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ABSTRACT 

A simple method for testing the analytic form of conversion functions using TG and DTG 
curves recorded under isokinetic conditions was developed. The method was checked using 
the dehydration of solid Ca(CO0) 2. H ,O. 

INTRODUCTION 

One of the most important problems connected with the non-isothermal 
kinetics of solid-gas decompositions consists of finding the conversion 
functions consistent with the true reaction mechanism. Special emphasis was 
given to this problem in refs. l-5. In our previous paper [5], a general 
method for testing various kinds of conversion functions was given. The 
major disadvantage of the method is the necessity of a complex temperature 
programmer, which allows the TG curve to be recorded in isokinetic condi- 
tions (da/dt = constant) for all the values of the degree of conversion 

(0 < (Y < 1). In this paper a simple method which uses the data from TG and 
DTG curves recorded with constant heating rate is described. The ad- 
vantages of simultaneous recording of TG and DTG curves have already 
been made use of in non-isothermal kinetics [6-lo]. 

THE PRINCIPLE OF THE METHOD 

In the general rate equation 

da -= 
dt 

A eeBITf( a) 

where (Y stands for the degree of conversion, f( LX) for the conversion function, 
t for the time, A for the pre-exponential factor and B = E/Rm, m being a 
constant factor, E the activation energy and R the gas constant, the elimina- 
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tion of t can be performed taking into account that for every value of the 
reaction rate (da/dt), in the acceleration period (T, < T, < T,,,) there is a 
corresponding equal value (da/dt)i, in the decay period (T,,, -c Tit -c T,). 

T,, Tmax and Tf stand for the initial temperature, the temperature corre- 
sponding to the maximum rate, and the final temperature of the reaction 
respectively; T and T, represent variable values of the temperature. 

To put in evidence the points corresponding to the isokinetic condition 

(2) 

a family of straight lines parallel to the base line of the DTG curve were 
plotted (Fig. 1). 

Equation (1) with condition (2) leads to 

e-‘/r f( a) = e-B/T’ f( a’) 

or 

(3) 

Thus, a conversion function consistent with the true reaction mechanism 
should lead to a linear plot of log[f(a)/f(a’)] V.S. (l/T - l/T’). From the 
slope of the resultant straight line the activation energy can be evaluated. 

dot 
df 

T 

Fig. 1. Isokinetic points on the TG, DTG and T curves. 
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RESULTS AND DISCUSSION 

To check the validity of the method, the dehydration of CaC,O, . H,O has 
been chosen. The TG and DTG curves were recorded by a MOM derivato- 
graph (Budapest) of Paulik-Paulik-Erdey type. An air atmosphere was used 
with j3 = 10 K min- ’ and p = 2.5 K min- ‘. The sample weight was 0.117 g. 

The kinetic equations tested were: 
(a) the equation of the reaction order 

dcu 
- = A e--E/RT( 1 _ a)” 
dt (5) 

with 

B = % and f(a) = (1 - cu)” 

(b) the Prout-Tompkins equation [ 1 l] 

(6) 

dcu -= 
dt 

A e--E/RT a( 1 - a) (7) 

with 

B = g and f(a) = a(1 - a) (8) 

(c) the equation used by Johnson and Mehl [ 121, Avrami [ 131, Erofeev [ 141 
and Kolmogorov [ 151 (JMAEK) in its integral form 

-ln(l -a)=kt” 

and differential form 

(9) 

dcu 
dt = kp(1 - a)t”-’ 

From eqs. (9) and (10) it follows that 

da 
-=A’epEIRT(l -a)[-ln(1 -(y)ln 
dt 

(10) 

(11) 

where A’ = A”“‘m and n = (m - 1)/m so that for a reaction whose kinetics 
are described by the JMAEK model B and f(a) are given by 

B=s andf(a)=(l -a)[-ln(1 -a)]” (14 

Equation (4) with conditions (6), (8) and (9) leads to 

1-a 
log- = --- 

1 -a! 

