THERMOLYSE VON CYANOKOMPLEXEN. XIX. THERMISCHE ZERSETZUNG VON NORMALEN UND PROTONIERTEN SULFONIUM- UND JODONIUM-CYANOMETALLATEN *

K GYORYOVÁ ** und B MOHAI

Lehrstuhl fur Allgemeine und Anorganische Chemie der Universität für Chemische Industrie, Veszprém (Ungarn)

(Eingegangen am 16 Juni 1983)

ABSTRACT

The neutral and protonated complexes of $[Fe(CN)_6]^{4-}$ and $[Mo(CN)_8]^{4-}$ were prepared with $[Me_3S]^+$, $[Ph_3S]^+$ and $[Ph_2I]^+$ "onium" cations During the thermal decomposition of neutral compounds, MeCN and MeNC or PhCN and PhNC are formed together with Me₂S, Ph₂S and PhI, respectively HCN always evolves during the thermolysis of protonated complexes The metal carbide is formed as a solid residue for each of the latter compounds, while the metal sulfide can be deposited as a neutral complex.

ZUSAMMENFASSUNG

Mit den "Onium"-Kationen $[Me_3S]^+$, $[Ph_3S]^+$ und $[Ph_2I]^+$ bzw mit den Cyanometallat-Anionen $[Fe(CN)_6]^{4-}$ und $[Mo(CN)_8]^{4-}$ wurden Doppelkomplexe, sowie die protonierten Derivate dieser hergestellt Beim thermischen Abbau der Normalsalze bildet sich—neben Me_2S , Ph_2S bzw PhI—MeCN und MeNC bzw PhCN und PhNC Von den protonierten Komplexen spaltet ausser diesen noch HCN ab Das Endprodukt der letzteren ist jedesmal Metallcarbid (Fe₃C, MoC), bei den Normalsalzen kann fallweise Metallsulfid (z B FeS) zuruckbleiben

EINLEITUNG

Zur Untersuchung der thermischen Zersetzungsreaktionen von Cyanometallaten mit thermisch instabilen Kationen wurden von Mohai und Bagyin [2] verschiedene quartare Ammonium-Cyanometallate und auch die protonierten Derivate dieser dargestellt [3]. Die Herstellung der analogen tertiären Sulfonium- [1,6] bzw. sekundaren Jodonium-Cyanometallate [4–6]--mit be-

^{*} Mitteilung XVIII s ref. 1

^{**} Lehrstuhl fur Anorganische Chemie der PJ. Šafarik Universitat, Košice, Tschechoslowakei

sonderer Rücksicht auf die Gewinnung der "Onium"-Kationen liefernden Grundverbindungen [7–9]—wurde jungsthin von Gyoryová [6] beschrieben. Im Gegensatz zu den protonierten Ammonium-Cyanometallaten konnten mit Sulfonium- und Jodonium-Kationen nur die sauren Salze der vierbasigen $H_4[Fe(CN)_6]$ and $H_4[Mo(CN)_8]$ Säuren hergestellt werden. Während mit dem Hexacyanoferrat(II)-Anion jedesmal Komplexe mit wohldefiniertem Protonierungsgrad entstanden, gelangte man im Falle der Molybdänverbindung immer zu einem Gemisch der zwei-bzw. dreimal protonierten Derivate.

Zur Identifizierung der Komplexe wurden ausser den Zentralatomen auch die thermisch abgespaltenen fluchtigen Bestandteile, sowie die zuruckbleibenden festen Rückstände bestimmt (s. Tabellen). Der Wasserstoffionen-Gehalt der protonierten Verbindungen konnte—unabhangig von den thermischen Untersuchungen—auch azidimetrisch bestimmt werden.

Abb. 1 TG-, DTG- und DTA-Kurven von (a), $[Me_3S]_4[Fe(CN)_6]$, (b), $[Me_3S]_2H_2[Fe(CN)_6]$, (c), $[Ph_3S]_4[Fe(CN)_6]$, (d), $[Ph_3S]H_3[Fe(CN)_6]$

ERGEBNISSE DER THERMISCHEN UNTERSUCHUNGEN

Die thermischen Kurven (TG, DTG und DTA) der protonierten Sulfonium- und Jodonium-Cyanometallate wurden wie früher bei ihren Normalverbindungen aufgenommen [1,4,5]. Die unmittelbaren Messergebnisse sind in Tabelle 1 und 2 bezogen auf ein Mol des Ausgangskomplexes umgerechnet angegeben. Dementsprechend wurden die beobachteten Massenabnahmen und den TG-Kurven der Abbildung 1 und 2 in der Einheit g mol⁻¹ aufgetragen.

Aus dem $[Me_3S]_4[Fe(CN)_6]$ komplex entweicht zwischen 100 und 240°C insgesamt 3 Mol Me₂S und ein Gemisch von 4 Mol MeCN and MeNC (Abb. 1a). Ahnlich wie bei anderen Sulfonium-Cyanoferraten [1] bildet sich um etwa 300°C eine Cyano-Sulfo-Zwischenverbindung mit der Zusammensetzung Me₂S · Fe(CN)₂ (s. Tabelle 1).

