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ABSTRACT

Various techniques may be employed to approximate thermogenesis in conduction
calorimeters by studying the transfer function (harmonic analysis, time domain analysis,
analogue and digital filters, etc .) . This article describes the use of the pulsed transfer function
and Truxal's method of compensation as a technique suitable for employing with data
sampling systems in the low frequency domain . The theory developed is applied experimen-
tally to a Calvet conduction calorimeter, which is shown to require a compensating plant .

INTRODUCTION

A continuous linear system may be characterized by a differential equa-
tion of the type [11

a i al i y(t) = L b,a;x(t)

	

( 1 )i o dt

	

;_o dr

where x(t) and y(t) are, respectively, the input and output of the linear
system. The Laplace transform of a function f(t) is defined as

F(s)= f~f(t)e-v`dt

	

(2)

where s is complex . When the Laplace transform is applied to both sides of
(1) we obtain

L a,s'Y(s)= L bs'X(s)

	

(3)
'=o

	

i=o

where X(s) and Y(s) are the Laplace transforms of x(t) and y(t), respec-
tively .

0040-6031/83/0000-0000/$03.00

	

0 1983 Elsevier Scientific Publishing Company



2

The transfer function of the system is defined [2] by
m

•

	

bsj
m
17 (s+c)

H(s) =' .,o

	

=k -1n

	

(4)

•

	

aisi
II

(s+ pi)
i=0

where -p i (i = 1, 2, . . ., n) are the poles of the system, -ci (j = l , 2,-, m) are
the zeros, and k =b./a,,. In terms of the transfer function, eqn . (3) now
adopts the form
Y(s) = H(s) X(s)

	

(5)
For the system to be stable the poles of H(s) must lie in the half-plane

R 0(s) < 0, and in a physically real system the number of zeros must be less
than or equal to the number of poles, i .e. m < n . We shall restrict the present
summary to the case of real poles of multiplicity one . The extension to
complex poles of higher multiplicity is immediate . In terms of the time
constants Toi and T,i corresponding, respectively, to the zeros and the poles
of H(s), eqn. (4) becomes

m

•

	

TU ZI (TOis+1)
H(s)=krml	j 1		 (6)

•

	

Tai (TITS+1)
J=1

	

=1

where

Toi=c

	

(j

	

m)

1
Tli =-

	

(!= l, 2, . . ., n)

	

(7)A
Deconvolution consists in finding the input x(t) of the system given y(t),

the output . Since from eqn . (5)
X(s)=H-'(s) Y(s)

	

(8)
the problem posed is to find an expression for H -1 (s) that is both stable and
physically possible .

THE PULSED TRANSFER FUNCTION

When a data sampling system is employed to record the output of the
system under study, knowledge of y(t) is limited to a sequence of values
y(kT) (k = I,-, N) where T is the interval between samples, and NT is the
total period over which sampling takes place. Under these conditions the
linear system being studied must be treated as discrete, and instead of by (1)



is characterized by a difference equation of the form [3]
n

	

m

F, a,y(k - i)= E bix(k -j)

	

(9)
1-0

	

l-0

where for f = x, y f(k - i) is short for fl(k - i )T ] .
The discrete equivalent of (2) is

F(z) = Y, f(k) z -k

	

(10)
k=0

which, applied to (9) produces

Y(z)=H(z) X(z)

	

(II)
H(z) is the pulsed transfer function [3], the poles of which must lie within
the unit circle in the z plane if the system is to be stable . The deconvolution
problem is now to find a stable, physically possible H - '(z) such that
X(z)=H-'(z) Y(z)

	

(12)

THE BILINEAR TRANSFORMATION

Equation (6) can be expressed in the form

3

is the steady-state gain of the system . H - '(z) can be obtained directly from
H - '(s) by applying the bilinear transformation defined by [4]

S

	

2 1-z-'

	

(15)T I +z- '
which transforms the half-plane R e(s) < 0 into the unit disc in the z plane,
the imaginary axis into the unit circle and the half-plane R e(s) > 0 into the
region [zI > I of the z plane.

Since the poles of H - '(s) are the zeros of H(s), for the former to he stable
the zeros of the latter must lie in the half-plane R Q(s) < 0, whence the
bilinear transformation maps then into the region jz1 < l . The pulsed transfer
function H - '(z) has m poles and n zeros, with m < n, but if m < n, H - '( z)

n
II (T,,S+1)

H-]( s)= 1 (13)M ~"IZ (TOjs + I)

where
n
TI T, ;

(14)M=k m

JH I T
O)

°
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is not physically possible ; it may be modelled on a computer but will present
undesirable oscillations .

TRUXAL'S METHOD OF COMPENSATION

When m < n . H - '(z) may be multiplied by Truxal's compensation factor
[1 .2] so as to arrive at a function representing a physically possible system
with the same steady-state gain as H - '(s) itself. This function, which must
have n-m poles, may be considered as representing a physical compensating
plant. It is defined by

11

G(s) =k' fl TOq n
q-m+I

	

H (TOgS+ 1)
q-m+ I

where

k'=

	

n
l

	

( 17)
H Toq

q-nr+ I

to ensure that the steady-state gain is not altered . The n-m poles added by
G(s) should be so much greater than those of H - '(s) (Toq so small) as not to
have an appreciable effect upon the low-frequency behaviour of the system
at the same time as they avoid uncontrolled oscillations .

