APPLICATIONS OF SOLUTION CALORIMETRY TO A WIDE RANGE OF CHEMICAL AND PHYSICAL PROBLEMS *

REED M. IZATT, EDWARD H. REDD and JAMES J. CHRISTENSEN

Departments of Chemistry and Chemical Engineering and The Thermochemical Institute, Brigham Young University, Provo, UT 84602 (U.S.A.)

(Received 17 November 1982)

ABSTRACT

Brief descriptions are given of several calorimetric techniques and the application of these techniques to the study of a variety of chemical problems is tabulated. The techniques described are titration, direct injection, flow and batch calorimetry. Applications of calorimetry in biochemistry and biology and in inorganic and organic chemistry are presented in two tables. The material presented demonstrates the potential of calorimetry in research, industry, analytical chemistry and clinical analysis.

INTRODUCTION

The amount of success experienced by an investigator in science or engineering depends to a large extent on his or her ability to use in a creative manner available experimental techniques to study a problem. In choosing a method for use in solving a problem or studying a reaction, several questions should be considered.

(1) What are the properties of the materials involved in the system?

(2) What types of data are needed to solve the problem?

(3) How can the properties of the system under study be coupled with available experimental techniques to obtain the desired data?

(4) Which technique is the most time and cost efficient?

One property that is present in nearly all chemical and physical processes is enthalpy change. The heat effects as processes proceed can be used to study a wide spectrum of chemical and physical phenomena. Thus, calorimetry is useful in that it uses heat production (or absorption) as a probe to study and analyze processes.

Several techniques are used in calorimetry. The primary purpose of this paper is to present short descriptions of these techniques and show the types

^{*} Contribution No. 300 from the Thermochemical Institute.

of problems which have been studied using them. The individual worker must decide whether or not a particular calorimetric procedure is the most time and cost-efficient method for acquisition of specific data.

Calorimetric techniques can be classified according to two criteria: (1) the method used to manipulate liquid solutions used in the calorimeter, and (2) the technique used to measure enthalpy changes and heat production rates (power) as a reaction proceeds in the calorimetric vessel. There are four general techniques used to manipulate solutions in a calorimeter: (1) titration, (2) direct injection, (3) flow and (4) batch.

Titration calorimetry consists of introducing a titrant into the reaction vessel at a known constant rate (continuous titration) or in small equalvolume amounts (incremental titration). Motorized syringe-type precision burets are used generally, but gravity-flow thermostatted burets have been used also. The temperature or heat production in the reaction vessel is monitored either as a function of titrant added or as a function of time if the titration is performed in the continuous mode. This technique is sometimes referred to as thermometric enthalpy titration or TET [1].

Direct injection calorimetry consists of injecting quickly an excess of titrant into the reaction vessel and measuring the heat flux or the temperature change caused by the added titrant. This technique is sometimes called direct injection enthalpimetry or DIE [2].

Flow calorimetry is characterized by a reaction vessel configuration where either two or more streams of reactants are pumped into a mixing chamber or tube where they mix and react. From there they flow on through and out of the calorimeter into a waste vessel. The heat produced by the reaction is recorded as a temperature change in the reaction stream or as heat flux from the reaction vessel to a surrounding heat sink or peltier cooler. There are many possible variations in flow configuration such as mixing cells, flowthrough cells, stopped-flow devices, steady-state devices, etc. The interested reader can find more detailed discussions on flow configurations in refs. 2 and 3.

Batch calorimetry refers to any calorimetric determination where no external mass is introduced across the vessel boundaries during the course of the determination. One batch configuration consists of a thin-walled glass capsule containing one of the reactants immersed in the other reactant solution. The reaction is initiated by breaking the capsule. In another common batch configuration, the vessel is constructed such that the reactant solutions are physically separated by a barrier but rotation of the vessel allows them to mix and react.

As mentioned previously, the second criterion for classification of calorimeters is the technique used to measure enthalpy changes and rates of heat production (power). There are five basic methods for determining these parameters: (1) isoperibol, (2) isothermal, (3) heat conduction, (4) adiabatic and (5) temperature scanning.

Isoperibol calorimetry is characterized by a dewar-type reaction vessel and constant temperature surroundings usually consisting of a thermostatted water bath. The reaction vessel is designed to be as adiabatic as possible thus inhibiting heat flux to the surroundings. Heat production is determined by measuring the temperature change and correlating it to the heat capacity of the vessel and its contents. Corrections must be made for non-reaction heating effects and heat leaks.

Isothermal calorimetry is characterized by the incorporation of a peltier cooler and variable-rate heater in the reaction vessel configuration. The peltier cooler cools the vessel at a constant rate and the heater is pulsed as needed to maintain the vessel and its contents at a constant temperature. When an exothermic reaction occurs, heat is produced and a lower heater pulse rate is required to balance the cooling effect of the peltier device. Conversely, for an endothermic reaction, a higher pulse rate is required to balance the energy effects of the reactions and the peltier cooler. The amount of heat produced by a reaction is determined by observing the time that the heater has to remain on to balance the peltier cooler and comparing this time to heater requirements during base-line conditions.

