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ABSTRACT

On the basis of non-equilibrium thermodynamics, the kinetic equations of thermal analysis
are derived for several important chemical consecutive and concurrent reactions. These
equations are solved analytically and numerically and the obtained solutions are discussed.
Hereby hints are obtained for the further development of thermal methods. It is shown that,
in most cases, the kinetics of coupled chemical reactions can only be determined with special
selective methods.

INTRODUCTION

The development of analytical techniques has provided the possibility of
determining the conversion of a sample under non-isothermal conditions
with high quality. In the last ten years, experimental conditions have been
improved so that the thermodynamic and kinetic parameters can, in many
cases, be determined directly from the experimental results. To take further
advantage of this development, it is also necessary to improve both the
theoretical basis of the models and the analytical determination of the
reaction-specific quantities. In this field, the theory of non-isothermal reac-
tions has also made significant progress. A detailed review was presented by
Koch in 1977 [1].

Nevertheless, the interpretation of experimental results is not entirely
satisfactory. The various theoretical models and experiments are one reason
for the incomparability of results. Furthermore, it is often possible to
describe one experiment with the same statistical significance by various
theoretical models. In this situation, it is necessary to answer the question
what requirements of analytical techniques have to be fulfilled in order to
determine the reaction kinetics and the parameters involved in a correct way.

* Parts of this paper were presented at the 2nd ESTA, Aberdeen, 1981.
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A reliable criterion for the interpretation of measurements is not available at
present. However, such a criterion is necessary for the development of
analytical equipment to control the technology of non-isothermal industrial
processes and to obtain unambiguous information from the experimental
investigation in laboratories. The solution of these problems is important
from the point of view of the optimum use of both energy and raw materials.
This paper outlines a theoretical concept of a uniform treatment of non-iso-
thermal analysis experiments on the basis of non-equilibrium thermody-
namics with the aim of improving further experimental equipment.

THEORETICAL BASIS
The basic equations

Equation of mass balances
In a homogeneous system with K components B, (i=1, 2,...K), R
chemical reactions take place with the stoichiometric equations

M, K

2 (—»,)B= 2 v, B +AH, (1)
i=1 i=M,,,

On the left-hand side of eqn. (1), there are the reactants B, to B,, and on the
right-hand side, the reaction products By, = to By. AH is the reaction
enthalpy of the rth reaction. In the course of the chemical reaction, the
concentrations ¢; of reactants B,(¢, = p,/p, where p, = the mass density of the
reactant B,, p = the total mass density, and p = IX ,p,) change with time.
The rates of the mass changes can be described with the aid of the mass
balance equation

-+-d1vJB 2 w, ¥, My (2)

r=1

pdt

where w, is the rate of the rth chemical reaction, My the molar mass and JB
the dlffu51on flux of the component B,. The diffusion flux J and the rate of
the chemical reaction w, depend on the temperature. Therefore the heat
conduction must be taken into consideration in the calculation of the
concentrations.

However, under certain conditions, the diffusion and heat conduction
produce only small effects compared with the chemical reactions. In this
case, the following assumptions can be made.

(a) The sample is homogeneous. (In this case the concentrations ¢, are
functions of the time only, the diffusion fluxes vanish, and we therefore
confine ourselves to homogeneous reactions.)

(b) The heat conduction of the sample is large enough or the sample so
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small that the temperature is constant throughout the sample and that a
time-dependent change of the temperature in the surroundings also takes
place inside the sample without delay.

(c¢) The surroundings absorb (or give up) the reaction heat so quickly that
thermal equilibrium is always maintained. The last two assumptions permit
us to neglect heat conduction. Therefore we may consider the temperature as
a given function of time [T = 7(¢)]. We often use linear time dependence of
the temperature (T = T, + gt where T; = initial temperature and g = heating
rate). With all these assumptions, we obtain from eqn. (2)

c de &
p%:q"d—Tk:EI w(Tc) VirMp, (3)
For the integration of this system of ordinary differential equations, we need
the initial concentrations and the reaction rates w(7,c). In the following we
will discuss the temperature and concentration dependences of w,.

