l -a)” (1) 

where Rt = reaction rate, A = frequency factor, E = activation energy, T = 

temperature(K), (Y = conversion, n = reaction order and R = gas constant (2 
cal mole-’ KP ’ used). 

From eqn. (l), it can be readily shown that for two TG curves obtained at 
different constant heating rates, (RH), [ 1,2] 

ART 

n=AAT (2) 

where ART = /: ln(Rt/Rt, l)dT, AAT = /: ln[( 1 - a)/( 1 - a,)]dT and the 
temperature limits are identical for the two TG curves 

Similarly, it can be shown that 

E ARA -_= 
R ATA 

where ARA = /: ln(Rt/Rt, 1)dcr; ATA = /f[( l/T,)-( 1 

(3) 

/T)]da and the con- 
version limits taken are identical for the two TG curves. From eqns. (2) and 
(3), It is readily apparent that values of the kinetic parameters, n and E, can 
be obtained by means of numerical integration. In this respect, a computer 
was employed using Simpson’s One-Third Rule (SOTR) [3]. In previous 
determinations of n by eqn. (2), non-computer procedures were used to 
measure areas [ 1,2]. Such areas can be determined by a computer using 
SOTR in a matter of seconds. 

TESTING THE METHOD 

Equation (2) was tested for the evaluation of n by means of a computer 
and SOTR. To this end, theoretical data were generated using n = 1, E = 30 
kcal mole-‘, A = 3.30 X lo6 min-‘, (RH), = 1, (RH),= 2. Thus, in the 

0040-603 l/83/$03.00 61 1983 Elsevier Science Pubhshers B.V. 



380 

following are given in order T(K) and the corresponding (Y,, (Y*, and Rt, 1 
and Rt, 2 (X 102, min-‘): 720, 0.08930, 0.04569, 0.2692, 0.2821; 726, 0.1068, 
0.05489, 0.3136, 0.3319; 732, 0.1270, 0.06567, 0.3631, 0.3886; 738, 0.1504, 
0.07828, 0.4175, 0.4529; 744, 0.1772, 0.09293, 0.4763, 0.5152; 750, 0.2077, 
0.1099, 0.5389, 0.6054; 756, 0.2419, 0.1293, 0.6043, 0.6941; 762, 0.2802, 
0.1516, 0.6708, 0.7907; 768, 0.3224, 0.1768, 0.7365, 0.8948; 774, 0.3685, 
0.2053, 0.7986, 1.005; 780, 0.4181, 0.2372, 0.8542, 1.120; 786, 0.4708, 0.2725, 
0.8996, 1.237; 792, 0.5258, 0.3114, 0.9315, 1.353; 798, 0.5822, 0.3536, 0.9464, 
1.464; 804, 0.6389, 0.3991, 0.9411, 1.566; 810, 0.6947, 0.4474, 0.9136, 1.654; 
816, 0.7481, 0.4981, 0.8637, 1.721; 822, 0.7979, 0.5504, 0.7925, 1.763; 828, 
0.8428, 0.6036, 0.7036, 1.774; 834, 0.8820, 0.6565, 0.6017, 1.751; 840, 0.9149, 
0.7083, 0.4934, 1.691; 846, 0.9413, 0.7576, 0.3863, 1.595; 852, 0.9614, 0.8036, 
0.2878, 1.464. 

Using the preceding 23 data sets, ART = 63.526 and AAT = 63.601 so 
that, n = 0.999. Upon reducing the number of data sets to 15 (750-83410 
(note that the number of data sets in SOTR should be an odd value, 
otherwise the SOTR usually employed requires additional terms), the value 
of n = 1.000. When the previous 15 data sets were used and the (Y and Rt 
values possessed 3 significant figures (s.f.), n = 0.999; for 2 s.f., n = 1.019. 
When all the preceding data were employed and the (Y and Rt values 
possessed 3 s.f., n = 0.998; for only 2 s.f., n = 1.024. It can be seen from the 
preceding [assuming T(K) possesses an accurate value] that even for 2 s.f. for 
alpha and Rt, the value of n was reasonably close to the theoretical value. 

In order to evaluate E/R from eqn. (3) by means of SOTR, theoretical 
data were generated for various values of (Y [n = 1, E = 30, A = 3.30 X lo6 
min-‘, (RH), = 1, (RH), = 21. Below are listed, in order, CY and the corre- 
sponding values of T,(K) [at (RH),], 7’,(K) [at (RH),], Rt, 1 and Rt, 2 
(X 102, min-‘): 0.1, 723.8, 746.6, 0.2968, 0.5589; 0.15, 737.9, 761.6, 0.4165, 
0.7840; 0.2, 748.6, 772.9, 0.5242, 0.9842; 0.25, 757.3, 782.2, 0.6186, 1.162: 
0.3, 764.9, 790.3, 0.7029, 1.320; 0.35, 771.6, 797.5, 0.7739, 1.455; 0.4, 777.9, 
804.1, 0.8362, 1.567; 0.45, 783.7, 810.3, 0.8841, 1.657; 0.5, 789.2, 816.2, 
0.9184, 1.722; 0.55, 794.6, 822.0, 0.9405, 1.765; 0.6, 799.9, 827.6, 0.9474. 
1.775; 0.65, 805.2, 833.3, 0.9379, 1.758; 0.7, 810.6, 839.0, 0.9101, 1.703; 0.75. 
816.2, 845.0, 0.8611, 1.611; 0.8, 822.3, 851.5, 0.7895, 1.476; 0.85, 829, 858.7. 
0.6862, 1.283; 0.9, 837.1, 867.4, 0.5450, 1.019. 

Using the preceding 17 data sets, ARA = 0.50304 and ATA = 3.3536 X 
lo-‘, so that E/R = 15000.1 cal mole- ‘. When only 11 data sets were used 
(a = 0.25-0.75) E/R = 15000.0. Using all the preceding data sets and 3 s.f. 
for the Rt values, E/R = 14997.0; 2 s.f. for Rt values yielded E/R = 15260.4. 
Maintaining 2 s.f. for Rt values, the following gives, in order, the value of 
E/R (kcal mole-‘) and the corresponding changes in T(K): 15.34. rounded 
to the nearest degree; 15.30, 1 degree too high; 15.34, 2 degrees too high: 
15.36, 5 degrees too high. From the preceding, when both values of T, and T, 
were increased by the same I-5 degrees above the theoretical values. the 
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corresponding values of E/R did not vary much (15.3- 15.4 kcal mole-‘) or 
differ much from the theoretical value. Also, rounding T(K) to the nearest 
degree still gave a satisfactory value of E/R (15.3). However, when T, and T2 
were not varied from the theoretical value by the same amounts, much larger 
deviations from the theoretical value were obtained. Thus, using all the 17 
data sets and 4 s.f. for the Rt values, the E/R values (kcal mole-‘) obtained 
are listed along with the corresponding T(K) changes: 14.48, T, maintained 
but T2 increased by 1 degree above the theoretical value; 13.99, T, main- 
tained but T, increased by 2 degrees; 12.71, T, maintained but T, increased 
by 5 degrees. 
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