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ABSTRACT 

Based on the theory of precipitate dissolution kinetics proposed by Whelan, two expres- 
sions suitable for use under non-isothermal conditions were derived. The first one arises from 
the transient part of the diffusion field and it is found to be identical to that known as the 
three-dimensional diffusion kinetic law, being instead the reflection of a one-dimensional 
diffusion process. The second relationship which arises essentially from the steady-state part 
of the diffusion field, better describes a three-dimensional diffusion situation, being the 
corresponding kinetic model function in the integrated form: f(y) = 1 - (1 - Y)~/~. The first 
solution was successfully applied for describing the dissolution behaviour of disc-shaped G.P. 
zones in 2219 aluminium under non-isothermal conditions, while the second was valid for 
description, under the same conditions, of the dissolution kinetics of spherical ordered 
domains in two &u-Al alloys. 

INTRODUCTION 

Rate equations used for homogeneous reactions [l] (gaseous phases or 
liquid solutions) where collisions are involved between freely moving par- 
ticles, have often been employed to describe solid-state reactions under 
isothermal and non-isothermal conditions. In particular, a first-order kinetic 
law was used by several authors for describing the dissolution behaviour of 
second phase precipitates [2,3] under non-isothermal conditions. Such a 
relationship, therefore, has little physical justification and the required value 
of the activation energy cannot be simply related to a physical process in a 
specific system. 

Diffusion limited dissolution kinetic models have been developed by 
Aaron [4] and Whelan [5] under conditions where concentration gradients 
were absent from the two phases prior to the solution treatment. The first 
model assumes one-dimensional flow, linear gradients during solution, and 
semi-infinite concentration-distance profiles, while the second provides an 
error function profile rather than a linear gradient, and also considers a 
spherical flow solution model. Tanzilli and Heckel [6,7] have shown the 
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applicability of numerical methods, eliminating the necessity for simplifying 
assumptions. However, these procedures are not very suitable for use in 
kinetic determinations under non-isothermal conditions, since the task of 

deriving appropriate solutions is cumbersome. 
In the present study, a method of analysis for obtaining kinetic equations 

based on physical models taking account of the decrease in the precipitate 
half thickness or radius under diffusion limited conditions is developed. The 
results are applied to the description of the non-isothermal kinetics of 
dissolution of G.P. zones in aluminium alloy 2219 and to the dissolution of 
disperse ordered particles in c&u-l0 and 15 at.% Al alloys. 

THEORETICAL CONSIDERATIONS 

From the relationships giving the concentration profile and the flux of the 
solute at the interface of a dissolving spherical precipitate of radius r at time 
t [5,8], the following differential equation is obtained for the instantaneous 

radius of the precipitate 

dr kD k D --- 
dt=- 2r J 2 z 

where D is the volume diffusion coefficient in the matrix; k = 2( ci - 
cM)/( cp - cr), ci is the concentration in the matrix at the precipitate-matrix 
interface, cM is the solute concentration in the matrix and cp is the composi- 
tion of the precipitate. The exact solution of eqn. (1) is rather complicated, 
but it appears reasonable to obtain approximate solutions, peculiar to 
specific situations, which makes them useful for their relative simplicity. 

For a planar interface, the term r- ‘, which arises from the steady-state 
part of the diffusion field [5], does not contribute to the rate of dissolution, 
hence, eqn. (1) integrates under isothermal conditions to 

r=ro-kfi 
\/;; 

(2) 

where r, is the initial half-thickness of the precipitate. Equation (2) is 
identical to the Aaron model for precipitate dissolution. If the term t-‘12, 

which arises from the transient part of the diffusion field [5], is neglected 
(e.g. for long times), the solution of eqn. (1) for the same conditions yields 

r2=ri-kDt (3) 

where r,, is the precipitate radius in this case. This is the equation given by 
Thomas and Whelan [9]. 

The next step is to transform eqns. (2) and (3) into suitable expressions 
for kinetic analysis in terms of the reacted fraction, y, which is related to the 
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volume fraction, V,, of the precipitates by 

y=l-~Tl- r 3 ( 1 r0 

From eqns. (2) and (4) we get 

[l - (1 _y)‘/q*=~ 
ro2 

in which K,/rt is the equivalent rate constant and K, = k*D/r. If we 
assume that the temperature dependence of the reaction-rate constant fol- 
lows an Arrhenius equation, as may be expected from its major dependence 
on the diffusion coefficient, eqn. (5) becomes 

[l - (1 -y)‘/l]*=%$[exp( -&)]t 

where E is close to the activation energy for chemical interdiffusion, K,, is a 
constant and R is the universal gas constant. Equation (5) or (6) represents a 
deceleratory y vs. t curve, inadequately termed a three-dimensional diffusion 
law according to a broad classification of solid-state rate expressions [lo]. 