First, it should be mentioned that the assumptions (a)—(c) are the basis for
the equation often used in the literature

da
82 = K(T) f(a) @)

Constitutive equations

The rate of a chemical reaction, w, depends on thermodynamic and
kinetic quantities. The thermodynamic quantities are given by the chemical
affinity 4 = 3v;u;, where p, is the molar chemical potential of the compo-
nent B,. For real mixtures it has the form

#,=8(p.,T)+RTIna, (5)
where g, = molar Gibbs enthalpy, a; = activity (a, = x, f;), x; = mole fraction,
and f, = activity coefficient of component B,. It is useful to separate the

affinity into two parts: 4™ for the forward reaction and 4~ for the reverse
reaction

A=A —A"
M K

AT =- 2”1’!":‘, 4= 2 Vi, (6)
=1 i=M+1

The dependence of the reaction rate on the affinity can be described by the
non-linear equation [2]

w:A(eA*/RT_eA‘/RT) (7)

where A is a phenomenological coefficient.
In the case of chemical equilibrium, w = 0, eqn. (7) [together with eqn. (5)]
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in the form
M K
w= A{e"f/” Il a7 —ets 727 ] a,-"'} =0 (8)
i=1 i=M+1
M K
where Agt = — Y v,g;and Ag"= Y g, yields the law of mass action
K i=1 i=M+1
Il ay=K(p,T)=ete/aT (9)

i=1
Here, Ag=Ag~ —Ag* and Ag= Ah— TAs which contains the molar reac-
tion enthalpy Ah and the molar reaction entropy As. Both quantities can be
separated, like Ag, into parts related to the reactants, Ax™* and As™, and the
products, Ak~ and As™, with Ah=Ah™ —Ah" and As = As™ —As™.

The phenomenological coefficient, A, in eqn. (7) depends on the state
variables T, p, x; and describes the influence of kinetic quantities on the
reaction rate. To obtain the connection with the relations for the velocity
constants in the field of reaction kinetics (Arrhenius concept [3]), we state

A= }\e—(Ah“/RT) eAsO/R (10)

Thereby it follows for the velocity constants.of the forward reaction, K+,
and the reverse reaction, K~

Ag” As** E* E*
K"'=Aerr =Ne" r e rr=kg € &7
Ag~ As* E~ E~
K =Aerr =Ae" "R € rRT=ky € RrT (11)
with the activation energies
E*=ARr"—AR"
E-=AR"— AR~ (12)

and the activation entropies
As** =As*t —As°
As* ™ =As™ —As° (13)
The activation entropies are connected with the “steric” factors. These
results can be compared with those obtained in the theory of the transient
state in the field of reaction kinetics [3]. It follows that A#° and As® have to
be interpreted as molar standard enthalpy and entropy of activation.

The temperature dependence of A is given by
A=A, TY
In most cases, this dependence can be neglected just as the influence of
pressure. Therefore the reaction rate, w, becomes

M K

_AR L As% [ Ag” -, A v
w=Age rT "R {€rr Il a7 —eRT II a; (14)
i=1 i=M+1
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and with the eqn. (11)
M K
=K (T)[ a7k (1) Il a (15)

i=1 i=M+1
When several chemical reactions take place, the phenomenological equations
are given by (neglecting cross effects)

Al A~

w,= A, (erT — er7) (16)

Furthermore, we confine ourselves to ideal mixtures with f,=1 and a, = x,.
Kinetic equations

With regard to the assumptions (uniform system without diffusion JT =0
and convection v = 0, ideal mixtures), the mass balance reads

de X i al
s Sl ek I e )
A i=1 =M+

Equation (17) describes the progress of the chemical reaction and enables an
accurate calculation of the time dependence on the concentration to be
made.