Heat conduction calorimetry, developed by Calvet and discussed in ref. 3, is characterized by a vessel that is in thermal contact with a surrounding heat sink. This thermal contact is achieved by placing either thermocouples or thermoelectric devices between the vessel and the heat sink. The thermocouples are connected in series as are the junctions in the thermoelectric devices. As a reaction releases heat, a slight temperature gradient develops between the reaction vessel and the heat sink. This causes a small voltage to be produced by each thermocouple or thermoelectric junction which, because of the series connection, results in a much larger overall voltage. The voltage produced can be correlated to a specific rate of heat production (power) caused by the reaction taking place and from this rate enthalpy changes can be monitored and determined. Heat conduction calorimeters are sometimes referred to as "isothermal" heat conduction calorimeters, but this name is a misnomer. It is true that the temperature changes in the reaction vessel are kept to a minimum by heat conduction through the thermopile and hence, "quasi-isothermal" may be an appropriate term. However, if these calorimeters did operate in an isothermal mode, there could not be any temperature gradient between the vessel and the heat sink because no change in temperature within the reaction vessel would be possible. If there were no temperature gradient, there could be no heat conduction and no voltage could be produced by the thermopile; hence, heat production could not be measured.

Adiabatic calorimetry, in theory, is very similar to isoperibol calorimetry. However, there is one main difference. Adiabatic calorimeters employ a heated shield that surrounds the reaction vessel. The temperature of the heated shield is maintained at the same temperature as the contents inside the reaction vessel. Thus, any significant temperature gradient between the

Determination	Method *	Basic references
A. Analytical determinations		
Antibiotics and drugs	Isoperibol cont. titr. Isothermal titration Isoperibol dir. inject. Heat cond. flow Heat cond. batch	7 8 9, 10 8, 11, 12 8
Bacterial count	Heat cond. flow Flow Heat cond. batch Batch	3, 12, 13 14–17 3 13, 14
Bacteriuria	Heat cond. flow Flow Not specified	12, 14 15, 16–18 19
Differences between sickle-cell and normal erythrocytes	Not specified	19
Endpoints (catalytic thermometric titrimetry)	Titration	8
Endpoints for coupled reactions with small ΔH values (chemical amplifi- cation)	Isoperibol Flow Not specified	20 19 20-23
Enzyme activity (enzyme assay)	lsoperibol cont. titr. Isothermal dir. inject. Isoperibol dir. inject. Heat cond. flow Flow Heat cond. batch Batch Not specified	7 21 7, 15, 21 3, 15 15, 17, 19–21, 24, 2 15, 20, 21 3, 17, 25 17, 20, 21, 23, 25
Enzyme inhibitor concentration	Direct injection Flow Not specified	3, 20, 21 19–21 19–21
Enzyme-linked immunosorbent assay	Semi-adiabatic flow	20
Heat production by mixed microbial cultures	Flow Not specified	15 15, 16, 26
Heat production by muscle and mus- cle protein reactions	Titration Heat cond. batch Batch Not specified	27 27, 28 27, 28 27-29
Heat production by organs, organ tissues and organites	Direct injection Isoperibol batch Heat cond. batch	30 31 28, 31, 32

TABLE 1

Applications of calorimetry in biochemistry and biology

358

TABLE 1	(continued)	
---------	-------------	--

Determination	Method ^a	Basic references
Heat production by tissue cells in vitro	Heat cond. incr. titr. Heat cond. flow Isothermal batch Heat cond. batch	33 29 18 29, 32
Hormone activity (insulin)	Heat cond. dir. inject. Not specified	3 25
Immobilized enzymes for use in calorimetry		34-36
Inorganic ions and small organic species found in body fluids	Isoperibol titration Direct injection Semi-adiabatic flow Flow Not specified	37 37 20 37 19, 20, 37, 38
Microbial contamination in water (e.g. sewage water, processed food, etc.)	Heat cond. flow Flow Not specified	13 16 19
Peroxides	Semi-adiabatic flow Flow	39 25
Protein	Isoperibol cont. titr.	7, 18–20, 25
Quantity of erythrocyte-protein binding sites on normal and sick- eled erythrocytes	Isoperibol cont. titr.	18, 24
Stoichiometry for antigen-antibody interactions	Isoperibol cont. titr.	7, 40
Stoichiometry of metal ion binding to proteins, lipids and large biochem- ical molecules	Isoperibol cont. titr. Continuous titration	18 40
Substrates in binary mixtures with a single titration	Not specified	20
Substrates using immobilized enzymes	Isothermal cont. titr. Heat cond. flow Semi-adiabatic flow	18 3, 17, 18, 35, 41 2, 15, 17, 18, 20, 25, 34–36, 39, 41
	Thermistor enzyme probe Batch	9, 15, 18, 20, 25, 34, 42 25
Substrates using soluble enzymes	Isoperibol dir. inject. Semi-adiabatic flow Flow Heat cond. batch Batch Not specified	7, 9, 10, 15, 17, 19–21 2, 34 3, 15, 17, 19, 25 3, 15, 19 3, 17, 19, 25 19–21, 23, 43