This law was originally developed to describe the kinetics of reactions in 
powders [l l] and it is suitable essentially for one-dimensional diffusion 
situations. 

Also, from eqns. (3) and (4), an unclassified rate equation according to 
ref. 10 can be derived, which describes essentially three-dimensional diffu- 
sion controlled situations, i.e. 

1 - (1 -y)2/3=2f 

where K, = kD in this case. By the same arguments as those given earlier 

1 - (1 -y)2’3 = 9 [exp( - &)]l 

where K,, is a constant. Equations (6) and (8) are the basis for describing 
non-isothermal experimental conditions. 

Following the usual approach to non-isothermal kinetics in thermal analy- 
sis [ 10,121, the reacted fraction solved from eqn. (6) becomes 

. 

when a linear heating rate a( = dT/dt) is employed. Similarly, under these 
conditions y can be written from eqn. (8) as 

312 
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where x = E/RT and 

p(x) =~xexp~;x)dx = (x + 2)-ix-iexp(-x) 01) 

if the three-dimensional Schlomilch expression [ 121 is used. Both expressions 
[(9) and (lo)] give sigmoidal y vs. T curves. 

RESULTS AND DISCUSSION 

The foregoing analysis is used to describe the non-isothermal dissolution 
kinetics of two types of particles: G.P. zones in 2219 Al and disperse order 
in two a-CuAl alloys. 

In order to identify the kinetic equation governing the non-isothermal 
dissolution kinetics of a particular precipitate, it is convenient to integrate 
the reaction peak in a DTA (AT vs. T) or DSC (AC’ vs. T) curve in a 
stepwise manner. The fraction reacted at a given temperature, y, is defined as 
the ratio of the area of the peak up to that temperature, A,, to the total area 
of the peak, A,. With this procedure, the experimental thermogram can be 
converted into a y vs. T curve which always shows a sigmoidal shape, 
allowing direct comparison with an appropriate selected relationship [e.g. 
eqns. (9) or (IO)]. 

G. P. zone dissolution in 2219 aluminium alloy 

The dissolution kinetics of G.P. zones in this alloy were analysed by 
employing the experimental y vs. T curves for two specific microstructural 
conditions reported by Papazian [13] which resulted from the following 
aging conditions: (a) 2.2 days at 130°C and (b) 10 days at 75°C. After the 
first treatment, the sample contained G.P. zones of 5.0 nm radius. In this 
study, eqn. (9) was fitted to the experimental y vs. T curve obtained from 
condition (a) using r,, = 5 nm and E = 126 kJ mole-‘, which is the activation 
energy for chemical interdiffusion in the AI-Cu system [14]. This fit gave a 
value of K,, = 5.7 X 1015 nm* s-‘. The experimental y vs. T curve (solid line) 
and the calculated curve (broken line) are shown in Fig. l(a). Using these 
values for K,, and E, eqn. (9) was again fitted to the experimental y vs. T 
curve corresponding to treatment (b) [Fig. I(b), solid line] by adjusting the 
zone radius. This procedure resulted in a calculated curve [Fig. I(b), broken 
line] which predicts r,, = 1.5 nm. The G.P. zone radius of a sample subjected 
to treatment (b) was measured using TEM, and found to be 1.95 f 0.2 nm 

[131* 
If an identical procedure is employed by fitting eqn. (10) to the experi- 

mental y vs. T curve corresponding to the 5 nm G.P. zone radius, a value of 
Ko2 = 3.83 x lOi nm* s-l was obtained. The best fits which can be achieved 
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Fig. 1. (a) Experimental and calculated y vs. T curves for G.P. zone dissolution in 2219 Al 
alloys for aging treatment (a). -, Experimental curve; - - - - - -, calculated from eqn. (9); 
. . . . . . calculated from eqn. (10). Particle radius taken to be 5 nm. (b) Experimental and 
calculaied y vs. T curves for G.P. zone dissolution in 2219 Al alloys for aging treatment (b). 
-, Experimental curve; - - - - - -, calculated from eqn. (9); . . . . ., calculated from eqn. 
(10). Zone radius as indicated. 

for both aging treatments are shown in Fig. l(a) and (b) (dotted lines). In 
this case, rO = 1.56 nm resulted from treatment (b). 

Although both kinetic model functions give similar values for zone radii, 
the calculated curves from eqn. (9) fit much better to the shape of the 
experimental y vs. T curves. This result can be attributed to the fact that the 
actual dissolution behaviour of disc-shaped zones differs from predictions 
based on an assumed spherical geometry, where three-dimensional diffusion 
takes place. In this way the dissolution kinetics may essentially be described 
by a model suitable for a planar interface and one-dimensional diffusion, as 
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expected. It should also be noted that the chosen value for the activation 
energy (126 kJ mole-‘), equal to the activation energy for chemical interdif- 
fusion in the Al-Cu system [ 141, provides an additional physical basis for the 
satisfactory results predicted by eqn. (9). 