To obtain uniform solutions of eqn. (17), it is necessary to know the initial
concentration, c?, and the time dependence of the temperature. For simple
reactions, it is possible to find analytical solutions. It is often useful to
introduce a progress variable, £,, for each reaction because in this way a
decoupling or a partial decoupling of the differential equations is attained.
The progress variables £, are connected with the reaction rate

o =S (18)
Hence eqn. (3) becomes

da f} vkrwr—A—/[’% - f} S8 (19)
This integrates to

=cit § i€, (20)

r=1
with ¢, = 0 at the start of reaction (¢ = 0). £ is proportional to
0
£

a ranges from zero to one and £, is the progress variable at the end of the
reaction.
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Equations (17), (19) and (20) yield

14

"

d§ M, R -, ~ K R
o D[ Soe] —x 1 [es S, @
s=1

dr i=1 s=1 i=M+1

The analytical solution of these differential equations is only known in
special cases (e.g. for isothermal processes [2]), but in many cases it is
possible to neglect the reverse reaction. The rate equation then reduces to

dgr -y,

M, R
2 :K+(T) H (C,O+ 2 Visgs

22
3 1 (22)

s=1

These equations are the “kinetic laws” of chemical kinetics. For the
determination of the concentration of a reactant product at various times,
these equations must be integrated. In kinetic studies of reactions, 1t is
common to fit the calculated expressions into experimental data using
appropriate parameters (e.g. activation energies, frequency factors, reaction
orders). Generally, the more information on the reaction that is available,
the more exactly the unknown parameters can be determined. Some of the
more important expressions following from eqn. (22) will now be derived.

A SINGLE CHEMICAL REACTION
A single reaction without reverse reaction

The rate of reaction of a single chemical reaction without reverse reaction
will first be discussed. The rate equation (r=1,§, =§ T=qt+ T,) is
M

SF= 2k (D (4 vg) 23)

This equation corresponds exactly to the commonly used kinetic equation [4]
da 1
ar ~ gk (T) f(a)

Equation (23) may be integrated by separation of variables

17 _ ¢ d¢ _
S Kmar= [y £.(£) (24)

II(c?+wg)™

=

The left-hand side, the “exponential integral”

T T E
fK*(T)dT:f Kye &7 dT=Kop(T) (25)
0 0
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can be presented with good approximation in the analytical form [5]
RT?/E E
/ e T (26)
Y1+ 4(RT/E)

The function g(§) depends on the order n = Iy, of the reaction.

In general, the concentration of reactant or a product can be determined
experimentally at various times. For a first-order reaction, the specific
conversion is given by

§=c(1—e’M),  p=-1 (27)

for a second-order by

p(T)=~

1 — elel—eDIT)
§=clc; , mEn=—l (28)
(cg — 0 e(c?—c;‘mr))
or
2
_(Dum
1+2¢%(T)° ‘
VT iy o Koo,
HT)=— [(K*(T)dT= =2 [ p(T) - p(T;)] (29)
97T, q

These expressions [eqns. (27)—(29)] describe the progress variable £ as a
function of the heating rate g [J(T') depends on g] and the initial concentra-
tions.

A single reaction with reverse reaction
For the further development of experimental equipment, it is of interest to

determine the influence of a reverse reaction on the specific reaction rate. In
this case, the rate may be expressed as

dt M ~ K
T =k 11 (c?+vi§) "k I (c?-i—v,.&)v' (30)
¢ i=1 i=M+1
An analytical solution of eqn. (30) is only known for isothermal cases
3 dé
[ - =1 (31)
k1 (P+vt) "~k I (c0+ )"
i=1 i=M+1

The integral may be calculated by the method of partial fractions. If £ is
plotted against ¢, a curve of the form of Fig. | is obtained in the case of a
first-order reaction. £, represents the progress variable at the equilibrium
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Fig. 1. Slope of the progress variable £(¢) as a function of time for a first-order reaction at
different rate constants K* and X~ and under isothermal conditions.

state, which can be determined by the law of mass action
K

- K™
I (P +ng) "=~ (32)
i=1 K
Equation (31) for a first-order reactions yields
£() =81 —emx" ) (33)
where £, is given by
Op+ _ g~
K" =K
gO - K+ +K— (34)

The initial rate at time ¢t =0 is denoted by w, and depends on the initial
concentrations ¢} and c2, so that

_(4¢
“o= ( de
K~ can be determined from w, if ¢! =0 and K* can be determined if ¢3 = 0.

