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ABSTRACT

The expression for the emanation rate due to recoil and to the diffusion of mert gas in
pores 1s given for a solid sphencal body labelled by the appropriate parent nuchdes. This
model describes a solid with radial cylindrical pores of both umform and general distribution
sizes The denived expressions describe the behaviour of nert gas release from porous solids
during non-1sothermal treatment This new approach avoids the usual errors of quast-isother-
mal approximation.

INTRODUCTION

Emanation thermal analysis (ETA) [1,2), in spite of its wide use, has
lacked adequate theory. The most commonly used mathematical model
based on the early work by Flugge and Zimens (3] has been proposed to
describe the course of the release of inert gas from a compact spherical body
under 1sothermal conditions. Its shortcomings appear to be serious [4,5] in
the case of markedly porous materials over moderate temperature ranges,
especially under a substantial rate of linear heating. There appear to be two
main reasons for this: (i) the major part of the emanation rate under such
conditions is not due to the recoil of inert gas (eg) or the diffusion through
the solid (e, ) but is due to the fast diffusion through the pores (€p); (ii) the
use of the quasi-isothermal model in the case of ETA 1s too crude: the main
effects of ETA are probably brought about by the distortion of the steady
state, the assumption of which 1s crucial for the quasi-isothermal approxima-
tion.

The aim of this study is therefore to explore the possibilities of a more
adequate theoretical model. We start with a rather simple case of a spherical
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body with radial cylindrical pores impregnated or otherwise labelled by a
long-lived parent radionuclide (e.g., 22Th). Even 1n this case, not all neces-
sary physical information is available so that some assumptions have to be
made. In the first part of this study we present the derivation of the model,
in the second part, to appear later, 1ts exploration by computer simulation.

THEORY

For a homogeneous spherical body of radius R, with N, pores of a
uniform cylindrical shape of radius r, and length /, all pores should reach the
outer surface in the radial direction (see Fig. 1). The body contains a
long-lived parent radionuchde (e.g., 2*Th) either impregnated on its outer as
well as on its inner surface or distributed homogeneously in the solid,
decaying to a daughter secondary nuclide (e.g., 2?*Ra) and subsequently to a
radioactive mnert gas (e.g., 22°Rn). The recoil ranges of the secondary nuchde
(***Ra) and of the mert gas (*°Rn) in the sohd are py and p,, respectively,
and the same in the phase of pores py and p/, respectively.

The emanation rate * from such a body can be expressed as the sum of
the parts due to the recoil (), the diffusion through the pores (€;) and the
diffusion through the solid (e)

€=eg+ep+ep (1)

The last term of eqn. (1) 1s negligible 1n some cases, for example, 1n inorganic
ionic crystals over a moderate temperature range. Therefore, to simplify the
solution, the diffusion term ¢, will not be taken into account.

Fig 1 Scheme of the radon release by recoil and diffusion from a porous solid gramn labelled
with 28 Th and ??*Ra parent nuclides (for the symbolds see text)

* Emanation rate 1s the rate of release of nert gas from the sohd
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Distribution of the secondary nuclide and the creation function of inert gas in
pores

The 1nstant concentration of the secondary nuclide in the volume element
with its centre at the point x follows the differential equation

Scp(x,1) PR p2m p2m
—_RS_t_l_=AT./(; fo fo eelr @, 8, 0)p(r, 9. 9) drded® — Ageg (x. 1)

(2)
where the origin of the polar coordinates 1s at x, c(r, @, 3, ) 1s the instant
concentration of the parent nuchde, p(r, @, #) is the probability that the
atom emitted from the point (7, ¢, 4) will reach the point x, and A and Ay
are the decay constants of the parent and secondary nuclide, respectively.

For a sufficiently large difference between A and Ay, we may assume
the radioactive equilibrium, i.e., 8cg(x, t)/8t = 0. The concentration cg(x, t)
at the distance x from the pore wall is then

ealx, 1) = S (x) ()

where the geometrical factor x(x) (neglecting, for simplicity, the curvature
of the pore wall and the slowing-down of the recoil atoms by the pore
medium) is

PR~ 27, ) (42)

1
x(x)= 2pg (1 T

for the surface impregnation by the parent nuchide and
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Fig. 2. Calculation scheme of the range of recoil atoms m the porous solid (for the symbols
see text).
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x(x)=1 (4b)
for the homogeneous distribution of the parent isotope.