Determination	Method ^a	Basic references
Thermogram fingerprints for the iden- tification of bacteria and yeasts	Heat cond. flow Flow Heat cond. batch Batch Not specified	12 15, 17, 44, 45 3, 26 3, 14, 15, 17, 19, 44, 16, 25, 26
B. Qualitative determinations of effects Antibiotics and cytotoxins (disinfec- tants) on heat production by bacte- ria (antibiotic-disinfectant sensitivity testing)	Isothermal titration Heat cond. flow Flow Isoperibol batch Heat cond. batch Batch	18, 46 3, 8, 12, 46–52 8, 15, 17, 18, 44 46 8, 46 15, 44
Antibiotics and cytotoxins on heat production by yeast cultures	Heat cond. flow Flow Not specified	8, 15, 46, 47 48 48
Blood coagulation on thermograms and correlation of peaks in ther- mograms to chemical events taking place	Heat cond. flow Adiabatic batch Batch	3 25 3, 25, 53, 54
Carcinogens on heat production by tissue cells	Isothermal batch Not specified	18 28
Competitive binding in biochemical molecule complexes	Continuous titration	55
Enzymes, hormones and other chemicals on tissue cell heat pro- duction (metabolism)	Titration Direct injection Heat cond. flow Heat cond. batch	27 30 29 27-29
Fertilizers, pollutants, and residual herbicides on biological activities in soils	Heat cond. batch Batch Not specified	3, 53, 56 15 16
Light on heat production by photo- luminescent bacteria	Isothermal batch Heat cond. batch	18, 24 43
Metabolic blocking agents on cellulose heat production	Heat cond. batch	8
Insecticides and pheromones on power output of live insects	Heat cond. batch	57
Protein synthesis in a cell-free system on the thermogram	Heat cond. batch	3
Proton ionization by proteins, and cor- relation of the thermogram to func- tional groups in protein molecules	Isoperibol cont. titr. Flow	39, 40 3, 40, 43
Temperature, pH and normal and pathological conditions on heat	Heat cond. flow Flow	3, 29, 54 15, 17, 25

TABLE	1	(continued)

TABLE I (continued)		
Determination	Method ^a	Basic references
production by erythrocytes, leuko- cytes and thrombocytes	Isothermal batch Heat cond. batch Batch Not specified	18 3, 15, 29 3, 25, 53, 54 17, 19, 25, 54
Type and quantity of energy supply, temperature, oxygen content of medium, pH, etc. on heat produc- tion by bacteria	Heat cond. flow Flow Isothermal batch Heat cond. batch Adiabatic batch Batch Not specified	3, 8, 12, 26 15, 44, 46 18 26 26 15, 44, 46 19
Type and quantity of energy supply, temperature, oxygen content of medium, pH, etc. on heat produc- tion by yeast cultures	Heat cond. flow Flow Heat cond. batch Batch Not specified	3, 8, 48, 58 48 3, 48, 58 48 26, 45
C. Enthalpy change, ΔH , determination Antibody-antigen interactions	ons Continuous titration	18, 39
A slow process	Flow Not specified	22, 59 3
Biochemical processes, also ΔC_p values	Not specified	19, 22
Biochemical redox reactions not in- volving a catalyst or enzyme	Not specified	19
Conformational changes in macro- molecules (proteins)	Batch	24
Coupled reactions for study of a reac- tion with a low ΔH (amplification of reaction enthalpies)	Not specified	20-22
Enzyme-catalyzed reactions	Heat cond. batch Isoperibol Not specified	19, 60 61 19, 24, 43, 61, 62
Enzyme-inhibitor or substrate- inhibitor binding	Titration Isoperibol batch Flow Not specified	40 3 40 40
Gas absorption by hemoglobin (O_2, CO_2, CO)	Flow Batch (modified) Not specified	24 24, 43 22
Hapten-antibody binding	Continuous titration Heat cond. flow Not specified	39 3 24,43
Isomerization of sugars	Not specified	62

TABLE 1 (continued)

Determination	Method ^a	Basic references
Macromolecule-ligand interactions	Batch Not specified	19 19, 22, 43
Metal ion-antibiotic complexes (see also metal-ligand headings in the organic-inorganic table)	Batch	8
Metal ion-protein interactions	Isoperibol cont. titr. Not specified	18 19
Protein-erythrocyte binding (normal and sickle cell)	Isoperibol Cont. Titr.	18, 24
Proton ionization from proteins	Isoperibol cont. titr. Titration Flow Not specified	40 19, 24 3, 19, 40, 43 24
Protein-protein binding	Heat cond. cont. titr. Flow Batch Not specified	27 43 3 19, 24, 43
Protein-surfactant binding	Batch	3
D. Equilibrium constant, K, determin Antigen-antibody interactions	ations Continuous titration	18, 39
Biological macromolecule-ligand in- teractions	Batch Not specified	19 19, 22, 43
Erythrocyte-protein interactions for normal and sickled erythrocytes	Isoperibol cont. titr.	18, 24
Hapten-antibody interactions	Continuous titration	39
Protein-protein interactions	Heat cond. cont. titr. Not specified	27 19
Proton ionization from proteins	Isoperibol cont. titr. Titration Flow Not specified	40 19, 24 19 19, 24
Substrate-inhibitor and enzyme- inhibitor interactions	Isoperibol batch Not specified	3 21, 22, 40
E. Kinetic parameter determinations Antibiotic and drug action on micro- bial cultures	Heat cond. flow Flow Batch Not specified	8, 24, 46 17 17 16
Enzyme-substrate and enzyme- inhibitor reactions (i.e. V_{max} , K_m , etc.)	Isoperibol dir. inject. Direct injection Heat cond. flow Flow	20 20, 21, 39, 63 3, 64, 65 19–21, 24, 43, 64

