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ABSTRACT 

Boundary value problems are derived and analyzed, describing a model of a heat 
conduction calorimeter in which the calorimeter consists of three domains thermally con- 
nected, viz. the thermal reaction domain, the heat flow domain and the constant temperature 
surroundings domain. These solutions provide basic theorems for the measurements of the 
total quantiy of heat and thermogenesis (calorific power) occurring in the thermal reaction 
domain. The proportionality relation between the total quantity of heat and the time integral 
of the temperature deviation from steady state is deduced under uniform temperature 
conditions in the thermal reaction domain or uniform temperature gradient over the surface 
of the domain. The relation provides a method for evaluating the total quantity of heat in 
heat conduction calorimeter experiments. The method is an alternative to that usually used in 
isoperibol calorimeter experiments. A formula for use in calculating thermogenesis from the 
measured thermogram (time-temperature data) is derived assuming uniform temperature in 
the thermal reaction domain and time-independent thermal physical properties of the 

domain. 
The sensitivity of calorimeters is defined and the conditions of maximum sensitivity are 

derived for one-dimensional, spherical and cylindrical models of heat conduction calorime- 
ters. 

The conditions and assumptions under which the theory is derived suggest sources of error 
to be avoided in the design and operation of heat conduction calorimeters. 

INTRODUCTION 

There is no authorized rational system of classification of calorimeters. 
Designations such as “isothermal”, “combustion”, “glass-Dewer-vessel” or 
“ ice” calorimeters are historical and not based on any comparable or 
essential characteristics of the calorimeters. However, Calvet and Prat gave a 
clear and fairly rational classification of calorimeters according to the 
magnitude of the heat flow, +, inside the calorimeter [l]. 

They considered that a calorimeter consists of three parts, a container, a 
cavity and the surroundings. The container, in which the thermal effect to be 
studied occurs, is placed in the cavity, and heat exchanges between the 
container and the surroundings through the cavity. They referred to the walls 
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of the container as the “internal boundary” and to the walls of the 
surroundings as the “external boundary”. The temperature of the external 

boundary is kept at constant (the “constant temperature environment” 
calorimeter) or, alternatively, at a temperature which can be varied at will 
(the “adiabatic” calorimeter). 

They classified calorimeters into three types according to the magnitude of 
the coefficient for the heat transfer, p, between the internal and the external 
boundary in the calorimeter. The heat flux, +,. and the coefficient for heat 
transfer, p, are connected by the equation (called Newton’s law of cooling) 

G=P(T,- r,) (1) 

where ri and T, are the temperatures of the walls defining the internal and 
the external boundaries, respectively. Although eqn. (1) is only approximate, 
it can reasonably be used when the temperatures T, and T, are uniform over 
the boundaries and the temperature difference T, - T, is small. The first type 
of calorimeter is adiabatic, i.e. p = 0 or is very small. The heat produced in 
the calorimeter container is accumulated in the container with little or no 
loss of heat. The second type is isothermal, i.e. p is very large and all the heat 
produced in the calorimeter container is rapidly transferred to the outer 
jacket. The third type, which does not belong to either of the two above 
types, is when the heat flow and the coefficient p are moderate. In this type, 
heat exchange between calorimeter container and surroundings is actively 
assisted by physical means [2] and, essentially, the heat flux between the 
internal and external boundaries is measured. 

Several designations for the third type of calorimeter are used, e.g. “heat 
conduction”, “heat flow”. “non-isothermal-non-adiabatic” and 
“Tian-Calvet” calorimeter. The term “heat flow calorimeter” is also used 
for the labyrinth flow calorimeter [3] and for the calorimeter with a constant 
temperature difference between the container and the surroundings [4]. The 
term “non-isothermal-non-adiabatic calorimeter” is used both for the iso- 
peribol calorimeter and calorimeters of the third type [6]. The isoperibol 
calorimeter. often called the “constant temperature environment 
calorimeter”, is designed to minimize heat transfer between the calorimeter 
container and the surroundings [S] and should be classified as adiabatic, 
although it is more accurately described as “very nearly” adiabatic in 
operation. As the second and third types of calorimeter are usually operated 
maintaining the temperature of the surroundings constant, the term “con- 
stant temperature environment calorimeter” cannot distinguish between the 
second and the third types of calorimeter. In this paper, the term “heat 
conduction calorimeter” is used for the third type, following Calvet and his 
school’s nomenclature. 