Disperse order dissolution in Cu-IO at. 5% and 1.5 at. % Al alloys 

Following a similar treatment as in the previous section, the dissolution 
kinetics of the ordered particles was analysed by employing experimental y 
vs. T curves for both alloys. Such experimental curves, shown in Fig. 2(a) 
and (b) (solid lines) were constructed from the thermograms reported by 
Matsuo and Clarenbrough [15] on continuous heating of slowly cooled 
samples. Gauding and Warlimont [ 161 performed electron microscopic mea- 
surements of particle radius in specimens cooled slowly from 773 K at a rate 
of 5.5 K h-’ to room temperature, giving values of 5 and 10 nm for the 
alloys containing 10 and 15 at.% Al, respectively. Also, activation energy 
values for self-diffusion are required as an input for the kinetic analysis. 
These values, computed by interpolation of recently reported data [ 171, are 
estimated to be 157 and 150 kJ mole-’ for 10 and 15 at.% of solute 
concentration, respectively. 

Using the E and r0 values already given for the alloy containing 15 at.% 
Al, a value of K,, = 4.0 X 1O’2 nm2 s-’ was obtained after adjusting eqn. (9) 
to the experimental, y vs. T curve [Fig. 2(a), broken line]. It can be seen that 
the fit is rather poor. If this value of K,, is employed in order to fit the same 
kinetic law to the alloy containing 10 at.% Al by adjusting the domain 
radius, r0 was found to be 5.3 nm. Although this predicted value of r, is in 
good agreement with that directly measured by TEM, the best fit shown in 
Fig. 2(b) (broken line) also does not follow the shape of the experimental y 
vs. T curve. 

If on the other hand, eqn. (10) is fitted to the experimental y vs. T curve 
for the alloy containing 15 at.% Al [Fig. 2(a), dotted line], using the same 
values for E and r, already considered, K,, = 7 X lOI nm2 s-‘. A similar fit 
[Fig. 2(b), dotted line] resulted in a value of r0 = 5.1 nm for the alloy 
containing 10 at.% Al after employing the same value of Ko2. Conversely, by 
employing the appropriate values of E and r, for the Cu-10 at.% Al alloy, 
adjustment of the experimental y vs. T curve to eqn. (10) gave Ko2 = 6 X lOI 
nm2 s- ‘. This in turn resulted in r0 = 10.2 nm, after the same fit for they vs. 
T experimental curve corresponding to the Cu-15 at. % Al alloy was made, 
by using the same value for K,,. This fit was as good as the latter one but it 
is not shown here for the sake of brevity. 

It is then apparent that eqn. (10) can account for the domain size 
dependence on solute concentration and can also describe the dissolution 
kinetics of the ordered particles. Such a satisfactory description arises from 
the fact that the domains are spherical for the alloys under study [16,18], 
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Fig. 2. (a) Experimental and calculated y vs. T curves for disperse order dissolution in Cu- 15% 
at. Al. -, Experimental curve; - - - - - -, calculated from eqn. (9); . . . . . . , calculated from 
eqn. (10). Particle radius, 10 nm. (b) Experimental and calculated y vs. T curves for disperse 
order dissolution in Cu-10% at. Al. - Experimental curve; - - - - - -, calculated from eqn. 
(9); . . . . . .) calculated from eqn. (10). Pa;ticle radius as indicated. 

hence the kinetic law derived from the steady-state part of the diffusion field 
in spherical diffusion is .a valid approximation for predicting the observed 
behaviour. It is worthwhile to notice that even for the case of thin disc-like 
precipitates, the diffusion field at large distances will be approximately 
spherical, and it is then expected that the results of eqn. ( 10) will apply at 
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long times for small volume fractions. The similar values obtained for K,, in 
both alloys indicates that the interdiffusion constant, Q,, is essentially 
insensitive to the solute concentration between 10 and 15 at.% Al. 

The kinetic analysis performed here also enables us to predict particle size 
indirectly for a wider range of Al contents by employing an average value of 
Ko2 (= 6.5 X lOI nm2 s-’ ), provided the experimental y vs. T curve is 
known in each case. 

In closing, the fact that eqns. (9) and (10) are able to describe the kinetics 
of particle dissolution, each one for the specific shape of the precipitates 
considered here, verifies the hypothesis that K, and K, obey an Arrhenius 
equation and hence the kinetic models typified by eqns. (5) and (7) are 
suitable for use under non-isothermal conditions. 
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