Under non-isothermal conditions, the solution of eqn. (30) is more com-
plex. A solution of this equation for a first-order reaction (A = B) gives

) =Kt — K~ (39)
=0

€(7) = 1 @ [ [0 (1) = 3K~ (1) T T (36)
7;)

with

J(T)= fT[K+(T') + K~ (1)] AT (37)

0
The equilibrium conversion §,(7') is also a function of temperature. If the
temperature 7 is much greater than E* /R, £ approaches £5, which can be
expressed as
_ aKg —c3Kg

o _ 38



311

In Fig. 2, possible examples are given schematically. The slope of the curve
d§/dT, the rate of reaction, is not always positive. This is an interesting
result for the interpretation of experimental data [6].

Fig. 2. Variation of the equilibrium conversion £4(T) under non-isothermal conditions and
the slope of the resulting progress variable £(7°) and conversion rate d§ /dT, respectively.

Qualitatively similar results are obtained for more complicated reactions.
However, the integration of the corresponding differential equations is
difficult or impossible in most cases, e.g. second-order reactions yield
Riccati-differential equations which can only be integrated in special cases
[7]). A third-order reaction yields a differential equation of Abels type [7].

COUPLED CHEMICAL REACTIONS
Analytical solutions of the kinetical equations

An analytical solution of the differential equations of coupled chemical
reactions cannot be given in most cases. Only in the case of the simplest
competitive and consecutive reactions is the solution known. In the case of
competitive first-order reactions, represented as

B, - B,
B, - B,

B, - B
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the rate equations at linear heating rate can be expressed as

d§, 1
-d_T% = EKT(C?—& —&— .. “gn)
d§, 1
ﬁ:;KJ(C?—fl—fz—m*ﬁn) (39)
d¢, 1
ar ;K:(C?—sl — & -~'_$n)
From these equations follow
0
§(1) = [K; (1) e ar (40)
9 71,
and
§+6,+ ¢ = (1—e /) (41)
with
. l T + ’ + ’ + ’ ’
J(T)= EfT[K, (T) +K{ (T) + ... +K! (T")] dT (42)

The rate-equations for consecutive first-order reactions which can be repre-
sented as

ar = gKi(d=¢4)

d§, 1

57 = EKI(C(2)+§| —£,)

d¢, 1

dT = ;K:(C'?_’_én—l —gn) (43)

From these equations follow

§=c/(1—e™ D) (44)
1 T N

§=, O KI(T)[d+&(T)] e dT (45)

R T , o A
gnz—q— e Jﬂ)fT K (T2 +£,_(T)] e dT (46)
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with
J(T)= lfTI<+(T') ar’
n q 7 n
These equations express the influence of all concentrations upon the rate of

a single reaction [8]. The dependence of the concentration ¢, upon the
temperature may be expressed by means of the progress variables as

cAT)=cy+ X ,8(T) (47)
r=1

In this way, Koch [1] found the equations for two competitive and two
consecutive first-order reactions.

Simultaneous consecutive first- and second-order reactions

The simultaneous first- and second-order reactions can be represented as
(a) B, > B, + B, > B,

In this case the rate may be expressed as

ag, 1,
ar = K (@-8) (48)
d¢,

1
a7 = ;K;(Cg"'gl —§2)(cg—§2)

Integration yields

§(T)=c)(1—e"T) (49)
COC—G(T)
£(T)=c3— = ? (50)
(1+ —;—f K3 (T") e ™ T’
7

J(T) and G(T) are given as
1 ¢T
J(T)= P Ky (T')dT (51)
T

G(T) = éfTTK;r(T’)[cg—cg+£,(T’)] dr’

(b) B, +B,—>B;—>B,

¢, 1.,
=K (-8 ) (52)
de, 1
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c?cg[l — e(ci’—cgu.(r)]

