
Thermochimica Acta, 63 (1983) 341-350 
Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands 

341 

THERMOGENESIS: RESPONSE GIVEN BY CALORIMETERS 
WHOSE PHYSICAL PARAMETERS CHANGE IN TIME 

E. CESARI, J. VIr;JALS 

Departamento de Termologia, Facultat de Fisica, Universidad de Barcelona, Barcelona - 28 

(Spain) 

V. TORRA 

Departamento de Termoiogia, Facultat de Ciencies, Ciwtat de Mallorca (Spain) 

(Received 25 October 1982) 

ABSTRACT 

The response given by conduction calorimeters whose physical parameters change in time 
is analysed in terms of heat transport equations particularly through “localized time con- 
stants” or RC models including variable coefficients. 

The results obtained in simple models exhibit several anomalies concerning the sensibility 
of the device: its value usually differs from that given by classical models and also from the 

temperature of the stationary state (corresponding to a constant power release inside the 
laboratory cell). These facts could question the standard calibration procedures in the case of 
phase transitions and liquid mixtures. 

INTRODUCTION 

Electronic systems and a great variety of numeric algorithms are nowa- 
days common techniques to obtain a given thermogenesis. In other words, all 
of them allow a deconvolution of experimental thermograms to yield the 
instantaneous power released inside the laboratory cell. A systematic analy- 
sis of the dynamic response of very many calorimeters [l-3] and of the 
various deconvolutive techniques used [4-61 has contributed to optimize 
their efficiency and to obtain a fair account of their possibilities. 

Their application to actual thermogenesis has produced quite remarkable 
results [7-91 concerning, mainly, temperature-induced solid-solid transfor- 
mations (martensitic) and liquid mixtures. In the latter case, one component 
is injected into the solution; the thermogenesis is, then, directly related to the 
excess molar enthalpy which may be calculated down to very low concentra- 
tions (mole fraction x, 2 0.001, the concentration range attained being of 
considerable theoretical interest). Nevertheless, in both cases, the mass of the 
substance contained in the cell and/or its specific heat change. Conse- 
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quently, not only do we encounter the classical problems concerning the 
identification of the system but also the transfer function (TF) of the system 
is changing during the experiment. 

These facts are analysed in this work in terms of heat transport equations 
particularly through what have been called “localized time constants” or RC 
models [lo- 121 but including variable physical parameters of the system. 

MODEL 

The liquid mixture is formed inside the laboratory cell by injecting the 
solute by means of an electromechanical pump. The fluid travels a long way 
inside the calorimetric vessel to ensure a proper thermalization (the tempera- 
ture of the calorimetric block is controlled by a thermostat). It is obvious 
that there is a heat capacity change while the injection takes place due to the 
introduction of supplementary mass and to eventual changes in the proper- 
ties of the fluids involved in the mixture as a consequence of the mixing 
process itself. Moreover, the fluid which is being introduced inside the cell is 
at the same temperature as the calorimetric block, whereas the liquid which 
is already inside the cell is at a somewhat higher temperature because of the 
energy released during the mixing. Consequently, the energetic balance 
inside the cell must include a new term associated with the heating of the 
fluid which is coming in. 

On the other hand, concerning solid-solid transformations, the mass of 
the sample does not change during the process but there is a heat capacity 
change while the transformation is developing. It is assumed that the 
temperature of the thermostat is constant during the process. This is a very 
good approximation only for very slow temperature programs. What is more, 
the thermal couplings between the sample and the detector system are also 
modified because of changes in the surface relief of the sample during the 
transformation. 

A general RC model is based on a discrete representation of the calorime- 
ter and defined by a set of differential equations [lo- 121 

w;(t) = c,s + c P,,(T, - T,) +p,q i= 1 9**., N 
k*i 

where &, C,, Pik and Pi are the power released at the ith element (W), its 
heat capacity (J K-‘), the coupling between elements i and k (W K- ‘) and 
the coupling with the thermostat (W K-‘) where the temperature of the 
thermostat has been taken as reference. 

It is considered that the different parameters are functions of time: C,(t), 
P,k ( t ) and P,(t), and, in the case of liquid mixtures discussed above, a term 
accounting for the heating of the fluid which is entering the laboratory cell 
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has to be added. This term is simply 

The system of equations in a general case now reads 

w;(t)=c,(t)~+ c Pi,(l)(7y Tk)+Pi(t)q+ C;(t)q 
k-i 

In fact, only a small number of parameters will change during the process, 
namely, in both cases mentioned, the parameters related to the cell contents 
and the couplings between the sample and the rest of the calorimeter. We 
will sometimes consider a linear dependence of the parameters vs. time 
because this is approximately the case experimentally either in liquid mix- 
tures, using steady injection, or in solid-solid transformations, when it is a 
first order phase transition and abrupt changes in heat capacity occur; a 
linear dependence of the heat capacity of the whole sample during the 
transformation is only an idealization of the process. 