In recent years, a considerable development of the theory of calorimetric 
systems has taken place [6]. The aim of the theory is to recognize the 
static-dynamic thermal properties of the calorimeter systems and to produce 
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methods for the accurate determination of the total amount of heat and 
thermogenesis (calorific power or rate of heat generation) developed in a 
calorimetric system. In this paper, the theory of the heat conduction calorim- 
eter is discussed and some fundamental theorems on this type of calorimeter 
are derived. An important difference between the usual theory of the 
isoperibol calorimeter and that of the heat conduction calorimeter discussed 
here should be noted. In the usual operation of the isoperibol calorimeter, 
essentially a temperature difference between the beginning and the end of a 
main period, in which the principal temperature rise or fall takes place as a 
result of thermal reaction occurring, is observed. This observed temperature 
difference is corrected for thermal leakage and heat of stirring in order to 
obtain the corrected temperature rise resulting from the thermal reaction 
under investigation. The main aim of the theory of the isoperibol calorimeter 
is to obtain a method for the accurate determination of the temperature 
correction by considering the heat flow in the calorimeter. On the other 
hand, the theory of the heat conduction calorimeter in this paper is essen- 
tially intended to establish an alternative method for the determination of 
the amount of heat and thermogenesis, evolved or absorbed in the calorime- 
ter container, in terms of heat flow. 

MODEL OF CALORIMETER 

The model of a heat conduction calorimeter is represented schematically 
in Fig. 1. The calorimeter consists of three domains, the thermal reaction 
domain, D,, the heat flow domain, D,, and the surroundings domain, D,. 
The thermal reaction domain, D,, in which the thermal phenomena under 
investigation are carried out and studied, is completely enclosed by the 
surroundings domain, D,. The surfaces S, and S, are D,-D, and D,--D, 
interfaces, respectively. 

The following assumptions for this model are introduced. 
(1) Calorific power w(t) is developed in the confined domain D, at time t. 

w(t) is also called thermogenesis (function) [ 11. 

Fig. 1. Schematic diagram of model of a heat conduction calorimeter. D,, Thermal reaction 
domain; D,, heat flow domain; D,, surroundings; S,, the interface between D, and D,; S,, 
the interface between D, and D,. 
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(2) The surroundings domain D, is kept at a uniform constant tempera- 
ture T,. 

(3) Thermal properties such as the heat capacity, c, thermal diffusivity, K, 

and thermal conductivity, A, of the heat flow domain D, are independent of 
time and temperature. This assumption requires that, in the operation of the 
calorimeter, the temperature ranges of the domain D, are small and the 
variation of the thermal physical properties with temperature can be ne- 
glected. 

(4) Temperature T(r, t) at a point represented by the position vector r in 
the heat flow domain D, at time t is given by the equation 

O(r,t) = T(r,t) - T, (2) 

(3) 

where operator H is linear in temperature and commutable with Laplace 
transform operator L{8( t)} = lo” e-9( t)d t. 

LH8 = HLB (4) 

If H = K v2 ( v2 = the Laplacian), eqn. (3) becomes identical with Fourier’s 
equation for the conduction of heat. If H is constant, eqn. (3) represents 
Newton’s law of cooling, which is generally assumed in the analysis of 
calorimeters by many authors. Thus, eqn. (3) is a general expression for heat 
transfer which is linear in temperature. Heat transfer in the domain D, by 
convection and radiation is excluded because it is non-linear in temperature. 
From the standpoint of design and operation of a calorimeter, convection 
and radiation are not a problem if domain D, and temperature difference 0 
are kept small. 