Abb. 2 TG-, DTG- und DTA-Kurven von (a), $[Ph_2I]_4[Fe(CN)_6]$, (b), $[Ph_2I]_2H_2[Fe(CN)_6]$, (c), $[Ph_2I]_4[Mo(CN)_8]$, (d), $[Ph_2I]_{1,5}H_{2,5}[Mo(CN)_8]$

Lersetzungsvorgange von n	iormalen und prote	onterten [R ₃ S]-C	yanoferraten(II) (R. Me, Ph)		
/erbındung (Farbe)	Zersetz temp. (°C)	Δm, R (g mol ⁻¹)	Fluchtige bzw. feste Zersetzung (mol mol ⁻¹)	sprodukte	Bemerkungen zu den DTA- (DTG-) Peaks
Me ₃ S]₄[Fe(CN) ₆] blassgelb)	100, 150 190, 240 R ₃₀₀ 300–750 R ₇₅₀	146 200 - 80 - 80	1 Me ₂ S+2 Mc(CN, NC) 2 Me ₂ S+2 Mc(CN, NC) 1 Me ₂ S·Fc(CN) ₂ 2 McNC 1 FeS	(144,2) (206,4) (170,0) (82,1) (87,9)	Doppelst., schwach, endo Doppelst , schwach, endo endotherm
Me ₃ S] ₂ H ₂ [Fe(CN) ₆] gelb)	170 ~ 350 600 R ₆₀₀	203 66,3 ~ 40 62,5	2 HCN+1 Me ₂ S+2 Me(CN,N 1 Me ₂ S 5/6(CN) ₂ +1/6 N ₂ 1/3 Fe ₃ C	 C) (198.3) (62.1) (48.0) (59.8) 	stark, scharf, endo erst endo , dann exo exotherm
Ph ₃ S] ₄ [Fe(CN) ₆] [ztronengelb]	260) 275 500-800 R 800 `	960 305 ~ 90	Schmelzpunkt 3 Ph ₂ S+4 Ph(CN,NC) 1 Ph ₂ S·F¢(CN) ₂ 2 PhNC 1 FeS	(-) (971,3) (294,1) (206,2) (87,9)	mıttelm., breıt, endo. mıttelm., scharf, exo endotherm
Ph_3SJH_3[Fa(CN)_6] (goldgelb)	180 250 ~ 350 R ₇₅₀	118 212 35 - 45 63,5	$\begin{cases} 3 \text{ HCN +} \\ +1 \text{ Ph}_2 \text{ S +} \\ +1 \text{ Ph}(\text{CN,NC}) \\ 5/6(\text{CN})_2 + 1/6 \text{ N}_2 \\ 1/3 \text{ Fe}_3 \text{ C} \end{cases}$	(370,4) (≇≴,0) (59,8)	stark, scharf, endo schwach, flach, endo schwach, scharf, exo exotherm

TABELLE 1

Zersetzungsvorgange von norma	len und protomerte	n [Dıphenyl-Jod	onum]-[Cyanometallaten]		
Verbindung (Farbe)	Zersetz temp. (°C)	Δm, R (g mol ⁻¹)	Fluchtige bzw. feste Zersetzungsprodukte (mol mol ⁻¹)		Bernerkungen zu den DTA- (DTG-) Peaks
[Ph ₂ I]₄[Fe ^{II} (CN) ₆] (grungeib)	155 200-400 400-800 R ₈₀₀	815 205 ~ 250 65	4 PhI 2 PhNC PhNC+(CN) ₂ + N ₂ 1/3 Fe ₃ C (+C)	(816,1) (206,2) (59,8)	stark, scharf, exo stark, brett, endo. endotherm
[Ph_1]]2H2[Fe ¹¹ (CN) ₆] (gelb)	130 150-400 525 R ₆₀₀	550 120 45,5 60	2 HCN+2 PhI+1 PhCN 1 PhNC 5/6(CN) ₂ +1/6 N ₂ 1/3 Fe ₃ C	(565,2) (103,1) (48,0) (59,8)	schwach, scharf, exo. schwach, breit, endo. endotherm
[Ph ₂ 1]4[Mo ^{IV} (CN) ₈] (orangengelb)	$ \begin{array}{c} 100\\ 125\\ -250\\ 400-600\\ R_{70} \end{array} $	820 307 193	Schmelzpunkt (2 + 2)PhI 3 PhNC 1 PhNC + 1,5(CN) ₂ + 0,5 N ₂ 1 MoC	(-) (816,1) (309,4) (195,2) (107,9)	mttelm., scharf, endo. stark, scharf, exo mttelm., flach, exo. endotherm endotherm
[Ph ₂ 1] _{1.5} H _{2.5} [Mo ^{JV} (CN) ₈] (gelb)	60 120 	65,7 440 ~ 145	2,5 HCN $\begin{pmatrix} 1,5 + PhI + 0,75 PhCN + \\ + 1 (CN)_2 \\ 0,75 PhNC \\ 1 Mo(CN)_2 \end{pmatrix}$	(67,6) (435,3) (77,3) (147,9)	mittelm , breit, endo. stark, scharf, exo schwach, breit, endo.