GENERALIZED TIAN EQUATION 

The most simple case is a system consisting only of a capacity, C, and a 
coupling to the thermostat, P. If both parameters are constant, the classical 
Tian equation is obtained [ 131. Several features of a general model with 

variable parameters are shown. The equation which now defines the model is 

W(t)= C(r)%+ P(t)T+ qt)T 

Relaxation of the system from an initial temperature, T, 

The equation 

0 = c(t)%+ P(t)T+ qt)T 

is considered. Integrating the equation, we obtain 

Obviously, if C(t) = C, and P(t) = P, are both constant, the Tian equation 
is obtained again. If a linear relation is assumed, C(t) = at + b and P(t) = P, 
giving 

T(t) = T,(at + b)-(P+n)‘a 

This solution would correspond, for instance, to a Dirac dissipation at t = 0 



344 

and a steady injection of solute. The moment the injection ends, the response 
turns out to be Tian’s exponential decay from then on. 

Sensibility 

The sensibility of the system is defined as 

S =1?-(t) dt 
0 

Let us now distinguish between two different cases: whether there is or is 
not mass injection. In the first case, the equation reads 

c(tpg + m+ C(t)?= s(t) 

One should note that we have taken the coupling to the thermostat to be 
constant. Otherwise it is difficult even to precisely define the sensibility. In 
any case, this parameter is associated with the detector system which, 
obviously, does not change during the experiment. More complex models 
allow introduction of variable couplings, while keeping those related to the 
detector system constant (see next section). 

The previous equation may be rewritten as 

&(t)T) +PT=6(t) 

Integrating both sides of the equation from zero to infinity 

[WPI,” + p J =k(t)dt = 1 
0 

So, finally 

which is the same value given by Tian’s model. 
On the other hand, if injection is not taken into account 

C(t)$+PT=G(t) 

or, after integration, 

lmC(t)gdt + I-f?-(t)dt = 1 
0 0 

Integrating by parts 

- 
/ 

cOT(t)~(t)dt+PS= 1 
0 
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Finally 

1+ 
/ 

=k(t)C( t)dt 

s= OP 

and the sensibility changes in a general case. 

Response to a Heaviside-like dissipation 

Consider the equation 

C(t)%+ P(t)T+ qtp= w 

where W is the power released (constant) and the initial temperature is 
Ti = 0. Solution of the homogeneous equation 

C(t)%+ P(t)T+ e(t)T= 0 

gives 

T,(t) = A exp - 1’ P(tLttt(t’) dt’} 

If P(t) and c(t) become constant for t greater than a certain value of t,, a 
particular solution of the inhomogeneous equation is 

T,(t)= w 
P(t) + C(t) 

If T( t = 0) = 0, the final solution reads 

T(t)= w 
P(t) + C(t) 

_ Jr P’t’~;t~“” dt’ 
0 

The asymptotic behaviour when t + co is easily found provided that the 
capacity and the coupling behave according to usual experimental conditions 

T(t)+ w 
P(w) + C(c0) 

which reduces to the usual value only if C(t) = 0; otherwise this limit differs 
from W/P which is the stationary state temperature corresponding to a 
model with constant parameters. 

The most outstanding features of the model are summarized in Table 1. In 
both the cases discussed, the limiting value of the temperature does not 
coincide with the sensibility of the model. 
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TABLE 1 

Some features of the models 

Classical C = C(t) without C = C(t) with 
RC model mass change mass change 

Aa 

Bb 

1+ / ?-C( t)dt 
0 1 

P F 
1 1 

‘T; P(CQ)+ CCCO) 

a A is the sensibility of the model defined as the quotient between the total area under the 
thermogram and the total energy released (1.f). 

b B is the asymptotic value of the temperature when the power released inside the cell is 
constant and equals 1 W. 

COMPLEX SYSTEMS 

The system of differential equations which rules the behaviour of a 
multi-body system reads 

which is equivalent to a single linear equation of order N with variable 
coefficients that cannot be solved for an arbitrary choice of the parameters. 
Nevertheless, we have considered a two-body system which already shows 
the most relevant characteristics of the model. In fact, the previous section 
already showed several peculiar characteristics which will be derived again in 
this case. They may possibly be generalized to an arbitrary model. 