(5) The initial temperature of the calorimeter is equal to T, at D, 
throughout D,, D,, and D,. 

BOUNDARY VALUE PROBLEM FOR UNIFORM TEMPERATURE IN THE THER- 

MAL REACTION DOMAIN 

The following new assumptions are added. 
(6) The temperature in the thermal reaction domain D, is uniform and the 

temperature gradient at a point on the surface S, is uniform everywhere over 
the surface S,. 

(7) Thermal physical properties of the thermal reaction domain D, are 
independent of time and temperature. 

The assumptions (3) and (7) require that the temperature ranges of the 
whole calorimeter and change of the matter in D, are small and that the 
variations of the thermal physical properties of D, and D, can be neglected. 

Then, a boundary value problem for this case is described as follows. 



151 

The initial condition is 

e(r,o) = 0 

In D, and on S, 

(5) 

w(t)=c$-hS, g i 1 SI 

(6) 

In D, 

?!+I* 
at 

(7) 

In D, and on S, 

e(r, t) = 0 (8) 

In these equations, 0(r, t) = T(r, t) - T, is the temperature measured rela- 
tive to the temperature of D,, c is the heat capacity of the domain D,, S, is 
the surface area of the surface S,, 8/&t is differentiation in the direction of 
the outward normal to the surface S,. 

By application of the Laplace transform to these equations, they become 

W(s) = c&r,s) - AS, $a(r,s) (9) 

&(r,s) = H@r,s) (10) 

8(r,s) = 0 (11) 

where W(s) and &r,s) are the Laplace transform of the function w(t) and 

06, t). 
Let f(r, t) be the temperature when w(t) = w. = a constant independent of 

time. Then, the Laplace transform of the temperature, f(r,s), satisfies the 
following equations. In D, and on S, 

3 = csj(r,s) -AS 
s ,&s) 02) 

In D, 

.$(r,s) = Hf(r,s) (13) 

In D, and on S, 

f(r,s) = 0 (14) 

It follows that the product. sf(r,s)iG(s)/w, satisfies eqns. (9)-(1 l), and 
therefore 

(15) 

Let g(r, t) be the temperature when w(t) = S(t) = Dirac’s delta function. 
Then the Laplace transform of the temperature, g(r, s), satisfies the follow- 
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ing equations. In D, and on S, 

1 = c.sg(r,s) - AS, $,S) (16) 

In D, 

s&s) = Hg(r,s) (17) 

In D, and on S, 

g(r,s) = 0 (18) 

It follows that the product $j(r, s)W(s) satisfies eqns. (9)-( 1 l), and therefore 

8(r,s) = g(r,s)iC( s) (19) 

From eqns. (15) and (19), the following theorem is obtained. 
Theorem I. If assumptions (l)-(7) are valid in a calorimeter, the relation 

between the Laplace transform of the temperature, 8(r,s), and the Laplace 
transform of the calorific power, W(s), in the calorimeter system is given by 

@r,s) = G(r,s)i?(s) (20) 

where G(r, s) is the “transfer function” of the calorimeter system [7] and is 
given by 

G(r,s) = ?!f.k$ (21) 

or 

G(r,s) = g(r,s) (22) 

In these equations, f(r, s) is the Laplace transform of the temperature for 
constant calorific power, w,, and g(r, s) is the Laplace transform of the 
temperature for impulse calorific power, S( 1). 

In view of the convolution property of the Laplace transform, the follow- 
ing theorem is obtained from eqns. (20)-(22). 

Theorem 2. If assumptions (l)-(7) are valid in a calorimeter, the equation 
of the thermogram (time-temperature variation) for the calorific power, 
w(t), in the calorimeter is given by the equations 

O(r,t) =/,‘% $/(r,t - 7)dT 

a W(7) =- 
I 

-f(r,t - T)dT 
at 0 wo 

(23) 

or 

8(r,t) =i’w( T)g(r,t - 7)dT (25) 

wheref(r, t) is the temperature for constant calorific power w0 and g(r, t) is 
the temperature for impulse calorific power s(t). The vector r denotes the 
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position where the temperature is observed. 
In order to derive a formula to obtain the total quantity of heat, Q, 

developed in thermal reaction domain D,, eqn. (23) is integrated with respect 
tot from t=O to t= co. 