Determination	Method ^a	Basic references
	Heat cond. batch	3, 19
	Batch	19
	Not specified	20–22, 24
Non-enzyme biochemical-type reac-	Isoperibol dir. inject.	24
tions	Heat cond. flow	59
	Flow	22, 65
	Not specified	3

TABLE 1 (continued)

^a Isoperibol cont. titr. = Isoperibol continuous titration; Isoperibol dir. inject. = Isoperibol direct injection; Heat cond. flow = Heat conduction flow; Heat cond. batch = Heat conduction batch; Isothermal dir. inject. = Isothermal direct injection; Heat cond. dir. inject. = Heat conduction direct injection; Isothermal cont. titr. = Isothermal continuous titration; Heat cond. incr. titr. = Heat conduction incremental titration; Heat cond. cont. titr. = Heat conduction continuous titration.

reaction vessel and its surroundings is eliminated and for all practical purposes, heat leakage from the reaction vessel does not occur. Heat produced by the reaction is calculated from temperature change and heat capacity data.

Temperature scanning calorimetry is used to determine physical properties and constants such as specific heat capacities, entropies of fusion, and other phase changes which occur with changes in temperature and/or pressure. Temperature scanning calorimetry is beyond the scope of this paper. However, there are several review articles on the subject [4,5,6].

The information in Table 1 on applications in biochemistry and biology and in Table 2 on applications in inorganic and organic chemistry is intended to help the reader understand the potential that calorimeters possess as tools in research, industry, analytical chemistry and clinical analysis. Table 1 lists applications in biochemistry and biology in the areas of analytical and qualitative chemistry, and the determination of enthalpy changes (ΔH), equilibrium constants (K) and kinetic parameters. Table 2 lists applications in inorganic and organic chemistry in the areas of analytical chemistry and the determination of enthalpy changes, equilibrium constants and kinetic parameters. Both tables list specific determinations which have been made, types of calorimeters which have been used and references to review articles, chapters in books, and, especially for recent literature, several primary sources. In those cases where the calorimetric technique used to measure enthalpy changes and heat production rates is not stated in the reference cited, the words "Not specified" are listed in the Method column. Additional information on the technique used is available in the original paper.

364

TABLE 2

Applications of calorimetry in inorganic and organic chemistry

Determination	Method ^a	Basic references	
A. Analytical determinations			
Active site distribution on a catalyst surface	Heat conduction Not specified	66 67	
Active site inhibitors for catalysts	Not specified	67	
Alcohols and phenols	Continuous titration Isoperibol Flow	68 9, 68 68	
Aldehydes and ketones	Continuous titration	68	
Amines, amides and anilides by calorimetric methods other than acid-base titration	Continuous titration	68	
Anhydrides	Continuous titration Isoperibol dir. inject.	68 68	
Carboxylic acids by calorimetric methods other than acid-base titration	Continuous titration	68	
Cation exchange capacity for clays	Isoperibol cont. titr.	69	
Chemical species in airborne particulate matter (air pollution)	Isoperibol cont. titr.	70, 71	
Components in binary and ternary mixtures with a single titration	Continuous titration Direct injection Flow Not specified	72, 73 73 74 73, 75	
Detergents	Continuous titration	74	
Elements in their more common oxidation states			
Li, Na, K	Continuous titration Direct injection	38, 74 7, 38	
Be, Mg, Ca, Sr, Ba	Continuous titration Direct injection Semi-adiabatic flow Flow Not specified	7, 38, 74 38 39, 74 38 76	
B, Al, Ga, In, Tl	Continuous titration Direct injection Semi-adiabatic flow Not specified	7, 38, 74 38 74 76	
C (CO ₂ , CO ₃ ²⁻ , CS ₂ , CN ⁻ , SCN ⁻), Si (H ₂ SiF ₆ , SiO ₂), Pb	Continuous titration Direct injection Semi-adiabatic flow	38, 74 38 74	

TABLE 2 (continued)

Determination	Method ^a Basic references	
	Flow Not specified	38 76
$N(NH_3, N_2O_4, NO_2^-, NO_3^-), P(PO_4^{3-}), As, Sb$	Continuous titration Incremental titration Direct injection	38, 74 38 38
$O(H_2O, H_2O_2, O_2)$, $S(S, H_2S, SO_2, S_2O_3^{2-}, SO_3^{2-}, SO_4^{2-}, S_2O_8^{2-})$, Se	Continuous titration Direct injection Semi-adiabatic flow Batch Not specified	38, 71, 74 38 7, 74 38 74
F, Cl, Br, I	Continuous titration Direct injection Heat conduction flow Flow	38, 74 38 38 38
Cu, Zn, Ag, Cd, Hg	Continuous titration Direct injection Semi-adiabatic flow Not specified	33, 74 38 74 76
Ti, Zr, V	Continuous titration Direct injection	38 7, 38
Cr, Mo, W	Continuous titration Direct injection Not specified	38, 74 38 76
Mn, Fe, Co, Ni, Pd	Continuous titration Direct injection Semi-adiabatic flow Not specified	7, 38, 76 7, 38 74 76
Lanthanides; Ce, Gd	Continuous titration Incremental titration Direct injection	38, 74 38 38
Actinides; U, Th	Continuous titration Direct injection	38, 74 38
Endpoints by large heat of dilution effects	Continuous titration	68, 72, 73, 77
Endpoints using coupled reactions when ΔH is small	Continuous titration	1
Endpoints using flow enthalpimetry	Flow	72
Endpoints using thermochemical indicators	Continuous titration	38, 68, 72-74, 76-78
Esters	Direct injection	68
Ethers	Not specified	68

