THERMODYNAMIC FUNCTIONS OF GASEOUS BERYLLIUM, TITANIUM AND GERMANIUM ORGANOMETALLIC MOLECULES

L. BENCIVENNI, R. GIGLI and M. PELINO *

Istituto di Chimica Fisica, Università di Roma, 00185 Rome (Italy) (Received 8 October 1982)

ABSTRACT

The thermal functions S_T^0 , $-(G_T^0 - H_0^0)/T$ and $(H_T^0 - H_0^0)$ have been calculated from structural and spectroscopic data for the gaseous organometallics C_5H_5BeX (X = Cl, Br and BH₄), $C_5H_5MX_3$ (M = Ti and Ge; X = Cl, Br and I) and CH₃TiX₃ (X = Cl, Br and I). The rotational barriers of the C_5H_5 and CH₃ groups have been evaluated and discussed.

INTRODUCTION

The object of this work is to investigate the thermal properties of the gas phase of an interesting class of organometallic molecules of the kind C_5H_5BeX (X = Cl, Br, and BH₄), $C_5H_5MX_3$ and CH_3MX_3 (M = Ti and Ge, X = Cl, Br and I).

From a speculative point of view, it is interesting to evaluate the magnitude of rotational barriers and to correlate them to the type of ring-metal or methyl-metal bond involved. This information can be achieved from spectroscopic measurements of the torsional modes.

As is known, it is not easy to perform these experiments since torsional vibrations generally appear at low frequencies and their IR bands are weak. A further difficulty arises in the cases of low rotational barriers when the selection rules of the local symmetries often make torsional vibrations inactive.

The height of the internal rotation barrier is, however, evaluable from equations of statistical thermodynamics. It is also possible to check the accuracy of this determination if thermochemical data such as vapor pressure and heat capacity are available. In fact, the comparison between statistical and thermochemical $S_T^0(g)$ is a desirable test to check the correctness of barrier height determination.

^{*} To whom all correspondence should be addressed.

For a complete thermodynamic investigation of these compounds, enthalpy, entropy changes and a knowledge of the thermal functions of the solid and gas phases are required.

All the molecules investigated in this work, except C_5H_5BeCl and C_5H_5BeBr , exhibit internal rotation. This contribution cannot be completely neglected, even at moderate temperature, especially when low barriers hinder free rotation.

THERMODYNAMIC FUNCTIONS

The thermodynamic functions of a gaseous molecule are calculated as the sum of translational, rotational, vibrational and electronic contributions. Each contribution is evaluable from statistical thermodynamics in the rotator-harmonic oscillator approximation [1].

Translational and rotational contributions

In contrast to the degrees of internal freedom which require spectroscopic and structural data, translation is computable from the molecular weight. Bond lengths and angles are needed for the rotational contribution in order to calculate the principal moment of inertia. Structural information is available from electron diffraction and microwave studies for $C_5H_5TiCl_3$ [2], $C_5H_5TiBr_3$ [3], $C_5H_5BeBH_4$ [4], C_5H_5BeCl [5] and C_5H_5BeBr [6].

Since no report of microwave or electron diffraction studies has been cited for the remaining $C_5H_5GeX_3$, $C_5H_5TiI_3$ and CH_3TiX_3 molecules, some assumptions on the structural parameters were made.

(a) The molecular structures of the $C_5H_5MX_3$ systems were assumed to be the same as $C_5H_5TiCl_3$ [2] and $C_5H_5TiBr_3$ [3]. The CH_3TiX_3 molecules were considered structurally identical to CH_3GeCl_3 [7]. These assumptions are suggested by our IR and Raman spectra.

(b) The bond lengths and angles of $C_5H_5TiBr_3$ [3] were transferred to $C_5H_5TiI_3$.

(c) The C-C and C-H distances of the C_5H_5 ring were assumed equal to 1.42 Å and 1.10 Å, respectively, for all the cyclopentadienyls [8].

(d) The C_5H_5 -Ge distance was calculated from the known C_5H_5 -Ti bond [2], subtracting Ti and adding Ge atomic radii. The same procedure was followed to derive the CH_3 -Ti distance starting from the known CH_3 -Ge bond length [8] and from the Ge and Ti atomic radii.

(e) The geometrical data of the GeCl₃ and GeBr₃ groups were taken from CH_3GeCl_3 [9] and $Br_3GeMn(CO)_5$ [10], respectively. The Ge-I bond distance was estimated as the sum of the Ge and I atomic radii and the I-Ge-I angle was assumed to be the same as Br-Ge-Br [10].