/?J(r,t)dt =jaj’* &f(r,, - r)dTdt 
0 0 0 wo 

(26) 

If changes of variables u = 7 and u = t - T are substituted in the integral in 
eqn. (26), then the double integral of the right-hand side of eqn. (26) can be 
changed to the repeated integral 

Jmf9(r,t)dt =/r/“% $f(r,u)dudo 
0 0 0 

(27) 

In this derivation, the initial condition (5) is used: f(r, co) denotes the 
convergence temperature of the calorimeter for the constant calorific power 
w. as t + co and the convergence of the integrals /,“O(r, t)d t and j,“,w( u)du 
are assumed. 

The left-hand side of eqn. (27) is the time integral of the temperature 
deviation from the initial temperature or the area enclosed by the thermo- 
gram curve and the base line. The integral /,“w( u)du is the total quantity of 
heat developed, Q, and eqn. (27) can be written as follows. 

Theorem 3. If assumptions (l)-(7) are valid in a calorimeter, the total 
quantity of heat developed in the calorimeter thermal reaction domain, Q, is 
given by 

Q=-gkjA (28) 

where A = &?(r, t)dt and f(r, co) is the convergence temperature for con- 
stant calorific power w, as t + 00. 

BOUNDARY VALUE PROBLEM FOR UNIFORM HEAT FLUX OVER THE SURFACE 

OF THE THERMAL REACTION DOMAIN 

Let us drop the previous assumptions (6) and (7) and add the following 
new assumption. 

(8) The heat flux (quantity of heat per unit area per unit time transferred 
across the surface), q(t), at a point on the surface S, does not change from 
point to point and is uniform everywhere over the surface S,. 
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A boundary value problem 
described as follows. The initial 

e(r,O) = 0 

On S, 

In D, 

c% 
Y&=He 

In D, and on S, 

0(r, t) = 0 

Then, the Laplace 
- 

q(s)= -A g s 
i 1, 

s8( s) = He in D, 

@r,s) = 0 in D, and on S, 

under the assumptions (l)-(5) and (8) is 
condition 

(29) 

(30) 

(31) 

(32) 

transform 8(r, s) satisfies the conditions 

on S, (33) 

(34) 

(35) 

Let h(r, t) represent the temperature in the special case in v$ich q(t) = q. 
= constant independent of time. Then the Laplace transform h(r, s) satisfies 
the boundary conditions 

-_=-A ai; 40 
s ( i an S, 

on S, (36) 

sh(r,s) = Hh(r,s) in D, (37) 

h(r,s) = 0 in D, and on S, (38) 

It follows that the product sh(r, s)q(s)/q, satisfies the conditions (33)-(35) 
and, therefore equals t?(r, s). Using the convolution property of the Laplace 
transform, equations for e(r, t) are obtained and will be shown later in eqns. 
(40) and (41). If we assume that the calorific power generated in D, ceases 
within a finite interval of time, then the total quantity of heat, Q, is given by 

Q =J, (kr)drdS 
I 

= SIlmq( t)dt 
0 

Proceeding as in the previous section, we can find the expression for Q. 
Then, the theorem for the cases of the uniform heat flux over the thermal 
reaction domain S, is obtained as follows. 

Theorem 4. If assumptions (l)-(5) and (8) are valid in a calorimeter, the 
following equations for the cases of uniform heat flux over the surface of the 
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thermal reaction domain of the calorimeter are obtained. 

sh(r s) _ 
3(r,s)=L q. q(s) 

O(r,t) -if% $h(r,t - T)dT 

d ‘4(T) 
=at J 

-h(r,t - T)dT 
0 40 

s,qll 
Q=h( J r,m) 0 

*6’dl 

(39) 

(40) 

(41) 

(42) 

In these equations, h(r, t) is the temperature for the constant heat flux, q,,, 

and the bar denotes the Laplace transform of the quantity represented by the 
notation under the bar. 

