Note

HEAT OF FORMATION OF HYDROGEN-BONDED ADDUCTS

H.S. RANDHAWA

Department of Chemistry, Punjab Agricultural University, Ludhiana (India) (Received 22 June 1983)

In continuation of our studies [1-6] of the energetics of electron donor-acceptor complexes via empirical correlations and theoretical calculations, we have now extended these to H-bonded systems. In the present communication we have computed the energy parameters of $O-H \cdots O$ and $N-H \cdots S$ types of H-bond systems and proposed an empirical formula for the prediction of the heat of formation (ΔH) of H-bonded adducts.

The energy parameters were calculated employing the method of Sonnessa and Daisey [7] with the following assumptions. We know that the ground state for the H-bonded adducts in the valence bond terminology [8] is represented as

 $\psi_{\rm G} = a\psi_1 + b\psi_2 + c\psi_3$

where ψ_1 , ψ_2 and ψ_3 are functions of the contributing forms, i.e., London dispersion, electrostatic and covalent, correspondingly, of the H-bonded complex formed between the donor group and the lone electron pair of the acceptor group. For strong interactions where the H-bond energy is of the order of 40 kcal mole⁻¹, $b \sim c > a$. However, for weak interactions where the H-bond energy is in the range 4–10 kcal mole⁻¹, the contribution due to the covalent form can be neglected in comparison with the electrostatic form, i.e., $b \gg c$. Thus, in such cases, according to the Mulliken theory [9], the ground and the excited states of the H-bonded adduct can be written as

$$\psi_{\rm G} = a\psi_1 + b\psi_2$$
$$\psi_{\rm E} = a^*\psi_2 - b^*\psi_1$$

where a and b are the weighting factors for the two configurations corresponding to ψ_1 and ψ_2 , respectively. By making use of the energy of the H-bond transition $h\nu_H$, where ν_H is the vibrational frequency of the hydrogen-bonded X-H (where X=O or N) stretching band and reasonable values for overlap and the resonance integral, the various energy parameters for the H-bonded adduct can be obtained. The computed value of the energy parameters along with the observed and predicted value of ΔH from the

TABLE 1

Experimental and theoretical energy parameters for the OH \cdot O-type hydrogen bond formed in the dimerization of some carboxylic acids

Acids	hν _H ^a (eV)	b/a	$\frac{-\Delta H_{\text{calc}}}{(\text{kcal mole}^{-1})}$	$\frac{-\Delta H_{\rm obs}^{a}}{(\rm kcal\ mole^{-1})}$	$\frac{\delta(\Delta H)}{(\text{kcal mole}^{-1})}$
Formic	0.375	0.305	7.62	7 40	0 22
Acetic	0.378	0 305	7.68	7.30	0.38
Propionic	0.379	0 299	7 40	7.45	0.05
n-Butyric	0.380	0 299	7 42	7 85	0 43
Isobutyric	0 382	0 299	7 46	7 60	0 14
Tetramethylacetic	0.383	0 299	7 48	7 30	0 18

^a Ref 10.

 $\delta(\Delta H) = |\Delta H_{obs} - \Delta H_{calc}|; \ \beta_0 = -0.1 \ eV; \ S_{01} = 0.1$

empirical formula

$$\frac{b^2}{a^2 \times \Delta X} = -\frac{\Delta H}{9.48 \times h\nu_{\rm H}}$$

where $\Delta X = |X_A - X_B|$ (when the electronegative atoms are the same, $\Delta X = 1$, otherwise ΔX is the difference between the electronegativities of the end atoms forming the H-bond) are given in Tables 1 and 2, respectively. It is evident from Tables 1 and 2 that the agreement between the observed and calculated value of ΔH is good. The maximum uncertainty is ± 0.43 and

TABLE 2

Experimental and theoretical energy parameters for the NH \cdots S-type hydrogen bond formed between HNCS and thio compounds

Thio compounds ^a	$h \nu_{\rm H}^{\ b}$ (eV)	b/a	$\frac{-\Delta H_{\text{calc}}}{(\text{kcal mole}^{-1})}$	$\frac{-\Delta H_{\rm obs}}{\rm (kcal\ mole^{-1})}^{\rm b}$	$\frac{\delta(\Delta H)}{(\text{kcal mole}^{-1})}$
Me ₂ S	0 383	0 299	3 74	3 48	0 26
MeEtS	0 382	0 299	3 73	3 47	0 26
Et ₂ S	0 380	0 299	3 71	3 49	0 22
$n-\overline{Bu}_2S$	0 380	0 299	3 71	3 59	0 1 2
$t-\mathbf{Bu}_{2}\mathbf{S}$	0 375	0 305	3 81	4 4 8	0 67
s	0 382	0 299	3 73	3 28	0 45
$\overline{\ }$	0 378	0 305	3 84	3 62	0 22
S	0 380	0 299	3 71	3 69	0 02

^a Me, methyl, Et, ethyl, Bu, butyl

^b Ref 11.

 $\delta(\Delta H) = |\Delta H_{obs} - \Delta H_{calc}|, \ \beta_0 = -0.1 \text{ eV}, \ S_{01} = 0.1$

 ± 0.67 kcal mole⁻¹ while the average uncertainty is ± 0.23 and ± 0.27 kcal mole⁻¹ for O-H···O and N-H···O systems, correspondingly.

REFERENCES

- 1 HS Randhawa, GS Grewal, H Tung and K Singla, Thermochim. Acta, 44 (1981) 223
- 2 H.S Randhawa, K. Singla, G S Grewal and H Tung, Thermochim Acta, 45 (1981) 209
- 3 H.S Randhawa, H Tung and G S Grewal, Indian Chem Manuf., 18 (1980) 8
- 4 H S. Randhawa and R. Malhotra, J. Phys. Chem (Leipzig), 261 (1980) 181
- 5 H S Randhawa, A Singla and K Singla, Thermochim. Acta, 54 (1982) 225
- 6 K Singla, G S. Grewal, A. Singla and H.S. Randhawa, Thermochim Acta, 51 (1981) 387
- 7 A J Sonnessa and J M Daisey, Spectrochim. Acta, Part A, 32 (1976) 465
- 8 C A Coulson, Research (London) 10 (1957) 149
- 9 R S Mulliken, Donor Acceptor Complexes, Ann Rev Phys Chem, 13 (1962) 107
- 10 T M Barahat, J Nelson, S M Nelson and A D E Pulllin, Trans Faraday Soc (London), 65 (1969) 41
- 11 ADH Clque and HJ Bernstein, Spectrochim Acta, Part A, 25 (1969) 593