Of interest here is a two-body model whose parameters are 

C,(t)=at+b P,(t)=0 

whereas C,, P,, and Pz are constant. This choice roughly simulates the actual 
calorimeter during both injection and martensitic transformation. 

Response to b Dirac pulse 

Figure 1 shows the response, T*(t), of the system when W,(t) = S(t) 

obtained by numerically integrating the system of differential equations. We 
have used Euler’s method with active repeated Richardson extrapolation 
[ 141. The headings in the extrapolation scheme are A/ 1, A/3, A/7, A/ 15 and 
A/3 1. The actual choice of the parameters has been 

C = 10+0.01t O<tG 1000 
I 

t 20 t > 1000 
c,= 10 

P,, = 0.152055 Pz = 0.076026 
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(b) 

I 

183 360 t(s) 900 1803 t(s) 

Fig. 1. (a) Response to a Dirac pulse corresponding to the models 

(A) C, = 10 P,, = 0.152055 

c, =lO Pz = 0.076026 

(B) 

10+0.01r O,(~~l~ 
20 t>lOOO 

P,, = 0.152055 

c, =lO P2 = 0.076026 

(C) c,= 20 P,, = 0.152055 
C*=lO P2 = 0.076026 

(b) Response of same three models [(A), (B), (C)] to a constant power released, W = 1 W. The 
choice of the parameters is somewhat different here in order to show better the stationary 
state. C, in model B is now 

10+3.33333x10-3t O<t<3000 
20 t > 3000 

This figure also presents the two classical RC limiting models: (C, = 10, 
C, = 10, P,*, P2) and (C, = 20, C, = 10, P,2, Pz), whose response can be 
calculated analytically. 

Sensibility 

In this case the sensibility is defined as 

S =lmT2(t)dt 

In this case, the system of equations is 

dT, ‘,b) dt - + P,,(t)(T, - T,) + t*(t)T, + P,T, = 0 

Assuming that T,(O) = T2(co) = 0, integration of the second equation 



yields 

/ 
mP,2(t)(T2- T,)dt+P,S=O 

0 

Whereas integrating the first equation yields 

J 
=PJt)(T, - T,)dt= 1 

0 

Finally 

which is the same result given by the model involving constant parameters. If 
the terms proportional to C,(t) and C2( t) were not included (remember that 
this is the case when the mass of the sample does not change), the sensibility 
would again depend on C, ( t ) and C2( t). 

Response to a Heauiside-like dissipation 

Figure l(b) also shows the response of the model to a Heaviside input 

( W= 1 W) together with the response of the two limiting constant models 
mentioned previously. Notice how, again, the temperature T2( t) tends to a 
lower value than the two limiting models. 

It is clear that an arbitrary model including variable parameters will never 
reach a stationary state, T,(t) = 0, p2( t) = 0, but there exist several choices 
of the parameters that lead to this state and that bear some resemblance to 
the actual experimental conditions. For instance, the model so far discussed 
and solved numerically [C,(t) = at + b, all other parameters being constant] 
does present a stationary state 

W 

T2=P2+a(P,2+P2)/P,2 

If C,(t) = 0, then T2 = W/P, which is the value given by the two conven- 
tional models, but if C,(t) > 0, then T2 < W/P, as shown in the figure. It is 
now clear that the incoming mass into the laboratory cell is responsible for 
the decrease in the temperature of the stationary state even though the 
sensibility of the device remains unaffected. What is more, a stationary state 
is only obtained when steady injection is used, i.e. C,(t) is constant. 

On the other hand, if there is no mass change the stabilization tempera- 
ture will be W/P, whereas the sensibility will be altered. 

CONCLUSION 

The changes in sensibility and stationary state presented here in simple 
models presumably occur in more general cases although its relevance could 
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be different (probably less). This is why the previous analysis should be 

carried out either on more complex models, and consequently closer to an 
actual calorimeter, or directly on experimental measurements. Some tenta- 
tive conclusions are made. 

1. It seems feasible to obtain numerically the response given by simple RC 
models even if the physical parameters such as heat capacities or couplings 
between elements change in time. Consequently, the experimental response 
given by the systems used to study the molar excess enthalpy in liquid 
mixtures or the power released during a martensitic transformation may be 
simulated during or after the processes have taken place. 

2. Both the cases analysed show that the sensibility (total area under the 
thermogram vs. total energy released) does not coincide with the temperature 
reached in the stationary state. Standard calibrations either based on Joule 
dissipations or by means of standard mixtures may produce not altogether 
true values of the sensibility. 
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