Determination	Method ^a	Basic references
Gases (CO_2 , SO_2 , NO_2 , N_2O_4)	Direct injection	9
Inorganic acids and bases by neutraliza- tion, solvent: aqueous solvent: non-aqueous	Isoperibol cont. titr. Isoperibol incremental Direct injection Semi-adiabatic flow Flow Not specified Continuous titration Not specified	38, 74, 79 38 38 74 38 73 38, 74 73
Metals and ligands by complexation, solvent: aqueous solvent: non-aqueous	Isoperibol cont. titr. Continuous titration Isoperibol dir. inject. Semi-adiabatic flow Flow Not specified Continuous titration	38, 76, 80 38, 74, 76 38, 76 74 76 73, 76 74
Nitriles	Flow	68
Olefins, acetylenes and aromatic compounds	Isoperibol titration Isoperibol dir. inject.	68 9, 77, 81
Organic acids and bases by neutraliza- tion, solvent: aqueous solvent: non-aqueous	Isoperibol cont. titr. Continuous titration Semi-adiabatic flow Flow Not specified Continuous titration Direct injection Not specified	74 68, 79 74 68 73 68, 74, 77 68 73
Organometallic compounds, solvent: non-aqueous	Continuous titration	38, 74, 77
Pharmaceutical compounds	Continuous titration Not specified	7, 68, 74 73
Polyethers and polyesters	Isoperibol dir. inject.	7
Reaction stoichiometry	Continuous titration	74
Secondary processes which take place at a catalyst surface	Not specified	82
Species by precipitation reactions, solvent aqueous	Isoperibol cont. titr. Continuous titration Isoperibol dir. inject. Not specified	74, 78 38 78 73
solvent: non-aqueous	Isoperibol cont. titr. Continuous titration	78 38, 68

· · · · · · · · · · · · · · · · · · ·	TAB	LE	2	(contii	nued)
---------------------------------------	-----	----	---	---------	-------

Determination	Method ^a	Basic references
Species by redox reactions, solvent: aqueous	Isoperibol cont. titr. Continuous titration Direct injection Not specified	71, 74 38, 74, 83 38 73, 83
Sugars	Isoperibol dir. inject.	9
Surface-active materials for preferential adsorption for industrial applications	Semi-adiabatic flow	84
Surface areas of particles (m ² g ⁻¹) and particle size from heat of adsorption data (quality control)	Semi-adiabatic flow	84, 85
Surfactants	Continuous titration	68
Thermograms	Isoperibol cont. titr.	72, 75
Thio-acids, thio-ethers and disulfides	Continuous titration	68
Very small amounts of materials that exhibit catalytic activity (kinetic titration)	Continuous titration Not specified	1 1, 72
Water in organic liquids and solids	Titration Isoperibol dir. inject. Direct injection Semi-adiabatic flow Flow Batch Not specified	38 38, 77 9, 38, 77 7 77 38 74
Water of hydration in salts	Isoperibol dir. inject.	9
B. Enthalpy change, ΔH , determinations Catalysts (activation energy)	DSC Types other than DSC	67 67
Cation exchange reactions in clays	Isoperibol cont. titr.	69
Dilution	Titration Flow Batch	72 24, 86, 87 73, 87
Hydrogen bonding	Flow Batch	87 87
Hydrolysis reactions	Flow	88
Inorganic and organic acid-base neutralization reactions solvent: aqueous	Continuous titration Flow Many types used but specific type is not mentioned	38, 68, 79 88 89
solvent: non-aqueous	Not specified Continuous titration Many types used but	79 38, 68 89

TABLE 2 (continued)

Determination Method ^a		Basic references	
	specific type is not mentioned Not specified	79	
Interactions between pre-adsorbed species and gaseous reactants (hetero- geneously catalyzed reaction)	Not specified	67, 82 [.]	
Metal-ligand complexation reactions, solvent: aqueous and non-aqueous	Continuous titration Direct injection Flow Batch Many types used but specific types not mentioned	38, 76 38, 76 38, 76 8, 38 90	
Mixing of two or more solvents	Isothermal cont. titr. Isoperibol cont. titr. Incremental Isothermal displacement Isoperibol dir. inject. Isothermal flow Heat cond. flow Semi-adiabatic flow Isoperibol batch Isothermal batch Heat cond. batch Adiabatic batch	1, 91 91 92 91 91 70, 91, 92 91 72, 91 91 91 91 91	
Precipitation reactions, solvent: aqueous	Isoperibol cont. titr.	38, 78	
Reactions from calorimetric data	Continuous titration22, 75, 9Flow22Not specified22		
Redox reactions, solvent: aqueous	Continuous titration	38, 83	
Small batteries under load and no-load conditions	Heat cond. batch	94–96	
Solution of a gas in a liquid	lsothermal gas inject.	97	
Solution of a liquid in a liquid	Titration Isoperibol batch	72 3, 86	
Solution of a solid in a liquid	Isothermal batch Isoperibol batch	24 24, 86	
Surface adsorption of gases by solids	Isoperibol adsorption Isothermal adsorption Heat cond. adsorption Flow adsorption Adiabatic adsorption	82 82 82 84 82	

