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ABSTRACT 

An iterative method is described which computes n and E from nonisothermal TG data. 
The method which requires only three (a,T) data pairs as input, involves successive iterations 
of E/R and n using data pairs where Aa is first small, then large. A complete algorithm for 
implementation of the method on a programmable calculator is presented as well as results of 

analysis of calculated and experimental (a,T) data. 

INTRODUCTION 

Reich and Stivala have utilized a kinetic analysis of TG data that makes 
use of an approximate rate equation in a two point form 
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These workers have shown that constant E/R values are obtained for pairs 
of (a,T) data when n has the correct value [ 11. Subsequently, Reich and 
Stivala described an iterative method that determines the correct n when the 
values of 
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are related by linear regression yielding an intercept closest to zero for the 
correct value of n [2]. In later work, other approximate rate laws were used 
that were based on other ways of approximating the temperature integral 

[3,41. 
Reich and Stivala have also utilized a technique of minimization of the 

difference between the left-hand side and right-hand side of eqn. (1) as E 

and n are varied using various pairs of ((Y, r) data [5]. Finally, these workers 
have developed a method that makes use of ((Y, T) data obtained at different 
heating rates [6]. Thus, a number of recent iterative techniques have been 
described. 

In the present paper, we present a somewhat different iterative technique 
for computing n and E. This method requires only three (cy,,T,) data pairs 
and is adaptable to programmable calculators of intermediate capacity. The 
implementation of the method is described for the Hewlett-Packard HP-34C 
machine. 

METHOD 

The method of determining n and E described in this paper makes use of 
the two point approximate equation 

,n 

I 

1 - (1 -cX,)‘-n 

1 - (1 -a;+,)‘-” [$?)j =;(*-+) (4 

While other forms are possible when other approximations to the tempera- 
ture integral are used, they offer no distinct advantages [3,4]. The first step in 
the analysis is to compute an approximate value of E/R. This is performed 
using two data pairs, ( (Y,,T,) and (a,,T,), where (Y, and (Y* are small since 
E/R is nearly constant for any value of n under these conditions. The first 
value assigned to the reaction order, n,, is zero, and a reasonably good value 

of E/R results with n, = 0 as long as (Y, and (Ye are small (see rows 1 and 2 

of E/R values shown in Table 1). 
After getting an approximate first iterate value for E/R, two data points 

(cu,,T,) and (cu,,T,) are considered where CX~ Z+ (Ye. If (Ye B (Ye, the maximum 
variation in the function of (Y occurs as n’ is iterated. Under these conditions, 
a recalculation of E/R using these data will give a value close to the test 
value of E/R only when n has the correct value. Using the first iterate E/R 
value, the function 

is calculated using T2 and T,. Then, the function 
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is computed with no = 0 and the result is compared with the value of F,. It is 
easily shown that if F, > F,, then the iterated value of the order, n’, is smaller 
than the “correct” n (n’ < n when F, > F,).The process continues by incre- 
menting n’ by 0.100001 (so that n’ is never exactly one) and repeating the 
calculations. At the point where F, > F2, n’ is greater than n by an amount 
less than 0.1 for the first iterate value of E/R. This fixes an approximate 
upper limit of n’, usually within 0.1 of the “correct’ n. At this point, the 
value of n’ calculated from (a,,T,) and (a,,T,) using the first iterate E/R 

value is reduced by 0.1 (n’ --) n’ - 0.1) and An’ is reduced from 0.1 to 0.01. 
The resulting n’, the first iterate to n, is used in recalculating a second iterate 
E/R value using the first two data pairs. This E/R value is very nearly 
correct because the value of n’ used is correct to within approximately 0.1. 
Having a very nearly exact second iterate to E/R, the function F, is 
calculated using points (cy,,T,) and ( a3,T3). Processing continues by com- 
puting the function F2 iterating with An = 0.01. When F2 < F, occurs, 
computation ends and n’ has been determined with an upper limit within 
0.01 of the “correct” value. If desired, the entire process can be repeated to 
provide a third iterate to E from which n’ can be obtained using iterations of 
0.001. The flow chart shown in Fig. 1 illustrates the logic of processing and 
the complete program for the HP-34C calculator is shown in the Appendix. 

TESTING THE METHOD 

Using the program 

Implementing the program shown in the Appendix on the HP-34C 
programmable calculator uses the entire capacity of the machine with 
partitioning for 105 program lines and 15 registers. The computation can 
easily be adapted to other advanced calculators and microcomputers. As 
written, the program utilizes the following locations (given as register num- 
ber, use): R, and R,,, ‘Y,; R,, q; R,, ‘Ye; R, and R,,, T,; R,, T,; R,, 7;; 
R,, n’; R,, R,, R, and R,,, computed results; R,, E/R; R,,, An. The (Y,, q, 
n,, and An values are entered and processing is initiated by pressing label A. 
The first stop displays the first iterate n’. Pressing R/S restarts processing 
which ends with the second iterate n’, etc. The value of E/R after each 

iteration is stored in R,. 

Testing the method with calculated (CX, T) data 

The iterative method was tested using the calculated values of (Y shown in 
Table 1 for which n = 1.666.. . and E = 100 kJ mole-‘. Since the method 
involves using three values of (Y, it was necessary to determine the effects 
produced by the nature of that selection. In order to show the trends and 



281 

effects that changing (Y has on E/R, values for the latter were calculated and 
they are also shown in Table 1. 