for the reaction order model 

1% 
a(1 -a) 

cr’( 1 - (Y’) 

(13) 

(14) 
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Fig. 2. Plots of log[f(a)/f(a’)] vs. (l/T- l/T’) according to (1) eqn. (13); (2) eqn. (14); (3) 
cqn. (15) for dehydration of Ca(COO),.H,O. (a) fi = 10 K min-‘; (b) /.? = 2.5 K min-‘. 
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for the Prout-Tompkins model, and 

1-a 
log- 

log(1 -a) E 

1 -a’ 
+ n log 

log( 1 - (Y’) = 2.303Rm (15) 

for the JMAEK model, respectively. 
Other equations describing the decomposition kinetics in solid-gas sys- 

tems can be brought to particular forms of eqn. (4) in the same way. Plots of 
the right-hand side of eqns. (13)-( 15) vs. l/T - l/T’, give the curves shown 
in Fig. 2, for the dehydration of CaC,O, . H,O with (a) p = 10 K min- ’ and 
(b) /? = 2.5 K mm’. 

In eqn. (15) the value n = l/3, which corresponds to a diffusion-con- 
trolled growth mechanism of nuclei, was considered [ 161. 

Inspection of the curves in Fig. 2 shows that none of the equations used 
describe the dehydration kinetics for all the values of (Y between 0 and 1. The 
best linearity is exhibited by eqn. (13) for the reaction order model. 

The decrease of the heating rate from 10 K min- ’ to 2.5 K min- ‘, leads 
to a decrease in the slope of the kinetic curves. 

To evaluate the kinetic parameters one has to use low heating rates which 
reduce interferences of chemical reaction due to heat transfer. From the 
linear portion of curve 1, Fig. 2(b), according to eqn. (13), it turns out that 
E/n = 36 kcal mole- ‘. The activation energy can be evaluated indepen- 
dently of the particular form of the conversion function using low values of 
(Y [ 171. In such conditions, due to the slow change of 1 - (Y, the conversion 
function keeps practically a constant value and eqn. (5) can be given as 

dcu E 1 
logz = - 2.303~ 7 + const (16) 

Fig. 3. Plot of log da/dt (arbitrary units) vs. l/T. 
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The reaction rate values are given in arbitrary units by the ordinates of the 
DTG curve in its initial portion (Fig. 3). From the slope of the straight line 
log da/dt vs. l/T, E = 23 kcal mole-‘. This value leads to n = 0.64 = 2/3, 
which corresponds to a contracting-sphere value. The values of the activation 
energy and reaction order given in the literature are in the intervals 20.2 < E 
< 26.0 kcal mole-’ and 0.4 < n < 1.1, respectively [ 181. 

The deviation from linearity of curve I, Fig. 2(b) measured by the variable 
length of the segment AB, increases with the differences l/T- l/T’ and 
T - T’. The deviation reaches its maximal value for the points (1 - 1’) (Fig. 
1) located at the extremities of the TG and DTG curves, the difference 
T - q, being equal to 100 K. 

A first explanation of such a deviation could be given taking into account 
the temperature dependence of the pre-exponential factor. In such condi- 
tions eqns. (3), (4) and (13) should be changed to 

A emB/rf( a) = A’ ePBiTf( a’) (17) 

f(a) A B 1 1 

log f( a’) -+log;T;=m r--T’ 
( 1 

1-a 
log- 

A 
1 _ a! + logA, = 

--- 

For A = CT-‘, where C and r are constants, eqn. (19) becomes 

-log++ 

08) 

(19) 

(20) 

Fig. 4. Plot of AY vs. log T’/T. 
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The left side of eqn. (20) gives the deviation from linearity AY = AB of curve 
1, Fig. 2a such that 

AY=rlog$ (21) 

The plot of AY vs. log(T’/T) is given in Fig. 4. Even in this case the 
outermost point does not lie on the straight line. From the linear portion of 
the curve, it turns out that r = 17.6, a value with no theoretical meaning. For 
the exponential temperature dependence of the pre-exponential factor 

A = Cc-“* (22) 

where C and a are constants it turns out that 

AY=a(T’-T) (23) 

The plot of AY vs. (T’ - T) is given in Fig. 5. Even in this case the point 
corresponding to the extremities of the TG and DTG curves does not lie on 
the straight line. From the slope of the linear portion it turns out that 
a = 0.08 K- ‘. 