The probabulity of emitting an atom by recoil above the pore wall from
the depth x 1s (neglecting the curvature)

2a(p,— x , — X
_27(p : ) _»p : 5)
4mp; Pr
The probabulity p,, that the emitted atom will hit the pore wall again is

rather complicated even under the assumptions already made. As may be
seen from Fig. 2, the range ¢ of the recoil atoms to be considered is

T P

r

1x

+§; (6)

where £, is the length of the trajectory in the solid. Approximating the
surface of eqn. (6) by a cone, the probabiulity p,  is

2

_ n
p“_(lp,—x) (7)
where

2r.p

pPr

=— Ta
="y (7a)

The expression (7) does not, however, express the true probability that the
emitted atom will be lost for the pore diffusion. There 1s clearly some
probability that such an atom will escape again along its own trajectory by
diffusion, which depends on the extent of the matrix disorder and on
temperature. It therefore seems reasonable to make a correction to eqns. (7)
in the following way

, -

n

pro= (1= ) [1—pyexp(~E/RT)] (70)

«where E, 1s an activation energy and p, is a phenomenological coefficient
< 1. Under such assumptions the probability that the recoil atom will enter
the pore is

2
Po=pi(l=ps) = p’pz" {1 —(1 o ’lx) [1-po exp(—Ee/RT)]} (8)
Consider a typical pore with r, </ and r, < ky, k being the free range of the
atoms in the pore medium under given conditions. In such a case, the radial
homogenization of the inert gas in the pore will be much faster than the
longitudinal diffusion and the creation function {(T') of the inert gas in the
pore can be considered to be radially independent

{(T) = Ang " pcn (x)dx ©)
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where A4 1s a factor depending of the units of ¢, being 4 = ry Vaf er1s
surface units. From eqns. (3), (8) and (9)

{(T) =AATch(x)v[(1 -1)- {1 -1 i"’ [1 -2 In(1 - v)]}

X {1~ p, exp( —EC/RT)]] (10)
where vy = pgp/p,.

Pore permeability and the diffusion coefficient of inert gas diffusion in pores

The salient fact on which our model 1s mainly based 1s the generally
observed increase of the emanation rate followed by its rather sharp decrease
in a temperature range mostly from 0.3 to 0.5 T, The simplest explana-
tion of this is a sintering process by which the pores are gradually closed,
decreasing their permeability to the diffusing inert gas. Assuming the vahidity

of the Knudsen expression for the diffusion coefficient

[ 8R
D(T)=\ 7 T, (11)

some expression 1s required for 7,(T), i.e., some reliable kinetics of the
sintering process. Unfortunately, there is no certainty in this field as yet (cf.,
ref. 6). Therefore, we shall proceed in the following way.

Should the sintering proceed either by evaporation-condensation, or by
diffusion or by plastic flow, its rate will be proportional to the inner surface
area of the pore and, 1n addition, it will depend on the pore radius. Thus, the
simplest possible phenomenological equation of any rehiability, describing
the change of the pore volume V., is

—dV,/dt =k, S,re (12)

PP P

where k, is some rate constant with the usual exponential dependence on
temperature (the exponent being formed by the activation energy of self-dif-
fusion and/or by the evaporation heat), S, is the inner surface of the pore
and a is some exponent. Taking a = 1, the following expression follows from
eqn. (12)

——=-—I;Er exp(— E,/RT) (13)

where « is the linear heating rate and K, and E_, are the usual coefficients of
the Arrhenius function. From eqn. (13), the diffusion coefficient [see eqn.
(11)] takes the form

8R K, 1
DP(T)=rp0\/ — T exp[-T"f exp(—E,/RT)dT (14)

T



180

It can be readily seen that the value of eqn. (14) has a maximum, its location
being

K
The appropriateness of eqn. (14) depends on the validity of eqn. (13) and of

the correct value of a. It will be seen, however, that the general conclusions
of this study are open to a further improvement in this field.

Emanation rate €,

To denive the expression for the part of the emanation rate caused by the
pore diffusion, the corresponding equation of diffusion must be solved.
Under the assumptions already made, the concentration of the inert gas in
the pore must follow the differential equation
dc(r, x, t) 82 186 &

R St B S - 4= — ) )

51 D,(+) +r6r+5 c(r, x, t)=Ae(r, x, t) +§(2) (15)
where A is the decay constant of the mert gas, D, is the diffusion coefficient
and {(¢) 1s the creation function of this gas. Considering, however, the
function { to be independent of r (see earlier), both 8c/8r and 8%c/8r? are
vanishing and thus take the form

2
§L‘;€;£1=Dp(t)§—%;ﬂ—}\c(x,t)+§(1) (16)
with the boundary conditions

c(x,0)=p(x) (16a)
c(0,1)=0 (16b)
8c(l,1)/8x=0 (16¢)

the last of which precludes the diverging behaviour of c¢(x, t). It seems
reasonable to assume the steady state at the start of the experiment, 1.e.,
8c(x, 0)/8t =0; thus

8 c(x 0)

D,(0) ~Ae(x, 0)+£(0) =0 (17)

with the boundary conditions analogous to eqn. (16b,c). The solution to eqn.
(17) is straightforward, giving

(0) sinh[(l—— x)‘/}\/DP(O)]
sinh[ 1/A/D,(0) ]

Returning to eqn. (16), the solution can be expected in the form

c(x,0)=p(x) == (18)
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c(x,t)=0v(x,t)+w(x,t) (19)
where v(x, t) is the solution to the homogeneous equation

Sv(x,t) 82 (x t)
ol = (1)

with the boundary COI’ldlthl’lS analogous to eqn. (16a, b, c¢), and w(x, )
corresponds to the equation

—Av(x, 1) (20)