£(T) = - (53)
C(Z)_C? e(C|-Cz)J|(T)
T ,
61) = 5 e 0 [k (1) + (1) 27 ar (54)
T
with
1 T + 7 7 55
ha(T) =7 [ Kia(T) a7 (53)
(¢) B,+B,—B,;, B+ B,— B
d§ 1
d—Tl = EKT(C?_’E])(C?—&)
dé 1
=L@ s -a)(d-t) (56)
C?Cg[l - e(ci’—ci’)f,,(r)]
§(T)= (57)
cg_ C? el —e)(T)
CO e—G(T)
§(T)=ci— o . (58)
€4 + 7y o= G(T") ,)
1+ — | K, (T)e dT
- / K (T)
with
1 (7
NT)= 2 [ KH(T)dT (59)
17 ,
G(T) = [ K3 (T~ i+ &(T)] T (60)

The analytical solutions are of particular interest because it is easier to
estimate the dependence of the reaction rate on the parameters which can be
readily influenced by the heating rate or the initial concentrations.

Mathematically, analytical solutions can be calculated more easily by
means of the non-linear heating rate. Solutions are given for first- and
second-order reactions by Koch [1]. However, these methods were dropped
in favour of the experimentally more suitable linear heating technique
because the complete values for the exponential integrals are available.

For the examination of the kinetic parameters calculated with the help of
linear heating rates, the non-linear heating investigation will obtain more
importance in the future because the non-linear heating programmes can be
adapted to the parameters obtained by the linear heating rate. Only if the



315

results of different heating programmes are consistent with each other will
the correct interpretation be most probable.

Numerical solutions of the kinetic equations

Numerical calculations for several chemical reactions help to obtain more
information about the differences of the reaction processes of different
models (different reaction order, coupled reaction and so on). For compari-
son of data, the same kinetic parameters (frequence factor Kj and the
activation energy E), the same heating rate and thé¢ same initial concentra-
tions are used in different models. The initial concentrations are equal to the
stoichiometric coefficients, whereas the concentrations of the final product
are zero at the start of reaction. Furthermore, the following values are used.

E < E, E,=E, E > E,
H 4
= 0 T .
A
e ol a (L[N
By By,—>B, P LAA - ../L
B¢ B,—8, '.', .'.'.
BBl A i 1AL ,A. JL
=z
g 1A
—B, ' .
=) S
| ; AL X
B—>B, ' A
g:_’g: A . - M:\\-- A?“b
=
B g;::g: ‘. ’I j:“ .l\ ‘:",\
,‘ - o"‘ - . e
E‘. g;::g: ’\ ; \ "'I\ll / Iu‘ ’-\’II"\
B BB, ' A N TA -
08 08 10 " 12 T

Fig. 3. Schematic representation of the conversion rate curves as a function of the tempera-
ture at different kinetic equations with E, =84 kJ mole™!, E, /E, =08, 09, 1, 1.1, 1.2,
E;/E;=1,12, and g=6 K min~".



316

K§=10"sec™!

E,=84LkImole~' E,/E,=0.8;09;1;1.1;1.2
E,JE,=1;12

g=6K min~!

The reactions and the rate equations are given in eqns. (39), (43), (48), (52)
and (56). A summary of the rate curves is given in Fig. 3.

DISCUSSION

Two factors determine the interpretation of the experimental resulis, the
physical reality of the model chosen and the difference of numerical values
for different models in connection with the model chosen.

For discussion, we must examine in which cases the model of homoge-
neous reactions can be applied to solid state reactions. Many experimental
results show that this model cannot be accepted for the interpretation of
solid state reactions. Examples for “quasi-homogeneous” reactions in the
solid state are order—disorder phase transformations, but the decomposition
of solids can also be discussed in this way if the rate of formation of nuclet
and the diffusion rate are large in comparison with the rate of chemical
reaction, i.e. the concentrations of the reactants are dominant in the reaction
rate.