The exponential decrease of the A factor with temperature is equivalent to 
a parabolic inrease of the activation energy with temperature. This statement 
can be demonstrated by introducing condition (22) into the Arrhenius 
equation, k = A e - E/RT. This leads to 

k = C e-W,+aR*2W* 

AY 

1.2 - 
.' 

1.0 - 

Fig. 5. Plot of AY vs. T’- T. 
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such that 

E=E,,+aRT2 

where E, is the part of the activation energy which does not depend on 
temperature. 

From these considerations, the deviation from linearity of curve 1, Fig. 
2(a) cannot be explained only by taking into account the temperature 
dependence of the pre-exponential factor, A. The reasons for such deviations 
may be found in the different kinetic laws which describe the initial and final 
periods of the thermal decomposition. 

CONCLUSIONS 

A testing method in isokinetic conditions for the conversion functions 
describing the thermal decomposition of solids has been suggested. 

According to our testing method eqn. (6) adequately describes the dehy- 
dration kinetics of CaC,O, . H,O. 

Equations (I), (5) and (7) could not linearize the data corresponding to 
the extremities of the TG and DTG curves. Consideration of the exponential 
decrease of the factors, A, with temperature improves but does not remove 
the deviation from linearity corresponding to the outermost points on the 
TG and DTG curves. 

REFERENCES 

1 K. Heide, I. Kluge and V. Hlawatsch, Thermochim. Acta, 36 (1980) 151. 
2 D.T.Y. Chen and K.-W. Lay, J. Therm. Anal., 20 (1981) 233. 
3 J.M. Criado and A. Ortega, Thermochim. Acta, 46 (1981) 209. 
4 J.M. Criado and A. Ortega, in D. Dollimore (Ed.), Proc. 2nd Eur. Symp. Therm. Anal., 

Aberdeen, Heyden, London, 1981, p. 120. 
5 D. FHtu and E. Segal, Thermochim. Acta, 61 (1983) 215. 
6 F. Paulik, J. Paulik and L. Erdey, Anal. Chem., 160 (1958) 241. 
7 ES. Freeman and B. Carroll, J. Phys. Chem., 62 (1958) 394. 
8 D.A. Anderson and E.S. Freeman, J. Polym. Sci., 54 (1961) 253. 
9 G.R. Alahverdov and B.D. Steopin, Zh. Fiz. Khim., 43 (1969) 2268. 

10 E. Segal and D. Fatu, J. Therm. Anal., 9 (1976) 65. 
11 E.G. Prout and F.C. Tompkins, Trans. Faraday. Sot., 40 (1944) 488; 42 (1946) 468. 
12 W.A. Johnson and R.F. Mehl, Trans. Metall. Sot. AIME, 135 (1931) 416. 
13 M. Avrami, J. Chem. Phys., 7 (1939) 1103; 8 (1939) 212. 
14 B.V. Erofeev, Dokl. Akad. Nauk SSSR, 52 (1946) 511. 
15 A.N. Kolmogorov, Izv. Akad. Nauk, 9 (1937) 355. 
16 I. Sestak, Phys. Chem. Glasses, 15 (1974) 137. 
17 F.O. Piloyan, 1.0. Ryabchikov and O.S. Novikova, Nature (London), 212 (1966) 1229. 
18 H.H. Horowitz and G. Metzger, Anal. Chem., 35 (1963) 1464. 