(h) The structural data of the TiX_3 groups in the CH_3TiX_3 species were taken from the corresponding $C_5H_5TiX_3$ molecules.

	C ₅ H ₅ BeCl	C ₅ H ₅ BeBr	C ₅ H ₅ BeBH ₄
 С–С (Å)	1.424	1.424	1.422
C–H (Å)	1.097	1.088	1.117
Be-ring (Å)	1.484	1.528	1.485
Be-X (Å)	1.838	1.943	
Be-B (Å)			1.88
Be-H. (Å)			1.79
$B = H_{(h)}(A)$			1.29
$B - H_{(1)}(A)$			1.17
Be-B-H (deg)			65
$H_{(1)}$ -B-H (deg)			124
<u> </u>	C ₅ H ₅ TiCl ₃	C ₅ H ₅ TiBr ₃	C ₅ H ₅ Til ₃
C–C (Å)	1.40	1.41	1.41
C–H (Å)	1.10	1.10	1.10
Ti–ring (Å)	2.06		
Ti-C (Å)		2.336	2.336
Ti-X (Å)	2.27	2.31	2.52
X-Ti-X (deg)	104	101	101
Cl-Ti-ring (deg)	113	<u> </u>	. <u></u>
<u></u>	C ₅ H ₅ GeCl ₃	C ₅ H ₅ GeBr ₃	C ₅ H ₅ Gel ₃
 С–С (Å)	1.41	1.41	1.41
C-H (Å)	1.10	1.10	1.10
Ge-ring (Å)	1.96	1.96	1.96
Ge-X (Å)	2.135	2.31	2.52
X-Ge-X (deg)	110.13	105	105
	CH ₃ TiCl ₃	CH ₃ TiBr ₃	CH ₃ Til ₃
Ti–X (Å)	2.27	2.31	2.52
Ti–CH ₃ (Å)	2.04 ₅	2.04 ₅	2.04 ₅
С–Н (Å)	1.083 ^a	1.083 ^a	1.083 ª
H-C-H (deg)	108 ^a	108 ^a	108 ^a
X-Ti-X (deg)	104	101	101

TABLE 1

Geometrical data used to calculate the rotational contribution

^a See ref. 19.

The geometrical parameters are summarized in Table 1.

We calculated that an uncertainty of ± 0.25 Å on the bond distance and $\pm 5^{\circ}$ on the angle affects S_T^0 and $-(G_T^0 - H_0^0)/T$ by ± 0.3 cal mole⁻¹ K⁻¹.

R and Rama	n bands (cm ⁻¹)) and their assign	iment ^a				
C ₅ H ₅ BeCl		C ₅ H ₅ BeBr		C ₅ H ₅ BeBH ₄		Assignment	
(IR, R)	(R)	(IR, R)	(R)	(IR, R)	(R)	C ₅ ,	
3125		3127		3126		<i>A</i> ,	
1122		1124		1127		A_1	
794		197 7		744		<i>A</i> 1	
1257 ^b		1260 ^b		1254 ^b		A_2	
3117		3120		3115		E_1	
1431		1428		1434		E_1	
1021		1024		1023		E	
862		864		865		E_1	
	3100		3103		3102	E_2	
	1355		1351		1351	E_2	
	1242		1245		1237	E_2	
	1059		1062		1044	E_2	
	850		850		847	E_2	
	630		631		625	E_2	
314		306				A,	
482		472				E_1	-
176		167				E_1	
920		866				A_1	
				2433		A_1	
				2166		<i>A</i> 1	
				1484		<i>A</i> 1	
				1133		<i>A</i> 1	
				006		A.	
				1179		A_2	
				2485		B_1	
				866		B_1	
				182		B_1	
				2177		B_2	