One of the first factors to be studied was the effects produced by choosing 

Compute F, 
using E/R and last 
two temperatures 

P 
Compute F, 
using ax, OL), and n’ 

n’=n’+An 

No 

HALT 

2 

Rotate aI -P a2, 
0~2 + as. T, + T, 
T, + TX 

4 
~ n’=n’-An 

An = 0.1 An 

Fig. 1. Flowchart for the three-point iterative method. 

different points for use in the calculations. For example, E/R is approxi- 
mately constant for small values of (Y, and cyz. It would appear, then, that the 
first iterate n’ should depend on which points are chosen. Table 2 shows the 
results obtained when various combinations of three points were chosen. In 
each case, the (a,,T’) point was the same (point 10) although when other 
points for which (Ye > 0.7 are used similar results are obtained. 

From the data shown in Table 2, it is immediately obvious that as the 
second point represents successively larger values of (Y, the first iterate n’ and 
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TABLE 2 

Kinetic parameters obtained for (ol,T) data calculated using n = 1.66667, E = 100 kJ mole- ‘. 
and A//3 = 3 x 10” min- ’ 

Points used ’ First iteration Second iteration 

n’ E 

(kJ mole-‘) 
n E 

(kJ mole- ’ ) 

1, 2, 10 1.7 98.430 
1, 3, IO 1.6 97.159 
I, 4, 10 1.6 95.256 
I, 5. IO 1.6 92.425 
I, 6. IO 1.5 88.417 
3, 4, IO 1.5 91.157 
4, 5. 10 I.4 83.060 

1.69 100.300 
1.67 99.918 

1.67 99.628 
I .66 99.268 
1.64 98.043 
I .64 98.468 
I .60 95.982 

a Numbers refer to points in Table I. 

E/R become less accurate. This is expected since the first value of E/R is 
established using n 0 = 0 and assuming that E/R is constant for all n’ values. 
Obviously, this approximation is worse for larger values of (Y. The second 
iteration largely removes this error since E/R is established using the first 
iterate n’. If the results obtained using points (1, 5, lo), where (Ye = 0.24365, 
are considered, the second iterate n’ is 1.66 and E = 99.268 kJ mole-‘. 
Clearly, even though (Y* is hardly “small”, the results are as accurate as the 
five-decimal (Y values will allow. However, when points (1, 6, 10) are used, 
the second iterate values n’ = 1.64 and E = 98.043 are probably outside the 
accepted tolerance for these parameters. However, in the case of the compu- 
tation using points (1, 6, lo), the third iterate values are n’ = 1.667 and 
E = 99.740 kJ mole-‘. In the case of the computation using points (4, 5, lo), 
the third iterate values are n’ = 1.653 and E = 99.030 kJ mole- ‘. Certainly in 
this case neither (Y, nor (Y* fit the criterion of “small” (Y. The results of three 
iterations appear to exhibit sufficient accuracy in the derived n and E values 
as long as both LY, and (Ye values are less than about 0.25 with better accuracy 
resulting when (Y, < 0.1. Because An = 0.001 during the third iteration, 
performing three iterations greatly increases computing time. 

Numerical solutions of rate equations are available for various values of n 
from 0 to 2 [7] and they have been analyzed by the method of Reich and 
Stivala [2]. These data have also been used as a test of the present method 
with the results shown in Table 3. These results show that as long as (Y, and 
(Ye fit the criterion of being small, two iterations produce n’ and E values that 
are as accurate as can be expected. This is especially true when it is recalled 
that the value for n’ represents the value which first produces F2 -c F, so that 
the actual n is smaller than the value shown by less than 0.01. 
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TABLE 3 

A comparison of results obtained using the Reich and Stivala and present methods with 
calculated ((Y, T) data 

n 

Actual Reich-Stivala h Present 

E (kJ mole-‘) a 

Reich-Stivala h Present ’ 

0 0.02 

l/3 0.34 

l/2 0.50 

2/3 0.67 
I I .oo 

4/3 I .34 

5/3 1.67 
2 2.00 

0.01 100.23 I 99.999 
0.34 100.848 99.842 
0.51 101.526 100.069 
0.67 100.912 99.713 
I.01 101.065 100.065 
I .34 99.62 1 99.956 
1.67 99.323 99.628 
2.01 100.707 100.071 

’ Actual E = 100 kJ mole-’ used in numerical solution of rate equation. 
h Using the Reich and Stivala method [2]. 
’ Using two iteration cycles. These data were calculated using (Y, < 0.05. (Ye < 0.15. and 

a3 > 0.85 (usually (Ye > 0.95). 

Testing the method with TG data 

In order to test the described method using actual TG data, the data for 
decomposition of NH,HCO, were used [9]. In each case, (Y, was in the range 
0.04-0.10, cx2 in the range 0.15-0.20, and CQ was > 0.67. Table 4 shows the 
results of the analysis. Again, it is clear that the present method gives 
satisfactory agreement with established methods. 

TABLE 4 

A comparison of n and E values for the decomposition of NH,HCO, obtained by two 

iterative methods 

Run Reich and Stivala a Present method 

n E n E 

(kJ mole-‘) (kJ mole- ‘) 

I 1.20 99.97 I.16 98.70 
2 1.32 90.68 I.61 95.71 
3 1.33 99.1 I 1.58 103.20 
4 I .06 80.62 0.93 75.80 
5 I .66 94.57 1.52 89.67 
Ave I.31 92.99 1.36 92.96 
(I 0.22 7.86 0.30 IO.61 

’ Computed [8] using the method of Reich and Stivala (21. 
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It must be cautioned that in TG studies (Y is determined by comparison of 
an observed mass loss with that corresponding to the complete reaction. If a 
given reaction is accompanied by only a few per cent mass loss, CY is 
generally not determined as accurately as when a larger mass loss is involved. 
The present method, and those based on other computations, will not 
generally give kinetic parameters of high accuracy for such cases. 
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