Note

ON THE TRANSITION TEMPERATURES OF BaCO₃ AND SrCO₃ AS **DTA** TEMPERATURE REFERENCE MATERIALS

K. IWAFUCHI, C. WATANABE and R. OTSUKA

Department of Mineral Industry, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo (Japan)

(Received 17 November 1982)

In the course of the temperature calibration work of our DTA apparatus, we noticed that the peak temperatures of BaCO₃ and SrCO₃ were slightly shifted in flowing CO_2 and N_2 . In this note, the results of the examination of these behaviours are briefly described.

EXPERIMENTAL

The materials used in this study were as described.

(1) BaCO₃ and SrCO₃ from NBS-ICTA Standard Reference Material GM-760. T_p : BaCO₃, 819°C; SrCO₃, 938°C [1].

(2) Reagents BaCO₃ and SrCO₃ manufactured by Wako Pure Chemical Ind., Ltd., Osaka, Japan. These materials are used for comparison purposes with NBS-ICTA materials.

(3) Witherite from Settlingstone, Cumberland, England. Chemical composition; BaCO₃, 90.39; SrCO₃, 9.17; CaCO₃, 0.44. Strontianite from Drensteinfurt, Westfalia, Germany. Chemical composition: $BaCO₃$, 0.00; SrCO₃, 90.08; CaCO₂, 9.92.

In addition, in order to examine instrumental effects on the DTA peak shift, K₂CrO₄ (NBS-ICTA Standard Reference Material GM-760, $T_p = 673^{\circ}$ C [1]) and high purity metallic silver are also used. The metallic silver has a melting point at about 960°C. The peak temperature of K_2CrO_4 is below while that of Ag is above the transition temperatures of $BaCO₃$ and $SrCO₃$.

DTA curves are recorded with a partially modified commercial apparatus incorporating a Pt-PtRh 13% thermocouple, a Pt micro sample pan (in the measurement of metallic silver, a micro pan of silica glass is used) and calcined alumina as a reference material, under the given conditions: sample weight, 5.0 mg (in the case of metallic silver, 15.0 mg); programmed heating rate, 10° C min⁻¹; DTA sensitivity, $\pm 50 \mu V$. Under these conditions, the peak temperatures are reproducible within ± 1 K. Measurements are carried out in the mixing gas flow of CO_2 and N_2 in various CO_2/N_2 ratios, keeping

the total flow rate at 100 ml min⁻¹. The gas flows upward past the sample pan. Only natural minerals are ground in an agate mortar and fractions finer than 325 mesh (43 μ m) are used.

RESULTS AND DISCUSSION

The values of T_p for NBS-ICTA BaCO₃ are almost constant in the range 100-10% CO₂ in the CO₂/N₂ mixture, while slight decreases are detected in flowing N₂ (Fig. 1). Such behaviour is hardly recognizable in witherite. On the other hand, the values of T_p for the reagent BaCO₃ decrease continuously with decrease of CO_2 in the CO_2/N_2 ratio. Like NBS-ICTA BaCO₃, NBS-ICTA SrCO₃ also shows almost constant T_p values in the range 100-10% $CO₂$ in the $CO₂/N₂$ mixture (Fig. 2). However, in contrast with BaCO₃, an increase in T_p is observed for SrCO₃ in flowing N₂. Similar behaviour is evident in both the reagent $SrCO₃$ and strontianite. In the N₂ flow, strontianite shows the largest shift of T_p in the SrCO₃ group, while witherite shows the smallest shift in the BaCO₃ group. Furthermore, K_2CrO_4 and metallic silver clearly indicate that their T_p values are not affected by the $CO₂/N₂$ ratio (Fig. 3). This suggests that the temperature shifts found in the BaCO, and SrCO, groups could be attributed to the effects arising within the materials themselves, and not to the instrumental effects.

According to their DTA curves, $S_rCO₃$ and BaCO₃ decompose at tempera-

Fig. 1. T_e and T_p values for the BaCO₃ group at various percentages of CO₂ in CO₂/N₂ mixtures. $\circ \bullet$, NBS-ICTA BaCO₃; $\triangle \blacktriangle$, reagent BaCO₃; $\Box \blacksquare$, witherite; $\cdots \cdots$, T_c ; \cdots , \cdots , $T_{\rm p}$.

Fig. 2. T_e and T_p values for the SrCO₃ group at various percentages of CO₂ in CO₂/N₂ mixtures. O., NBS-ICTA SrCO₃; $\Delta \blacktriangle$, reagent SrCO₃; $\square \blacksquare$, strontianite; $\cdots \cdots$, T_e ; \cdots , $T_{\rm p}$.

tures above 1000° C (e.g.: BaCO₃, 1350°C; SrCO₃, 1000°C [2]). However, in air or in a flowing N_2 atmosphere having a low CO_2 partial pressure, it is highly probable, as suggested by some previous investigators [3,4], that the decompositions of BaCO₃ and SrCO₃ begin before their transitions. Although it is difficult to observe the base-line shift due to the preceding decomposition on the DTA curve of NBS-ICTA $S₂$ flow $N₂$ flow [Fig. 4, curve (1)], the remarkable decrease of its peak area, compared with that in $CO₂$ [Fig. 4, curve (2)], strongly suggests that the decomposition begins just prior to the transition in N_2 . In order to clarify this, TG curves are recorded in the N_2 flow. The curves of the SrCO₃ group clearly indicate

Fig. 3. T_e and T_p values for: (a), metallic silver; (b) NBS-ICTA K_2CrO_4 at various percentages of CO₂ in CO₂/N₂ mixtures. ------, T_e ; - $-, T_{p}.$

that the decomposition begins at lower temperatures than its transition. On the other hand, the BaCO₃ group does not show any detectable weight loss in the temperature region around its transition.