368

TABLE 2	(continued)	
---------	-------------	--

Determination	Method ^a	Basic references
Surface adsorption of liquids by solids	Semi-adiabatic flow Isothermal batch Heat cond. batch	84 70 85
Surface adsorption of solutes from solution by solids	Heat cond. batch	98
C. Equilibrium constant, K, determination Enantiomeric recognition	ons Isoperibol cont. titr.	99
Hydrogen bonding	Flow Batch	87 87
Metal-ligand complexes	Continuous titration Not specified	69, 74, 76 76
Organic and inorganic acids and bases	Isoperibol cont. titr. Titration	38, 68, 74 68, 74
Reactions from calorimetric data	Continuous titration Not specified	73, 74, 93 22, 75
D. Kinetic parameter determinations		
Reactions involving catalysts	Heat conduction Not specified	67, 82 67, 82
Reactions not involving catalysts	Isoperibol dir. inject. Heat conduction flow Semi-adiabatic flow Flow Heat cond. batch	24, 39 3, 24, 59 72, 88 22 3

^a Abbreviations are defined in Table 1 footnote.

ACKNOWLEDGEMENT

The authors acknowledge the encouragement and financial support for this work given by Tronac Inc., Orem, UT, U.S.A.

REFERENCES

- 1 J. Barthel, Thermometric Titrations, Wiley, New York, 1975, pp. 56-76.
- 2 R.S. Schifreen, in G. Svehla (Ed.), Wilson and Wilson's Comprehensive Analytical Chemistry, Vol. XII, Part B, Elsevier, Amsterdam, 1982 pp. 53-74.
- 3 C.H. Spink and I. Wadsö, in D. Glick (Ed.), Methods of Biochemical Analysis, Vol. 23, New York, 1976, pp. 1-160.

- 4 H.T. Gaud, in G. Svehla (Ed.), Wilson and Wilson's Comprehensive Analytical Chemistry, Vol. XII, Part B, Elsevier, Amsterdam, 1982, pp. 39-52.
- 5 S. Mabrey-Gaud, in G. Svehla (Ed.), Wilson and Wilson's Comprehensive Analytical Chemistry, Vol XII, Part B, Amsterdam, 1982, pp. 217-247.
- 6 P.L. Privalov, in A.E. Beezer (Ed.), Biological Microcalorimetry, Academic Press, London, 1980, pp. 413-451.
- 7 J. Jordan, J.K. Grime, D.H. Waugh, C.D. Miller, H.M. Cullis and D. Lohr, Anal. Chem., 48 (1976) 427A.
- 8 A.E. Beezer and B.Z. Chowdhry, in A.E. Beezer (Ed.), Biological Microcalorimetry, Academic Press, London, 1980, pp. 195-246.
- 9 D.W. Rogers, Am. Lab., 13 (1981) 63.
- 10 J.K. Grime and B. Tan, Anal. Chim. Acta, 107 (1979) 319.
- 11 A.E. Beezer, R.J. Miles, E.J. Shaw and L. Vickerstaff, Experientia, 36 (1980) 1051.
- 12 A.E. Beezer and B.Z. Chowdhry, Lab Pract., 29 (1980) 504.
- 13 F. Tiefenbrunner in I. Lamprecht and B. Schaarschmidt (Eds.), Application of Calorimetry in Life Sciences, de Gruyter, Berlin, 1977, pp. 305-314.
- 14 K.A. Bettelheim and E.J. Shaw, in A.E. Beezer (Ed.), Biological Microcalorimetry, Academic Press, London, 1980, pp. 187-194.
- 15 C.H. Spink, Anal. Chem., 9 (1980) 1.
- 16 P.R. Monk, Process Biochem. 13 (1978) 4, 8.
- 17 I. Wadsö, in I. Lamprecht and B. Schaarschmidt (Eds.), Application of Calorimetry in Life Sciences, de Gruyter, Berlin, 1977, pp. 225-239.
- 18 L.D. Hansen, T.E. Jensen, and D.J. Eatough, in A.E. Beezer (Ed.), Biological Microcalorimetry, Academic Press, London, 1980, pp. 453-476.
- 19 C.J. Martin and M.A. Marini, Anal. Chem., 8 (1979) 221.
- 20 J.K. Grime, Anal. Chim. Acta, 118 (1980) 191.
- 21 J.K. Grime, in G. Svehla (Ed.), Wilson and Wilson's Comprehensive Analytical Chemistry, Vol. XII, Part B., Elsevier, Amsterdam, 1982, pp. 136-174.
- 22 R.L. Biltonen and N. Langerman, Methods Enzymol., 61 (1979) 287.
- 23 N.N. Rehak and D.S. Young, Clin. Chem., 24 (1978) 1414.
- 24 N. Langerman and R.L. Biltonen, Methods Enzymol., 61 (1979) 261.
- 25 K. Levin, Clin. Chem., 23 (1977) 929.
- 26 J.P. Belaich, in A.E. Beezer (Ed.), Biological Microcalorimetry, Academic Press, London, 1980, pp. 1-42.
- 27 R.C. Woledge, in I. Lamprecht and B. Schaarschmidt (Eds.), Application of Calorimetry in Life Sciences, de Gruyter, Berlin, 1977, pp. 183-197.
- 28 P. Boivinet, in I. Lamprecht and B. Schaarschmidt (Eds.), Application of Calorimetry in Life Sciences, de Gruyter, Berlin, 1977, pp. 159-182.
- 29 R.B. Kemp, in A.E. Beezer (Ed.), Biological Microcalorimetry, Academic Press, London, 1980, pp. 113-130.
- 30 D. Riequier, J.L. Gaillard and J.M. Turc, FEBS Lett., 99 (1979) 203.
- 31 R.C. Woledge, in A.E. Beezer (Ed.), Biological Microcalorimetry, Academic Press, London, 1980, pp. 145-162.
- 32 M. Patel, Thermochim. Acta, 49 (1981) 123.
- 33 A. Anders, G. Welge, B. Schaarschmidt, I. Lamprecht and H. Schaefer, in I. Lamprecht and B. Schaarschmidt (Eds.), Application of Calorimetry in Life Sciences, de Gruyter, Berlin, 1977, pp. 199-208.
- 34 B. Danielsson, B. Mattiasson and K. Mosbach, Pure Appl. Chem., 51 (1979) 1443.
- 35 A. Johansson, B. Mattiasson and K. Mosbach, Methods Enzymol., 44 (1976) 659.
- 36 B. Danielsson and K. Mosbach, Methods Enzymol., 44 (1976) 667.
- 37 N.D. Jespersen, in G. Svehla (Ed.), Wilson and Wilson's Comprehensive Analytical Chemistry, Vol. XII, Part B, Elsevier, Amsterdam, 1982, pp. 103-110.