It should be noticed that there is no restriction in theorem 4 on the 
uniformity of the temperature and on the constancy of the physical thermal 
properties in the thermal reaction domain during the occurrence of the 
thermal phenomena under investigation. This point is favorable for the 
measurement of heat Q and will be discussed in detail later. In actual 
experiment, it is very difficult to hold the heat flux, q(t), constant during the 
full time interval of the calorimeter experiment and to observe the tempera- 
ture h(r,t). Thus it seems that theorem 4 is not useful for actual experiments. 
However, eqn. (42) is useful to interpret the basis of the measurement of heat 
Q as shown later. 

DETERMINATION OF THERMOGENESIS 

Recently, heat conduction calorimeters have been increasingly utilized to 
determine not only the total heat effect associated with the thermal phenom- 
ena under study, but also the changes of thermal power with time, the 
thermogenesis [8-lo]. Several methods have been proposed for the de- 
termination of thermogenesis from experimental data of a thermogram, i.e. 
temperature vs. time data. All the methods are started from an a priori 
assumption of a linear relation between input thermogenesis, w(t), and 
output thermogram, e(t), and are not based on a clear model of a calorime- 
ter or an explicit theoretical basis. Macqueron et al. [ 1 l] try to treat the 
mathematical model of a calorimeter to arrive at an analytical form of the 
transfer function. But they start from a non-zero initial temperature condi- 
tion and fail to obtain an explicit form of a relation between the input 
thermogenesis, output thermogram and transfer function. The theorems 
derived from the model in this paper can present a method for the de- 
termination of thermogenesis and suggest the conditions under which the 
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linear relation between thermogenesis and the thermogram is valid. 
Theorems 1 and 2 present basic equations for the determination of 

thermogenesis from the analysis of thermogram data. The Fourier transform 
analysis method [ 12-151 is based on eqns. (20) with (21) or (22) if we set 
s = j, (j = J-1 and w = angular frequency). The analog electronics inverse 
filter method [16,21] is based on eqn. (20) assuming that the form of transfer 
function G(s) is a rational fractional function of S. The dynamic optimiza- 
tion method [ 17,181 is based on eqn. (25). 

It is important to judge whether a calorimeter satisfies the conditions 
under which these equations are valid. Theorems 1 and 2 with the assump- 
tions (l)-(7) suggest the conditions that the temperature of the thermal 
reaction domain should be uniform and the thermal properties of the 
calorimeter remain unchanged. A calorimeter with stirring or heat distribut- 
ing vanes, if possible, may insure the uniformity of the temperature. 

Most authors have determined the transfer function G(S) or G(jw) from 
the thermogram for impulse joule heating by use of eqn. (22). Impulse 
heating requires the generation of a very intense heat for a short time in the 
calorimeter cell, and implies deviations from the assumption of uniform 
temperature distribution and possible systematic errors. Some authors have 
treated the problem in terms of “location of calibrating heater” which 
produces the impulse heating [ 19-201. Determination of the transfer func- 
tion from the thermogram for step heating by use of eqn. (21) [ 151 may 
reduce the errors caused by deviations from temperature uniformity. 

A change in composition is an important consideration for thermochemi- 
cal studies which may cause appreciable change of the content and the 
thermal properties of the calorimeter. It is difficult to estimate the extent of 
the errors caused by change in composition. 