As a result of the above we may write

where the r, k are coefficients whose full expression depends on the degree n
of the polynomial . For n = 3, for example

i
r,o =1-I 18"

1

X(S) =Ci(s) Y(s) (18)

where X(s) is the low-frequency approximation to X(s) and
n

1 11 (T1)s+ 1)
G(s) = H - '(s) G(s)

	

'=' (19)M n

i H
(TO s+1)

=

When transformed by (15) we obtain
11

l

	

H r ' , Z - -
O(c)=

	

-o (20)M 11

o,z l
i=o



where
a,;=T-2T, j

ra;z
j=0

Finally, 1(k) is obtained from X(z) by carrying out the inverse-discrete
Laplace transform .

z IF(z)->f(k-j)

	

(25)
where the factor z-' introduces a lag j in the function f(k) .

DECONVOLUTION

After applying the inverse transform to both sides of (24) we find that

X(k)=r

	

F,iY(k-i)l - L ro;x(k-j),

	

(26)
00

	

'-0

	

j= I

This gives the low-frequency approximation at time kT in terms of the
output for that and the preceding n sample times together with the ap-
proximations calculated for the latter .

To test this method of deconvolution we have fed the input x(t) of Fig . 1
into the linear system described by the transfer function

H(s) = 10-s	s + 0 .25

	

(27)
(s+0.0025)(s+0 .01)(s+0.1)

/3,;=T+2r,; (22)

Equation (18) is now transformed to
X(z)=0(z) Y(z) (23)
i.e. by (20)

J{(z)=

n

E r,rz- `
t0 Y(z) (24)

5

3 3

rn = a,, Nlk

3

l

3

Fit = Lr Ri 1 1 ask

~

J =1 k-I;

3
ri3 -nai;

	

( i=0,1)

	

(21)
j=I
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Fig . 2. Output of the system H(s)= 10 -5 s+0.25/(s+0.0025)(s+0.01)(s+0.1) for the input
of Fig . I (the Y axis is in arbitrary units) .
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Fig . 1 . Actual thermogenesis (the Y axis is in arbitrary units) .

The computed output for a sampling interval of 1 s is shown in Fig . 2. In
both Figs. the ordinates are in terms of the same arbitrary units . If this
output is deconvoluted directly with H -1(z) without any compensating
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Fig . 3. Deconvolution by pulsed transfer function without Truxal's compensation (the Y-axis
is in arbitrary units) .
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Fig . 4 . Deconvolution by pulsed transfer function with Truxal's compensation. The com-
pensating zeros are defined by Tit = T03 = 1 s .
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Fig. 5 . Deconvolution by pulsed transfer function with Truxal's compensation . Overcom-
pensation with Tai = T03 = 1 .5 s is shown .

poles, the result is as shown in Fig. 3, which is stable but undergoes
undesirable oscillations . However, if Truxal's method is applied, using the
compensating time constants
T02 =T03 = I S

	

(28)
the result obtained is that of Fig . 4. Figure 5 shows the result of overcom-
pensation using the time constants Toe = T03 = 1 .5 s and Fig. 6 undercom-
pensation by the constants T02 = T03 = 0 .5 s .
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Fig. 6 . Deconvolution by pulsed transfer function with Truxal's compensation . Undercom-
pensation with T., = T„, = 0.5 s is shown
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Fig . 7 . The output thermogram corresponding to the input of Fig . I with Y axis unit = 0 .8 W .

APPLICATION TO A PHYSICAL SYSTEM

The techniques described above were used to investigate the performance
of a Calvet conduction microcalorimeter with stainless steel cells containing
an axial resistance inside . An HP-3052-A data sampling system was used,
which in combination with a stabilized power source can be programmed to
generate any type of input to the calorimeter at the same time as it reads the
output voltage once a second and stores it on magnetic tape .
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Fig . 8 . Deconvolution of the thermogram of Fig. 7 without Truxal's compensation .
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Fig. 9. Deconvolution of the thermogram of Fig . 7 with Truxal's compensation . Actual
thermogenesis is also shown .

R V "' • P

The calorimeter was modelled using a linear system with no zeros and
three poles [5,6], with the following time constants
T 1 t = 237.0 s

T12 = 12 .3 s

	

(29)

T13 = 4.1 s

and a steady-state gain of 48630 X 10 -6 V W - t with the input signals shown
in Fig . 9, similar to that of Fig. I but with amplitudes of 0.8 and 1 .7 W, the
outputs were as shown in Fig. 7. If these outputs are deconvolved using
H -1 (z) without compensation the results are as in Fig . 8, which shows the
expected undesirable oscillations . However, if a compensating plant with the
time constants

TO] = T02 = TD3 = 1 .5 s

	

(30)

is used, (26) results in the approximation to the real thermogenesis shown in
Fig . 9 .

CONCLUSIONS

The use of the pulsed transfer function and Truxal's method of compensa-
tion allows deconvolution of low-frequency calorimeter signals with a high
degree of precision. In the present study 10 s signals from a Calvet conduc-
tion microcalorimeter were deconvolved after sampling once a second. The
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deconvolution technique presented is considered to be particularly suitable
for use with the data sampling systems employed ever-increasingly in
calorimetry .
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