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ABSTRACT

Numerical integration has been carried out for
B o0
p(x) =/ x?e "dx
X

where x = E/RT with E =20, 25, ..., 100 kcal mole™' and 7 = 300. 350. .... 1000 K. Using
the values of —log p(x), numerical equations have been obtained that enable calculations of
—log p(x) at other values of E and T.

INTRODUCTION

The evaluation of kinetic parameters can be carried out for non-isother-
mal reactions that follow the rate law
da A4 n
£ 21 —q) e E/RT 1
F-gl-o (1)
where « is the fraction reacted, T is the temperature (K), B is the heating
rate, A is the frequency factor, and n is the order. This evaluation hinges on
obtaining values for the integral

T

1=f e E/RT 4T (2)
0

by one of several means [1-10]. Tables of values of —log I are available [1,2]

and several approximation techniques are widely used in thermoanalytical
methods [1-10]. In an alternative treatment [11], the integrated function of

* To whom correspondence should be addressed.

$040-6031 /83 /00G0-0000,/$03.00 © 1983 Elsevier Scientific Publishing Company



196

a, f(a) is written as

f(a)=ig§ p(x) (3)

where x = E/RT and p(x) represents the integral

p(x)=[ x"?e vdx (4)

The evaluation of this integral has recently been reviewed [12] and numerous
approximation techniques by series have been proposed [12-14]. The stan-
dard table of values for —log p(x) is that of Doyle [13], although other
tabulated values exist [14]. Doyle presents values of —log p(x) for x = 10-50
in integer units to three decimal places and gives differences for use in
interpolation to other values of E and 7. Zsako’s table contains values for
—log p(x) for ¢(C) = 100-430 and E = 10-66 kcal mole™' (x ranging from
7.15 to 89.04). However, the —log p(x) values for x < 50 were obtained
using the interpolation differences given by Doyle and they are not always
accurate to even three decimal places. For example, with ¢ = 100°C and
E =50 kcal mole !, —log p(x)=32.95413 by numerical integration com-
pared with the reported value of 32.968 [14]. For x > 50, Zsako’s values were
obtained by means of the approximate formula

1 2
px)=e 5 -5 )
Thus, there is no single table of highly accurate —log p(x) values covering
the usually encountered ranges of E and 7. In this work, we have carried out
numerical integrations of eqn. (2) at regular intervals of E and 7. These
—log p(x) values are presented, as are numerical relationships to enable
—log p(x) to be determined at any desired values of E and 7.

METHODS

In order to provide a unified set of values for —log p(x) of higher
accuracy than those available, numerical integration of

p(x)=f\»°ox‘26"" dx (4)

was carried out as previously described [15]. A Hewlett—Packard HP-34C
programmable calculator was used employing the f SCI 3 accuracy level
which results in values of —log p(x) that are accurate to five decimal places
in most cases. It was determined [16] that the minimum upper limit of at
least 218 was needed to produce full five-decimal accuracy with no change
produced in the last digit by changing the upper limit. Therefore, the upper
limit actually used was 250 as the approximation to infinity which would
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assure full accuracy. Numerical integrations were carried out for values of
E =20, 25, ..., 100 kcal mole ~! and T = 300, 350, ..., 1000 K. This range
covers the values for E and T that are most useful in practical cases. Curve
fitting was carried out by regression analysis as previously described [2].

RESULTS AND DISCUSSION
Numerical integration

As described earlier, the most widely cited tables of —log p(x) are either
based on approximation formulas [14] or do not include integral values of £
and T [13]. The results of numerical integrations in this work provide values
for —log p(x) for an extended range of E and T values. The values shown in
Table 1 are accurate to all five decimal places in most cases. The only
exceptions are a few of the values for combinations of lower T and higher E.
Where they are comparable, these values are in good agreement with those of
Doyle [13] and appear more accurate than those based on approximate
formulas [14}.