TABLE 2 IR and Raman bands (cm⁻¹) and their assignment ^a

		:																
	Assignment	C ₅ ,	4 ¹	A	V	Α,	E,	E_1	E_1	E_1	E_2	E_2	E_2	E_2	E_2	E_2	ری. A,	E
	3	(R)									3119	1444	1226	1069	984	513		
	C,H,Gel	(IR, R)	3125	3125	818	1260 ^b	3115	1424	1012	808							380	251
ש ^ל ש ^מ ט" <i>אי אי אי אי א</i> י	lr ₃	(R)	-								3120	1447	1228	1077	988	516		
	C,H,GeB	(IR, R)	3127	1117	820	1264 ^b	3117	1426	1016	820							401	318
	Cl ₃	(R)									3126	1450	1230	1080	066	518		
1472 821 392 497 497 473 215 220 425	C,H,GeC	(IR, R)	3130	1122	822	1270 ^b	3120	1428	1020	811							437	427
		(R)									3114	1454	1227	1045	905	485		
	C ₅ H ₅ Til ₃	(IR, R)	3125	1117	837	1266 ^b	3111	1419	1012	815							426	231
	¹ 3	(R)									3111	1465	1237	1055	916	497		
	C,H,TIB	(IR, R)	3125	1118	835	1265 ^b	3109	1425	1019	817							425	285
	3	(R)									3108	1462	1241	1060	910	490		
	ς,Η,ΤïC	IR, R)	1125	120	838	265 ^b	115	420	010	822							465	444

TABLE 2 (continu	(pər					
C ₅ H ₅ TiCl ₃	C ₅ H ₅ TiBr ₃	C,H,Til,	C,H,GeCl ₃	C ₅ H ₅ GeBr ₃	C ₅ H ₅ Gel ₃	Assignment
(IR, R) (R)	(IR, R) (R)	(IR, R) (R)	(IR, R) (R)	(IR, R) (R)	(IR, R) (R)	C ₅ v
337	209	197	405	235	195	A,
298	300	300	290	201	108	E
199	152	126	184	152	141	E
182	123	110	150	131	70	E
143	88	67	139	119	96	A_1
CH ₃ TiCl ₃	CH ₃ TiBr ₃	CH ₃ Til ₃	Assignment			
(IR, R)	(IR, R)	(IR, R)	C ₃ ,			
2943	2935	2925	А,			
1259	1244	1238	A ₁			
652	619	605	\boldsymbol{A}_1			
393	305	210	A_1			
148	125	98	A_1			
3000	3008	3010	E			
1418	1406	1400	E			
823	820	816	E			
451	351	268	E			
189	168	153	E			
152	107	71	E			
^a Perkin-Elmer 1: ^b From condense	80 B and Cary Ram d phase as breakdow	an 81 He-Ne Lase vn of C ₅ , selection	r spectrometers used for rules.	or IR and Raman m	easurements.	

Electronic contribution

The electronic states of a molecule are needed to perform the calculation of the electronic partition functions. However, this contribution is meaningful for high degeneracy levels and at temperatures for which the $\exp(-\epsilon/kT)$ value is not negligible. Generally, at moderate temperature there is no electronic contribution and the term which must be considered is $R \ln g$ where g is the (2S + 1) spin multiplicity of the ground state. No electronic levels are known for these organometallics; however, (2S + 1) can be assumed as a singlet. This statement appears acceptable in the light of possible ab initio spin configurations of these molecules.

Vibrational and internal rotation contributions

The calculation of the vibrational contribution is performable knowing the 3n - 6 normal modes and their vibrational symmetries. IR and Raman spectra provide this information, allow interesting structural considerations, and give indications on rotation barriers. Therefore these spectra were recorded and interpreted. The results of the vibrational investigation are reported in Table 2. This study was aided by the knowledge of previous IR and Raman data, mainly in solid and liquid phases and concerning C_5H_5GeCI [11], $C_5H_5BeBH_4$ [11], $Be(CH_3)_2$ [11], $C_5H_5TiCl_3$ [12] and metallocenes [13]. The assignment of the frequencies of C_5H_5BeCI and $C_5H_5BeBH_4$ was straightforward because their spectra have been previously interpreted [11]. The vibrational study of the spectra of the other molecules was performed on the basis of the usual assumptions of local symmetries [11,14]. Consequently, the vibrations of the C_5H_5 ring were treated under C_{3v} symmetry, those of the groups $MX_3(M=Ti$ and Ge) and of CH₃ under C_{3v} symmetry and those of BH₄ under C_{2v} symmetry.