DETERMINATION OF TOTAL QUANTITY OF HEAT 

Theorems 3 and 4 present a method for determining the quantity of heat, 
Q, from time-temperature data in heat conduction calorimeter experiments. 
As pointed out in the introduction, the method is an alternative to that 
usually used in isoperibol calorimeter experiments. Equations (28) and (42) 
and the assumptions made in the derivation of the equations give the basis of 
the method. Both the equations show that the heat, Q, evolved or absorbed 
in the thermal reaction domain is proportional to the temperature-time 
integral from t = 0 to t = 00 

Q = kA (43) 

where 

A= 
/ 

medt 
0 

(44) 
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is taken as the area under the time-temperature curve and k is a constant 
independent of the form of the time-temperature curve. The proportionality 
relationship between Q and A has also been derived for one-dimensional 
[22], ideal three-dimensional [23], spherical and cylindrical [24] models of 
heat conduction calorimeters. The same form of the relation (43) is also 
established in the study of differential thermal analysis (DTA) and is used 
for the determination of the heat of transition or reaction by DTA [25]. If 
DTA apparatus has a thermal barrier between the sample holder and the 
metal block, and if the thermocouple which measures the differential temper- 
ature is located on the surface of the sample holder, the DTA apparatus is 
strictly regarded as a dynamic heat conduction calorimeter which is operated 
in heating or cooling at a uniform rate [26]. 

According to theorem 4, the relation (43) is derived without using any 
assumptions about the temperature distribution and the form of heat flow 
inside the thermal reaction domain. The relation is derived, instead, assum- 
ing a uniform temperature gradient over the surface of the domain. The 
assumptions made in the derivation of the proportionality relation (43) are 
in accord with those in a previous paper [23] and are favorable for measuring 
relative enthalpies at high temperature. In high temperature enthalpy mea- 
surements, a hot body at a high temperature is dropped into the calorimeter 
where the heat given up on cooling is compared with a known energy. 
Because of the large temperature difference between the hot body and the 
calorimeter, we cannot assume uniform temperature distribution and linear 
heat transfer inside the thermal reaction domain. However, the assumption 
of a uniform temperature gradient on the surface of the thermal reaction 
domain requires design features of the calorimeter. Geometrically symmetri- 
cal construction of calorimeter or stirred-water type of calorimeter can 
satisfy the requirement of the assumption and the relation (43) can be used 
as a basic formula for the measurements. 

MAXIMUM SENSITIVITY OF THE CALORIMETER 

From the results obtained hitherto, we can discuss a best condition for 
maximum sensitivity of calorimeter. The problem is, what size of thermal 
reaction domain, D,, gives maximum calorimeter sensitivity at a confined 
volume of the domain D, + D, (see Fig. l)? 

The sensitivity, (I, of the calorimeter is defined by 

J 
?J(r,l)dt 

u= Om 

/ 
j(r.t)dt 

(45) 

0 

wherej(r, t) is the density of thermogenesis, thermal power per unit volume 
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of D,, and relates with the thermogenesis, w(t), of the domain D, by the 
equation 

w(t) =I j(r,t)dV (46) 
“I,, 

We shall only consider the case of uniform density of thermogenesis, j,( t), 

and eqn. (46) becomes 

w(t) =JMvo, (47) 

where V,,, is the volume of D,. From eqns. (27) and (47) the sensitivity, u, is 
represented by 

(48) 

We shall calculate the sensitivity, (J, for the particular models of heat 
conduction calorimeter and obtain the optimum conditions for maximum 
sensitivity. The results are shown as follows. 
One-dimensional model 1221 

a= 
w0-L) 

A (49) 

(50) 

where L is the length of D,, L, the length of D, + D,, and A the thermal 
conductivity of D,. 
Spherical model [24] 

R2(R,-R) 
(J= 

3AR, (52) 

R,,, = $0 (53) 

4R’o 
(JIllax = - 81A 

where R is the radius of D,, and R, the radius of D, + D,. 
Cylindrical model [24] 

(54) 

R ,,,ilx = R, 
6 

(55) 

(56) 
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(57) 

where R is the radius of D, and R, the radius of D, + D,. Ozawa [26] also 
obtained the same result for his quantitative DTA cylindrical sample holder. 
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