Linear relationships

The relationship
—logI=ME+ B (at constant T') . (5)

has been shown to represent accurately the values of the temperature integral
[eqn. (2)] at different values of E [2,10]. Similarly, the equation '

—logI=N(1/T)+D (at constant E) 6)

has been shown to represent the relationship of the temperature integral as a
function of T {2,10]. Therefore, an objective of this work was to determine
equivalent expressions for —log p(x) from the values obtained by numerical
integration. Tables 2 and 3 present linear regression parameters for the
equations

—logp(x)=ME+ B  (atconstant T) (7)
and
~logp(x)=N(1/T)+ D (at constant E) (8)

where M, B, N and D are constants obtained by performing linear regression
on the values shown in Table 1. It is readily apparent that the values of —log
p(x) can be treated numerically in exactly the same way as —log I values
can. In each case, the derived numerical equations are of equal accuracy to
those for —log I [2] when the results of numerical integrations of equal
accuracy are available. '
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TABLE 2

Regression parameters for —log [Px"2e " dx=ME + B

T Slope Intercept Corr. Coeff.
(XK) (M) (B)
300 0.744976 2.945656 0.999990
350 0.640533 2.830029 0.999986
400 0.562450 2.717520 0.999981
450 0.501744 2.616388 0.999976
500 0.453117 2.530608 0.999972
550 0.413352 2.451196 0.999966
600 0.380210 2.378966 0.999960
650 0.352163 2.312737 0.999954
700 0.328119 2.251629 0.999948
750 0.307278 2.194926 0.999941
800 0.289038 2.142059 0.999933
850 0.272942 2.092555 0.999926
900 0.258631 2.046037 0.999918
950 0.245825 2.002160 0.999910
1000 0.234294 1.960664 0.999901
TABLE 3

Regression parameters for —log [*x~2e *dx=N(1/T)+ D

E Slope Intercept Corr. Coeff.

(kcal mole~') (N) (D) v
20 4805.66 1.720657 0.999893
25 5902.56 1.898619 0.999926
30 6997.84 2.046252 0.999946
35 8092.47 2.172223 0.999959
40 9186.68 2.282111 0.999968
45 10280.58 2.379608 0.999974
50 11374.25 2.467235 0.999979
55 12467.79 2.546764 0.999982
60 13561.18 2.619615 0.999985
65 14654.49 2.686803 0.999987
70 15747.98 2.748537 0.999988
75 16 840.88 2.807333 0.999990
80 17934.00 2.861850 0.999991
85 19027.07 2.913130 0.999992
90 20120.10 2.961558 0.999993
95 21235.85 2.974221 0.999996

100 22306.09 3.050974 0.999994
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General equations

The data shown in Table 2 have been used to evaluate K and L in the
equation

M=K(1/T)" (9)
and to evaluate P and Q in the equation
B=Plog(l/T)+Q (10)

where M and B are the slope and intercept of eqn. (7) and K, L, P and Q are
constants. The values obtained by linear regression are K = 176.896, L =
9.117449, P = 1.897710, and Q = 7.652085. Thus, the equation

—log p(x)=K(1/T)"E+10og(1/T)" + Q (11)

can be used to evaluate —log p(x) at any values of E and T. Similarly, the
data shown in Table 3 are used to evaluate X and Y in the equation

N =YEX (12)
and W and U in the equation
D=WIogE+ U (13)

where N and D are the slope and intercept of eqn. (8) and X, Y, W and U
are constants. Using linear regression, the values Y = 270.237, X = 0.957160,
W =1.898343, and U = —0.755620 are obtained. These parameters are used
to establish the equation

—log p(x)=YE*(1/T)+1log E¥ + U (14)
Equations (11) and (14) provide rapid evaluation of —log p(x) at any
desired values of £ and T without the necessity for performing numerical
integrations or approximations by series. Consequently, these equations may
provide functional bases for non-isothermal kinetic methods [17]. It should
be pointed out, however, that eqns. (11) and (14) do not appear to yield
values of ~log p(x) which are as accurate as the —log I values obtained

using equations of the same form [15]. We have not explored the reason for
this difference.

CONCLUSION

This work has provided a more accurate table of values of —log p(x) than
was previously available. We have used linear regression to establish the
constants M, B, N and D for using

—logp(x)=ME+ B (7)
and
—logp(x)=N(1/T)+D (8)
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to calculate —log p(x) for any desired E and 7. Also, the slopes and
intercepts of eqns. (7) and (8) have been determined as functions of 1/7 and

E

so that two general numerical equations that permit —log p(x) to be

evaluated at any desired E and T values have been obtained.
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