It was observed experimentally that the vibrations of these groups follow the selection rules of the highest local symmetry and this fact leads to the conclusion that low rotational barriers must be expected. According to the selection rules of the local symmetries, no torsional band can appear in the spectra because this A_2 mode is IR and Raman inactive both in the C_{3v} and C_{5v} symmetries. Our spectra do not show any band which can be assigned to the internal rotation frequency. $C_5H_5BeBH_4$ is the only molecule considered in this study for which these considerations are not strictly valid. In fact, some vibrations are at the same time IR and Raman active and, in particular, the A_2 inactive ring mode undergoes IR and Raman activation. This fact suggests the presence of a significantly higher barrier to which the measured 425 cm⁻¹ band was associated by analogy with the 418 cm⁻¹ Raman band observed in solid and liquid phases [11]. A barrier of 1.4 kcal mole⁻¹ is related to this frequency. The barrier height was calculated through the equation [15]

$$V = \frac{8\pi^2 c I_r \bar{\nu}^2}{hn^2}$$
(1)

where \bar{v} is the torsional frequency, *n* is the internal rotation number and I_r the reduced moment of inertia.

This direct evaluation could not be followed for the other molecules with internal rotation because the torsional frequencies are not experimentally observable.

In spite of this fact, statistical thermodynamics provides the equations to derive the barrier height indirectly. At temperature T, free internal rotation entropy is given by equation [16]

$$S_{\text{f.i.r.}}^{0} = \frac{R}{2} \left[\ln T + \ln I_{\text{r}} - 2\ln(n) + \ln\left(\frac{8\pi^{3}k}{h^{2}}\right) + 1 \right]$$
(2)

At the same temperature, $S_{f,i,r}^0 = S_{vib}^0$ and

$$S_{\rm vib}^0 = -R \left\{ \ln[1 - \exp(-u)] - \frac{u}{[\exp(u) - 1]} \right\}$$
(3)

TABLE 3

Calculated torsional parameters

	C ₅ H ₅ BeBH ₄	C ₅ H ₅ TiCl ₃	C ₅ H ₅ TiBr ₃	C ₅ H ₅ TiI ₃
$\frac{I_r (g cm^2)}{Q_f (cm^{-1})}$	7.82×10^{-40} 0.0781 $T^{1/2}$	$1.47 \times 10^{-38} \\ 0.274 \ T^{1/2} \\ 88$	$\begin{array}{c} 1.65 \times 10^{-38} \\ 0.307 \ T^{1/2} \\ 82 \end{array}$	1.56×10^{-38} 0.233 T ^{1/2} 84
V (cal mole ⁻¹)	1436	518	515	508
	·	•		
	C ₅ H ₅ GeCl ₃	C ₅ H ₅ GeBr ₃	C ₅ H ₅ Gel ₃	
$\frac{I_r (g cm^2)}{Q_f (cm^{-1})}$	$\frac{1.56 \times 10^{-38}}{0.307 \ T^{1/2}}$	$ \begin{array}{r} 1.72 \times 10^{-38} \\ 0.244 \ T^{1/2} \\ 82 \end{array} $	$ \begin{array}{r} 1.87 \times 10^{-38} \\ 0.255 \ T^{1/2} \\ 79 \end{array} $	
V (cal mole ⁻¹)	524	524	517	
	CH ₃ TiCl ₃	CH ₃ TiBr ₃	CH ₃ Til ₃	
$\frac{I_r (g cm^2)}{Q_f (cm^{-1})}$	5.63×10^{-40} 0.0221 $T^{1/2}$ 90	5.65×10^{-40} 0.0221 $T^{1/2}$ 90	5.66×10^{-40} 0.0222 $T^{1/2}$ 90	
V (cal mole ⁻¹)	518	523	520	

324

<u>т</u>	$-(G_T^0 - H_0^0)/T$	$(H_{T}^{0}-H_{0}^{0})$	S ⁰ _T
(K)	$(cal mole^{-1} K^{-1})$	(cal mole ^{-1})	(cal mole ^{-1} K ^{-1})
C,H,BeCl			
298.15	60.2	4235	74.4
300	60.3	4260	74.5
350	62.6	5571	78.5
400	64.8	7044	82.4
450	67.0	8683	86.3
500	69.1	10468	90.0
550	71.2	12,386	93.7
600	73.2	14420	97.2
	± 0.5	± 30	± 0.5
C ₅ H ₅ BeBr			
298.15	60.5	4274	74.8
300	60.5	4319	74.9
350	62.9	5617	78.9
400	65.1	7094	82.9
450	67.3	8737	86.7
500	69.5	10528	90.5
550	71.5	12450	94.2
600	73.6	14487	97.7
	± 0.5	± 30	± 0.5
C,H,BeBH₄			
298.15	62.8	4844	79.9
300	62.9	4895	79.2
350	65.6	6457	84.0
400	67.8	8266	88.5
450	70.8	10272	93.6
500	73.1	12476	98.1
550	75.6	14857	102.6
600	78.0	17 398	107.0
	± 0.5	± 30	± 0.5
C ₅ H ₅ TiCl ₃			
298.15	70.3	5426	88.5
300	70.4	5460	88.6
350	73.3	6790	92.7
400	76.0	8120	96.3
450	78.4	9540	99.6
500	80.7	11020	102.7
550	82.8	12 5 5 9	105.6
600	84.8	14120	108.3
	±0.5	± 30	± 0.5
$C_{s}H_{s}GeCl_{s}$			
298.15	76.5	6470	98.2
300	76.5	6570	98.4
350	80.1	8400	104.1