If the concept of homogeneous reaction is valid, the calculations show
that, in the case of concurrent reactions [e.g. eqn. (39)], only one maximum
of the reaction rate can be observed (Fig.4). This result is important for the
experimental investigations and the further development of analytical equip-
ment. Furthermore, the results of the calculations for different kinetic

#

T

Fig. 4. The conversion rate curves of the competitive reactions B, — B,, B, — B, as functions
of the temperature at different values of the activation energy (Fig. 3).
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equations allow the conclusion that, generally, the analysis of complex
reactions requires selective measuring methods, as is shown, for example, in
detail in Fig. 5. If integral measuring methods are used as TG and DTA. in

5

Fig. 5. The conversion rate curves of different complex kinetic equations as functions of the
temperature in the case of E,=E, and K,=K,. 1. reaction of first-order B, —B,: 2,
competitive reaction of first order B, —B,, B, —B;: 3. consecutive reaction of first and
second order B, — B,, B, +B; — B,; 4, consecutive reaction of first order B, —B,. B, —B;: 5,
consecutive reaction of second and first order B, + B, — B,, B; —B,: 6, competitive reaction
of first and second order B, —B,, B, + B, —B;; 7. competitive and consecutive reaction of
first and second order B, —B,, B, +B, —B;: 8, competitive reaction of second order
B, +B, —B,, B, + B, —Bs: 9, competitive and consecutive reaction of second order B, + B, —
B,, B, + B, —B,; 10, consecutive reaction of first order B, — B,. B, —B;, B; —B,.

[ %%)

Gewichtsverlust

100 150 200 250 Ti°C]

Fig. 6. Thermal decomposition of K,Mg(80,),-4 H,O at different heating rates.



318

principle, by external factors (heating rate, sample size, etc.) the separation
of the single reaction steps cannot be attained.

Further, an interesting result was obtained in the case of consecutive
reactions, e.g. the decomposition of crystal hydrates. For such reactions, as a
rule, the stoichiometric coefficients were determined experimentally from the
slope of TG curves [9]. According to our experiments [10,11] and ref. 12, the
step in the TG curves does not always correspond to the stoichiometric
relations. ]

A reexamination of the decomposition of leonite K,Mg(SO,), - 4 H,O by
means of a high sensitivity thermobalance (Thermoanalyzer TA1, Mettler
Instruments A.G., Switzerland) under different experimental conditions
yielded the following results. (a) The total weight loss does correspond
exactly with the theoretical loss of 4 H,O molecules (Fig.6); (b) the
minimum of the reaction rate does not correspond to the loss of two
molecules of water; and (c) the difference between the two reaction steps is
higher the slower the heating rate.

As the theoretical rate curves show, separation of single reaction steps is
possible only by fixed kinetic parameters. In general, it can be expected that
in the case of consecutive reactions, the steps in the TG curves do not
exactly represent stoichiometric relations. Apparently “non-stoichiometric”
intermediates result in many cases because the rate curves overlap one
another.

REFERENCES

1 E. Koch, Non-Isothermal Reaction Analysis, Academic Press, London, New York, San
Francisco, 1977.

2 G. Kluge and G. Neugebauer, Grundlagen der Thermodynamik, VEB, Berlin, 1976.

3 AA. Frost and R.G. Pearson, Kinetik und Mechanismen homogener chemischer Re-

aktionen, Verlag Chemie, Weinheim, 1964.

J. Sestak, V. Satova and W.W. Wendlandt, Thermochim. Acta, 7 (1973) 335.

M. Balarin, J. Therm. Anal., 12 (1977) 169.

F. Paulik, J. Therm. Anal., 1 (1969) 293.

E. Kamke, Differentialgleichungen, Losungsmethoden und Losungen, 1. Gewdhnliche

Differentialgleichungen, Akademische Verlagsgesellschaft Geest und Portig, Leipzig, 1956.

8 K. Heide, G. Kluge, W. Reiprich and H. Hobert, Proc. IV ICTA, Budapest, 1974, Vol. 1,
p. 123.

9 K. Heide, Chem. Erde, 24 (1965) 94.

10 K. Heide, Chem. Erde, 24 (1965) 279.

11 K. Heide, Chem. Erde, 25 (1966) 237.

12 G. Liptay, Atlas of Thermoanalytical Curves, Vols. 1-5, Akademie Kiad6, Budapest,

1971-1977.

~N N A