TABELLE 2

Das thermische Verhalten des $[Ph_3S]_4[Fe(CN)_6]$ unterscheidet sich vom dem des Methylderivates vor allem dadurch, dass seine Zersetzung bei 260°C unter gleichzeitigem Schmelzen beginnt (Abb. 1c). Der scharfe exotherme Peak bei 275°C—wie dies in unseren vorangehenden Arbeiten schon bewiesen wurde—wird durch die vorubergehende Ausbildung von Ph-NC-Fe Bindungen hervorgerufen. Sowohl das Dimethyl-, als auch das Diphenyl-Sulfo-Dicyano-Intermediär zersetzt sich im weiteren (680 bzw. 640°C) unter Abspaltung von Isocyaniden, und als Endproduckt bleibt schwarzes FeS zuruck.

Die Zersetzung der protonierten Komplexe $[Me_3S]_2H_2[Fe(CN)_6]$ und $[Ph_3S]H_3[Fe(CN)_6]$ (Abb. 1b und d) beginnt—ähnlich den entsprechenden quartaren Ammonium-Verbindungen [3]—mit der Abgabe von HCN. Die übrigen flüchtigen Zersetzungsprodukte sind mit denen der Normalverbindungen identisch. Der auffallendste Unterschied ist gegenüber den nichtprotonierten Komplexe, dass als fester Rückstand diesmal ferromagnetisches Fe₃C zurückbleibt [10]. Die kleinen exothermen Peaks um etwa 600°C können folgerungsweise der Zementitbildung zugeschrieben werden.

Beim thermischen Abbau des $[Ph_2I]_4[Fe(CN)_6]$ Komplexes wird in der ersten Zersetzungsstufe 4 Mol PhI freigesetzt (s. Tabelle 2). Die andere Phenylgruppe des Diphenyljodonium-Kations bindet sich vorübergehend an einen Cyanidliganden des Anions, und die Bildungswarme dieses Zwischenproduktes verursacht bei 155°C einen sehr starken exothermen Effekt (Abb. 2a). Die nachfolgende Abspaltung des auf diese Weise entstandenen Phenyl-Isocyanids verläuft schon unter endothermen Umständen. Der Ruckstand bei 800°C besteht neben wenig Kohlenstoff hauptsachlich aus Fe₃C.

Bei der Zersetzung des $[Ph_2I]_2H_2[Fe(CN)_6]$ kann im Vergleich zum Normalkomplex nur weniger PhNC entstehen, deswegen ist der exotherme Peak bei 130°C ziemlich klein (Abb. 2b).

Das $[Ph_2I]_4[Mo(CN)_8]$ schmilzt bei 100°C: seine flüchtigen Zersetzungsprodukte zwischen 125 und 250°C stimmen mit diesen der Eisenverbindung überein (Abb. 2c). Da aber der Molybdankomplex ein hochwertiges Zentralatom besitzt, bildet sich infolge einer intramolekularen Redoxreaktion auch Dicyan. Das feste Endprodukt ist bei 700°C MoC.

Der thermische Zerfall des $[Ph_2I]_{1,5}H_{2,5}[Mo(CN)_8]$ trifft schon bei 60°C mit einer wohlseparierten HCN-Stufe ein (Abb. 2d). Der exotherme Peak bei 120°C ist auch hier bedeutend kleiner als beim nicht-protonierten Komplex. Im Falle dieser Verbindung konnte bei 400°C auch das als Zwischenprodukt angenommene Mo(CN)₂ identifiziert werden.

LITERATUR

- 1 K Gyoryova und B Mohai, Z. Anorg. Allg. Chem, 492 (1982) 175
- 2 B Mohai und L. Bagyin, Acta Chim. Acad. Sci Hung, 92 (1977) 271

- 3 B Mohai und L. Bagyin, Acta Chim. Acad Sci. Hung., 92 (1977) 281
- 4 K. Gyoryová und B. Mohai, Acta Chim Acad. Sci Hung, 107 (1981) 67
- 5 K. Gyoryová und B Mohai, Acta Chim Acad Sci Hung, 107 (1981) 77
- 6 K. Gyoryová, Kandidatenarbeit, Veszprém, 1981
- 7 H.J Emeléus und H.G. Heal, J Chem Soc., (1946) 1126
- 8 B.S. Wildi, S.W Taylor und H A. Potratz, J Am Chem. Soc., 73 (1951) 1965
- 9 M F. Beringer, M Drexler, E.M. Gindler und CH C. Lumpkin, J. Am. Chem Soc, 75 (1953) 2705.
- 10 B. Mohai und L. Bagyin, J. Inorg. Nucl. Chem, 33 (1971) 3311.