TABLE 4

Thermodynamic functions of C₅H₅BeX, C₅H₅MX₃ and CH₃TiX₃ gaseous molecules ^a

Т	$-(G_T^0 H_0^0)/T$	$(H_T^0 - H_0^0)$	S_T^0
(K)	$(cal mole^{-1} K^{-1})$	(cal mole ^{-1})	$(cal mole^{-1} K^{-1})$
400	83.4	10480	109.6
450	86.7	12555	114.6
500	89.7	14950	119.6
550	92.7	17380	124.3
600	95.4	19980	128.7
	± 0.8	± 50	± 0.8
C,H,GeBr,			
298.15	82.8	7061	106.5
300	82.9	7140	106.7
350	86.8	9027	112.6
400	90.3	11134	112.0
450	93.7	13363	173.4
500	96.9	15743	123.4
550	100.0	18737	120.4
600	103.0	20.806	1377
	+0.8	+ 50	+0.8
C.H.TiRr.	<u> </u>	100	T 0.0
298 15	82.2	7117	106.1
300	82.3	7194	106.3
350	86.7	9121	117.3
400	80.2	11200	112.5
400 150	93.0	13455	172.1
500	96.4	15870	123.1
550	90.4	19 290	120.1
500	99.5 102 5	21020	132.9
500	+0.5	+ 30	+05
СИТП	<u> </u>	<u> </u>	T 0.0
C51151113 798 15	86.0	7361	1107
300	86.1	7.704	110.7
350	00.1 00.1	0380	110.7
100	03.8	11/180	172.5
150	23.0 07 2	12725	122.5
500 500	27.5	15/25	127.0
500	100.0	10 100	132.8
500	105.7	21276	137.0
000	± 0.8	+ 50	+ 0.8
C.H.Gel.	_		- ···
298.15	90.0	7633	115.6
300	90.3	7650	115.8
350	94.2	9695	121.9
400	98.1	11720	127.2
450	101.6	13995	132.7
500	105.0	16450	137.9
550	108.1	18975	142.6
500	111.3	21480]47.]
	+0.8	+ 50	+0.8
	1 0.0	T 20	<u> </u>

TABLE 4 (continued)

T	$-(G_T^0 H_0^0)/T$	$(H_{T}^{0}-H_{0}^{0})$	S_T^0
(K)	(cal mole 'K')	(cal mole ')	(cal mole K)
CH,TiCl,			
298.15	70.3	5426	88.5
300	70.4	5460	88.6
350	73.3	6790	92.7
400	76.0	8120	96.3
450	78.4	9540	99.6
500	80.7	11020	102.7
550	82.8	12559	105.5
600	84.8	14120	108.3
	± 0.8	± 50	± 0.8
CH ₃ TiBr ₃			
298.15	75.7	5784	95.1
300	75.8	5820	95.2
350	78.9	7175	99.4
400	81.7	8560	103.1
450	84.3	9990	106.5
500	86.6	11550	109.7
600	90.9	14640	115.3
	± 0.8	± 50	± 0.8
CH ₃ TiI ₃			
298.15	82.0	6142	102.6
300	82.1	6180	102.7
350	85.3	7560	106.9
400	88.3	8960	110.7
450	91.0	10440	114.2
500	93.4	12000	117.4
550	95.7	13 530	120.3
600	97.9	15120	123.1
	± 0.8	± 50	± 0.8

TABLE 4 (continued)

^a A Univac 1100/82 computer was used for the calculations.

with u equal to 1.4388 $\bar{\nu}/T$.

The torsional frequency, $\bar{\nu}$, can then be obtained by combining eqns. (2) and (3). Thus the rotational barrier, V, related to the $\bar{\nu}$ frequency is computable from eqn. (1). These barriers are summarized in Table 3 together with the torsional constants.