- 38 G.A. Vaughan, Thermometric and Enthalpimetric Titrimetry, Van Nostrand Reinhold, London, 1973, pp. 61–183.
- 39 J. Jordan, J.D. Stutts and W.J. Brattlie, Natl. Bur. Stand. (U.S.) Spec. Publ., 580 (1980) 149.
- 40 D.J. Eatough, S.J. Rehfeld, R.M. Izatt and J.J. Christensen, in G. Svehla (Ed.), Wilson and Wilson's Comprehensive Analytical Chemistry, Vol. XII, Part B, Elsevier, Amsterdam, 1982, pp. 112-134.
- 41 G. Krisam and H.-L. Schmidt, in I. Lamprecht and B. Schaarschmidt (Eds.), Application of Calorimetry in Life Sciences, de Gruyter, Berlin, 1977, pp. 39-47.
- 42 R.M. Ianniello and N.D. Jespersen, in G. Svehla (Ed.), Wilson and Wilson's Comprehensive Analytical Chemistry, Vol. XII, Part B, Elsevier, Amsterdam, 1982, pp. 75-101.
- 43 B.G. Barisas, Ann. Rev. Phys. Chem., 29 (1978) 141.
- 44 R.D. Newel, in A.E. Beezer (Ed.), Biological Microcalorimetry, Academic Press, London, 1980, pp. 163-186.
- 45 A.E. Beezer, in I. Lamprecht and B. Schaarschmidt (Eds.), Application of Calorimetry in Life Sciences, de Gruyter, Berlin, 1977, pp. 109-118.
- 46 B.F. Perry, in G. Svehla (Ed.), Wilson and Wilson's Comprehensive Analytical Chemistry, Vol. XII, Part B, Elsevier, Amsterdam, 1982, pp. 176-216.
- 47 A.E. Beezer and B.Z. Chowdhry, Experientia, 37 (1981) 828.
- 48 I. Lamprecht, in A.E. Beezer (Ed.), Biological Microcalorimetry, Academic Press, London, 1980, pp. 43-112.
- 49 B.F. Perry, A.E. Beezer and R.J. Miles, Microbios, 29 (1980) 81.
- 50 E. Semenitz, Thermochim. Acta, 40 (1980) 99 (in German).
- 51 A.E. Beezer, R.J. Miles, E.J. Shaw and P. Willis, Experientia, 35 (1979) 795.
- 52 E. Semenitz and F. Tiefenbrunner, in I. Lamprecht and B. Schaarschmidt (Eds.), Application of Calorimetry in Life Sciences, de Gruyter, Berlin, 1977, pp. 251-260.
- 53 I. Wadsö, in A.E. Beezer (Ed.), Biological Microcalorimetry, Academic Press, London, 1980, pp. 247-274.
- 54 K. Levin, in A.E. Beezer, (Ed.), Biological Microcalorimetry, Academic Press, London, 1980, pp. 131-143.
- 55 P. Coassolo, C. Briand, M. Bourdeaux and J.C. Sari, Biochim. Biophys. Acta, 538 (1978) 512.
- 56 G.P. Sparling, Soil Biol. Biochem., 13 (1981) 93.
- 57 R.E. Lovrien, T.J. Kurtti, R. Tsang and M. Brooks-Wallace, J. Biochem. Biophys. Methods, 5 (1982) 307.
- 58 R. Brettel, in I. Lamprecht and B. Schaarschmidt (Eds.), Application of Calorimetry in Life Sciences, de Gruyter, Berlin, 1977, pp. 129-138.
- 59 R.E. Johnson and R.L. Biltonen, J. Am. Chem. Soc., 97 (1975) 2349.
- 60 L. Tumerman and S. Ric, in I. Lamprecht and B. Schaarschmidt (Eds.), Application of Calorimetry in Life Sciences, de Gruyter, Berlin, 1977, pp. 97-106.
- 61 H.D. Brown, in H.D. Brown, (Ed.), Biochemical Microcalorimetry, Academic Press, New York, 1969, pp. 149-164.
- 62 O. Sozaburo and K. Takahashi, in H.D. Brown (Ed.), Biochemical Microcalorimetry, Academic Press, New York, 1969, pp. 99-116.
- 63 J.K. Grime, K. Lockhart and B. Tan, Anal. Chim. Acta, 91 (1977) 243.
- 64 M.R. Eftink, R.E. Johnson and R.L. Biltonen, Anal. Biochem., 111 (1981) 305.
- 65 A.E. Beezer, Biochem. Soc. Trans., 4 (1976) 570.
- 66 R. Point, J.L. Petit and P.C. Gravelle, J. Catal., 48 (1977) 408.
- 67 P.C. Gravelle, Catal. Rev. Sci. Eng., 16 (1977) 37.
- 68 G.A. Vaughan, Thermometric and Enthalpimetric Titrimetry, Van Nostrand Reinhold, London, 1973, pp. 184–226.
- 69 G.J. Ewin, B.P. Erno and L.G. Hepler, Can. J. Chem., 59 (1981) 2927.