Fig. 4. DTA peaks of NBS-ICTA SrCO₃ in flowing N_2 and CO₂. (1), N_2 ; (2), CO₂.

Figure 5 shows the calculated equilibrium curves of the decomposition of $CaCO$ ₃ (calcite) (A), SrCO₃ (B) and BaCO₃ (C). The straight line, 1, representing 10% CO₂ in the CO₂/N₂ mixture intersects with curves B and C at higher temperatures than the transition of S_{rcO} , and $BaCO₃$. This shows that their transition will take place at lower temperatures than the beginning of their decomposition in an atmosphere of 10% CO, in the CO₂/N₂ mixture. So their transition temperatures will remain constant in an atmosphere of more than 10% CO₂ in the CO₂/N₂ mixture, since their transitions are not affected by their decompositions. The observed constancy of T_p of BaCO, and SrCO, in the range $100-10\%$ CO₂ in the CO₂/N₂ mixture could thus be explained.

Though both are expected thermodynamically to decompose at a fairly low temperature in the N₂ flow, it is observed that $SrCO$ ₃ decomposes at a lower temperature than its transition while $BaCO₃$ does not. The results may be explained using the assumptions that (1) $BaCO₃$ and $SrCO₃$ as well as $CaCO₃$ decompose at the temperature calculated thermodynamically and (2) CO₂ gas evolved from the sample during its decomposition is not completely exhausted even in the N_2 flow, but is accumulated in the immediate vicinity of the sample and makes the local partial pressure around the sample increase to a definite pressure (hereafter, it is expressed as the saturated $CO₂$ pressure).

When heated in the N_2 flow, the decomposition of the carbonate will start at a fairly low temperature with the formation of the saturated CO, pressure. Further decomposition will be delayed until the sample reaches a tempera-

Fig. 5. Equilibrium decomposition $CO₂$ partial pressure vs. temperature curves of $CaCO₃$, $SrCO₃$ and BaCO₃. A, CaCO₃; B, SrCO₃; C, BaCO₃; 1, 10% of CO₂ in CO₂/N₂ mixture; 2, saturated $CO₂$ pressure; \uparrow , equilibrium transition temperature.

ture at which the equilibrium decomposition pressure of $CO₂$ exceeds the saturated CO₂ pressure. Above this temperature, the decomposition will proceed appreciably, giving a distinct shift from the base line to an endothermic side of the DTA curve. Therefore, from the temperature at which the endothermic peak due to the decomposition begins to form, it is possible to estimate the saturated CO₂ pressure equivalent to the equilibrium decomposition pressure at that temperature. Using $CaCO₃$, the temperature at which the endothermic peak begins to form is found to be 500^oC, so the saturated CO₂ pressure could be estimated as log $P_{\text{CO}} = -3.85$ (1.4 × 10⁻⁴) atm) from curve A in Fig. 5. TG measurement indicates that the temperatures at which decomposition begins for $S_rCO₃$ and BaCO₃ are 730 and 850°C, respectively. These values are closely consistent with those indicated by the intersections of curves B and C with the straight line 2 representing the estimated saturated CO₂ pressure. This fact supports the foregoing assumptions that, in the decomposition of the carbonate, a definite $CO₂$ partial pressure is maintained in the immediate vicinity of the sample even in the N_2 flow and that the carbonates examined in this study obey the thermodynamic equilibrium condition when they decompose.

Since the line 2 in Fig. 5 lies between the equilibrium $CO₂$ pressures at the transition temperatures of BaCO₃ and SrCO₃, it is well understood that $SrCO₃$ begins to decompose before its transition in the N₂ flow, and that $BaCO₃$ does not. In the case of $SrCO₃$, the decomposition, immediately before and partly overlapped with the transition, proceeds inward from the surface of each particle, consuming a large part of the heat which is being supplied from the furnace. Therefore, the unreacted $S_rCO₃$ will reach the transition temperature more slowly, compared with the case when the decomposition does not occur near the transition temperature. This delay will make the peak move to a higher temperature. With respect to the peak shift of $BaCO₃$, the interpretation is impossible at present, and further study will be necessary.

REFERENCES

- 1 H.G. McAdie, P.D. Garn and O. Menis, Natl. Bur. Stand. Spec. Publ., 260-40 (1972).
- 2 R.C. Mackenzie, The Differential Thermal Investigation of Clays, Mineralogical Society, London, 1957, p. 345.
- 3 F.L. Cuthbert and R.A. Rowland, Am. Mineral., 32 (1947) 111.
- 4 D.N. Todor, Thermal Analysis of Minerals, Abacus Press, Tunbridge Wells, 1976, pp. 163-164.