Dl t) _ p(py2lnt) M2 pw(x, 1) +8(0) (21)
with the first boundary condition
w(x,0)=0 (21a)

and the remaining two boundary conditions analogous to (16b, ¢).
By the substitution

v=ue ™ (22)

and by the transformation

T =/ID(t)dt (23)
0

eqn. (20) may be reduced to

Su 8%u

5 o 2

which, under given boundaries, has the solution
nir?
u(x,t)=-~ Z exp| — Iz )

xeos[(n+%)7r

)cos[(n +%)w!——1£]ds (25)

which, after backward transformation, gives

v(x,t)=%§_(>‘_) ?\t)‘/:, {(2,,_,_1),, 2+BZ[B sinh al)]}

Xexp(— 221-) cos[ B,(1 — x)] (26)
where
a= 3%) (262)
and

Bn=(n+%)3} (26b)
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In a similar way, eqn. (21) can be reduced by transformations analogous to
eqns. (22) and (23) to

8z 8%z

'a;—g‘“i(-*) (27)
where

t
£r) 5 ke (28)

The solution of eqn. (27) 1s
2
z(x, 7)——- cos[B (1-x)]

n=

X f £(x) exp[— ;’ (r— x)] f ‘cos[ B, (1~ s)]dsdx (29)
0 0
After algebraic manipulations, eqns. (19)-(29) give
c(x, t)=e™3 cos| B,(/=x)]{b,() +c,(1)} (30)
n=0

where a and B, are defined by eqn. (26a, b), respectively, and

b, (1) = 2 5 { (2n ill)vr o+ [B" ) Sinhoz"‘l-) l}

,,>dv] (31)

X exp[-—

and

e, (2) =% exp[* v)dv] fa t(s) exp[?\s + ”’2;’2 fo ’D(»)dy]ds (32)

{(¢) and D(¢) being defined 1n our case by eqns. (10) and (14), respectively.
From eqn (30), the emanation rate ¢, due to pore diffusion follows directly

8c(0 ) 87RT 5 _,, &
)= N, D22l Np\/(—ﬁ——)rpe L a0 +e 0] (39

where N, 1s the number of uniform pores in the body. This expression can be
readily generalized to the case of a distribution of pore radii: if P(r,) 1s some
normalized distribution function, then

=Ny [ ZF) ‘“Zﬁf ()2, )+t r)]dr, (34)
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Emanation rate, €,

The part of the emanation rate caused by the surface recoil depends on
the outer surface of the body. Neglecting the correction due to the part of
the surface which is occupied by the pores’ ends (assuming 1t to be suffi-
ciently small) it follows
€p = AR4'rrfRh ricg(r, t)q(r)dr (35)

Ry,—p;

where q(r) is [3]

(R2 ) +r?
q(r) - 4prr (36)
and cg(r, t) is, in analogy to eqn. (3)
Azc
ex(r, 1) =S Tx(r) (37)
R
where, for a homogeneous distribution of the parent isotope,
tha —(r— PR)2
ry=-0 1 TR/ 37a
x(r) == (372)
and, for the surface impregnation
1
x(r)= —r' Zon (37b)

from the respective geometrical interpretations of probability. After alge-
braic manipulations, the explicit form of (35) 1s

7A ¢
€R = 4prT[Rb [ b[pr 3P;‘%Rb+lzpk—%)+l’:;z

+R,(1+2R2+ 2R, + 103

—p,(302 +3pgo. + P2 +2)}

Pr
+P;[2Pr(5pr+1)+T(5' pR+%)—Rb—1]-Rng] (38a)
for the homogeneous distribution, and
ZR ATCT “(R, +3p,) (38b)
"2 Pr

for the non-homogeneous distribution, resulting from surface impregnation
labelling. Under these assumptions, ey is clearly independent of temperature
and so this part forms a constant increment of the total emanation rate.
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CONCLUSIONS

From eqn. (33) the temperature-dependent part of the emanation rate
under the linear heating rate « 1s, for our model

N.a/2p3 %

p(T) =2 Eeng| - LT+ 3K, J7)| T (n+4)[1,(T) +6,(T)]
(39)

where

280 a1 _ a _nir?

bn(T) = I A { (2" + 1)'” (12 + B"Z [Bn sinh(al) ]} eXP( xlz ‘T)(40)

and

c,(T)= ;ziexp[— ﬂjgz 'r]f:f(s) exp{)\s + W:lnzz 'r}ds (41)

a and B, are defined by eqn. (26a and b), respectively. {(T') 1s defined by
eqn. (10) and 7 is

(7 g R (Tan _k
T—fTOD(s)ds—rpO M fTos exp[ nJS ds (42)

and J; represents the usual temperature 1ntegral

I= "exp(— E,/RT)dT (43)
T

The Fourier series in eqn. (39) converges absolutely so that only some terms
need to be computed. Whereas good approximations for J.. have been found,
the integral in eqn. (41) has to be obtained by some numerical method. Some
features of its behaviour will be shown in the second part of this study.
Finally, we note that the inert gas diffusion in the solid in some cases
cannot be neglected. The complex model of the porous solid which also
includes inert gas diffusion in the solid will be treated in a paper to follow.
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