- 70 L.D. Hansen, J.J. Christensen, D.J. Eatough and R.M. Izatt, U.S. Bur. Mines Inf. Circ., 8853 (1981) 81.
- 71 L.D. Hansen, L. Whiting, D.J. Eatough, T.E. Jensen and R.M. Izatt, Anal. Chem., 48 (1976) 634.
- 72 G.A. Vaughan, Thermometric and Enthalpimetric Titrimetry, Van Nostrand Reinhold, London, 1973, pp. 1-22.
- 73 P.W. Carr, Anal. Chem., 2 (1972) 491.
- 74 L.D. Hansen, R.M. Izatt and J.J. Christensen, in J. Jordan (Ed.), New Developments in Titrimetry, Dekker, New York, 1974, pp. 1–89.
- 75 J. Barthel, Thermometric Titrations, Wiley, New York, 1975, pp. 24-55.
- 76 J. Barthel, Thermometric Titrations, Wiley, New York, 1975, pp. 135-158.
- 77 J. Barthel, Thermometric Titrations, Wiley, New York, 1975, pp. 98-112.
- 78 J. Barthel, Thermometric Titrations, Wiley, New York, 1975, pp. 113-126.
- 79 J. Barthel, Thermometric Titrations, Wiley, New York, 1975, pp. 77-97.
- 80 J.D. Lamb, J.E. King, J.J. Christensen and R.M. Izatt, Anal. Chem., 53 (1981) 2127.
- 81 D.W. Rogers, Am. Lab., 12 (1980) 18, 20, 22.
- 82 P.C. Gravelle, in I. Lamprecht and B. Schaarschmidt (Eds.), Application of Calorimetry in Life Sciences, de Gruyter, Berlin, 1977, pp. 3-32.
- 83 J. Barthel, Thermometric Titrations, Wiley, New York, 1975, pp. 127-134.
- 84 G. Steinberg, Chem. Technol., 11 (1981) 730.
- 85 S. Partyka, F. Rouquerol and J. Rouquerol, J. Colloid Interface Sci., 68 (1979) 21.
- 86 C.M. Criss, U.S. Bur. Mines Inf. Circ., 8853 (1981) 225.
- 87 T. Krishnan, W.C. Duer and S. Goldman, Can. J. Chem., 57 (1979) 530.
- 88 A. Roux, G. Perron, P. Picker and J.E. Desnoyers, J. Solution Chem., 9 (1980) 59.
- 89 J.J. Christensen, L.D. Hansen and R.M. Izatt, Handbook of Proton Ionization Heats and Related Thermodynamic Quantities, Wiley, New York, 1976.
- 90 J.J. Christensen, D.J. Eatough and R.M. Izatt, Handbook of Metal-Ligand Heats and Related Thermodynamic Properties, Dekker, New York, 3rd edn., 1983.
- 91 J.J. Christensen, R.W. Hanks and R.M. Izatt, Handbook of Heats of Mixing, Wiley, New York, 1982, pp. 1393-1475.
- 92 F. Becker, Thermochim. Acta, 40 (1980) 1 (in German).
- 93 D.J. Eatough, R.M. Izatt and J.J. Christensen, in G. Svehla (Ed.), Wilson and Wilson's Comprehensive Analytical Chemistry, Vol. XII, Part B, Elsevier, Amsterdam, 1982, pp. 3-38.
- 94 E.J. Prosen and J.C. Colbert, J. Res. Natl. Bur. Stand., 85 (1980) 193.
- 95 D.F. Untereker and B.B. Owens, Natl. Bur. Stand. (U.S.) Spec. Publ., 400-50 (1979) 17.
- 96 L.D. Hansen and R.M. Hart, J. Electrochem. Soc., 125 (1978) 842. L.D. Hansen and R.M. Hart, Natl. Bur. Stand. (U.S.). Spec. Publ., 400-50 (1979) 10.
- 97 J. Cone, L.E.S. Smith and W.A. Van Hook, J. Chem. Thermodyn., 11 (1979) 277.
- 98 G. Della Gatta, L. Stradella and G. Venturello, Z. Phys. Chem. N. F., 106 (1977) 95.
- 99 J.S. Bradshaw, B.A. Jones, R.B. Davidson, J.J. Christensen, J.D. Lamb and R.M. Izatt, J. Org. Chem., 47 (1982) 3362.