We have previously underlined that the knowledge of rotation barriers is important for the correct evaluation of thermal functions. As theorized by Pitzer [17,18], the presence of rotational barriers requires corrections to the thermal functions based on $1/Q_f$ and V/RT values where Q_f is the partition function for free internal rotation and V is the barrier height. These corrections were performed by linear interpolation of the $1/Q_f$ and V/RT values using Pitzer's tables [17,18]. In Table 3, the values of Q_f and V used in these computations are reported.

Finally, the values of each contribution at the same temperature are added to give the final entropy, free-energy and heat content values.

The thermal functions of the studied organometallic molecules are reported in Table 4. The uncertainties associated to each quantity were computed on the basis of possible error sources in the experimental and estimated geometrical factors and in the spectroscopic measurements.

CONCLUSIONS

The analysis of the rotational barriers determined for the three classes of molecules suggests some considerations on the factors contributing to their magnitudes. The 0.5 cal mole⁻¹ barriers of $C_5H_5TiX_3$ and $C_5H_5GeX_3$ can arise from two distinct factors. The first contribution is related to the steric effect between the halides and the ring and the second is due to the overlap of the appropriate symmetry orbitals $\pi(a_1, e_1, e_2)$ of C_5H_5 and $(d(a_1, e_1, e_2), s(a_1)$ and $p(a_1, e_1))$ of the transition metal.

The latter, although theoretically possible, ought to be regarded as uninfluential when we consider the CH_3TiX_3 molecules. It is evident, in fact, that the methyl group is bonded to titanium via a σ bond and no π orbitals are involved; however, both the cyclopentadienyls and the methyl trihalides present the same barriers.

We believe that the significantly high barrier in $C_5H_5BeBH_4$ can be explained by a consistent overlap between the 2p and the π orbitals of beryllium and the five-membered ring, respectively. This approach is supported by the 1.48 Å C_5H_5 -Be distance [5] which is significantly shorter than the corresponding 2.06 Å of the C_5H_5 -Ti bond [3].

REFERENCES

- 1 J.L. Margrave (Ed.), The Characterization of High Temperature Vapours, Wiley, New York, 1967.
- 2 P. Ganis and G. Allegra, cited in I.A. Ronova and N.V. Alekseev, Dokl. Akad. Nauk SSSR, 185 (1969) 1303.
- 3 I.A. Ronova and N.V. Alekseev, Dokl. Akad. Nauk SSSR, 185 (1969) 1303.
- 4 D.A. Drew and A. Haaland, Acta Chem. Scand., 26 (1972) 3079.
- 5 D.A. Drew, G. Gundersen and A. Haaland, Acta Chem. Scand., 26 (1972) 2147.
- 6 D.A. Drew and A. Haaland, Acta Chem. Scand., 26 (1972) 3351.
- 7 A. Haaland and D.P. Novak, Acta Chem. Scand., 28 (1974) 3.
- 8 J.R. Durig, P.J. Cooper and Y.S. Li, J. Mol. Struct., 57 (1975) 169.
- 9 M. Hargittai and I. Hargittai, The Molecular Geometries of Coordination Compounds in the Vapour Phase, Akademiai Kiado, Budapest, 1977, pp. 184-235.

- 10 N.I. Gapotchenko, N.V. Alekseev, K.N. Anisimov, N.E. Kolobova and Yu. Y. Struchkov, J. Organomet. Chem., 23 (1970) 525.
- 11 A.C. Douglas, J.W. Nibler, T.H. Cook, D. Douglas and G.L. Morgan, J. Chem. Phys., 63 (1975) 4842.
- 12 R.A. Kovar and G.L. Morgan, Inorg. Chem., 8 (1969) 1099.
- 13 E. Maslowsky, Jr. and N. Nakamoto, Appl. Spectrosc., 25 (1971) 187.
- 14 H.P. Fritz, Adv. Organomet. Chem., 1 (1964) 239.
- 15 J.R. Durig, S.M. Craven and W.C. Harris, in J.R. Durig (Ed.), Vibrational spectra and Structure, Vol. I, Marcel Dekker, New York, 1972.
- 16 G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand, New York, 1945, p. 524.
- 17 K.S. Pitzer and W.D. Gwinn, J. Chem. Phys., 10 (1942) 428.
- 18 J.C.M. Li and K.S. Pitzer, J. Phys. Chem., 60 (1956) 466.
- 19 R.C. Weast (Ed.), Handbook of Chemistry and Physics, CRC Press, Cleveland, 61st edn., 1980-1981.