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ABSTRACT 

Values of a at various temperatures have been obtained by numerical solution of the rate 
equation 

using a fourth-order Runge-Kutta method for cases where n = l/3, l/2, and 2/3. An 
iterative method has been derived using this equation as the rate law. In each case, the 
solutions have been analyzed by the iterative method. Calculated values of n and E were 
found to be virtually identical to those used in the solution of the differential equation for 
n a l/2. Other iterative methods not based on this rate law do not give correct values for n 
and E. Specific errors have been determined in this work. 

INTRODUCTION 

A great deal of attention has been focused on the interpretation and use 
of the usual nonisothermal rate equation 

g = $ (1 _ a)” e-E/J= (1) 

where a is the fraction reacted, T is the temperature (K), E is the activation 
energy, n is the reaction order, A is the Arrhenius pre-exponential factor, and 
p is the heating rate [ 11. Equation (1) is the basis of the Coats and Redfern 
and other methods for calculating n and E from (a,T) data [2]. These 
workers use a truncated series approximation of the temperature integral 

JO 

Starting with the integrated 
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(2) 

form of eqn. (l), Reich and Stivala using a 
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truncated series for I derived the equation [3] 

ln 

I 

1 - (1 - cuj)‘-n 

1 - (1 - (Yi+,)‘-n (+i’]=:(k-+) (3) 

Representing the left-hand side as f( (Y, T, n) and the right-hand side as 
f( l/T), a linear relationship with an intercept of zero can be found when n 
has the correct value [4]. Therefore, linear regression is performed while 
iterating on n until the value of n giving the intercept nearest zero is found. 
This method proved to be accurate in calculating n and E for accurately 
derived ( CX, T) data based on eqn. (1) [5]. 

Recently, Criado and Ortega discussed the fact that kinetic data for 
reactions following a mechanism represented by a rate law different from 
eqn. (1) would be erroneously interpreted by the Reich and Stivala method 
[6]. It has been proposed that a rate equation such as 

J&,=$(1 --a)[ -ln(l -,)]“e-E/RT (4 

might be applicable in certain cases. In fact eqn. (4) represents a special case 
of the more general rate law 

where a, b, and n are constants [7]. Therefore, the present work was 
undertaken to provide numerical solutions to eqn. (4) and to provide an 
iterative method for analyzing them. 

METHODS 

The two-point form 

In developing an iterative method for a particular rate law, it is necessary 
to derive a form in which the (ai, T) data can be used. This form is most 
conveniently a two-point form so that some function f( (Y, T) can be 
computed for successive data points [4]. Starting with eqn. (4), rearrange- 
ment and integration using the Coats and Redfern approximation of the 
temperature integral gives eqn. (6), which is analogous to the two-point form 
of Reich and Stivala [4]. 

In 

I 

1 1 

(1 -n)[-ln(1 -q,)]n-1T2- (1 -n)[-ln(l--ar,)]“-‘T2 

(6) 
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In this case, (Ye is a small initial boundary value of LX. From eqn. (6), 
considering two points leads to 

ln 

i 

(K”-‘/[ -ln(l - CX~)]‘-‘) - 1 

(K”-I/[-ln(1 -a,+,)]“-‘)- 1 (+r\=;(k-$) (7) 

where K = - ln( 1 - CQ). 

Numerical solution of the rate equation 

Equation (4) was solved numerically for various values of T using selected 
values for E, A/& and n. The numerical solution was carried out using a 
fourth-order Runge-Kutta method similar to that previously described [5]. 
In order to avoid difficulties arising from division by zero, the initial value of 
(Y must be non-zero. Therefore, solutions were obtained subject to the initial 
condition that CY = 0.00001 at T = 350 K. 

In order to determine what results are obtained if a method based on an 
incorrect rate law is used, the derived data were analyzed using several 
methods. The first two of these were based on a presumed rate law in the 
form of eqn. (1). In the first, a three-point iterative method [8] was carried 
out using the ((Y, T) data. Second, the iterative method of Reich and Stivala 
was carried out on the data as previously described [4,9]. 

To analyze the data correctly, values of E/R were calculated using eqn. 
(6) for successive pairs of ( CY, T) values. This was done in order to ascertain 
that E/R is constant at the correct value of n [3], and to verify the 
correctness of eqn. (6). This provides the basis for the iterative method based 
on a rate law in the form of eqn. (4). 

Iterative method 

Both the iterative method of Reich and Stivala and that based on eqn. (7) 
were carried out using a computer and programs in FORTRAN. In the case 
of the iterative method based on eqn. (7), the intercept is negative for trial 
values of n smaller than the correct value. The computation begins with 
n = 0 and performs linear regression of f( (Y, T, n) vs. f( l/T) to determine if 
the intercept is negative. If it is, n is incremented by 0.100001 and processing 
continues until a positive intercept results. At that point, the value of n is 
reduced to its previous value and incrementing is by 0.01 until the intercept 
is again positive. The process is then repeated using iterations where n is 
increased by 0.001. The value of n giving the intercept closest to zero is taken 
as correct and the slope is -E/R. 
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RESULTS AND DISCUSSION 

One objective of this work was to determine numerical solutions for eqn. 
(4) and to develop an iterative method based on that rate law. Another 
objective was to determine what errors in n and E result when an iterative 
method based on eqn. (1) is used with ((Y, T) data obtained from eqn. (4). 

Results of iterative methods from an incorrect rate law 

The values chosen for the kinetic parameters used in the numerical 
solution of eqn. (4) were E = 100 kJ mole-’ and A//3 = 3 X 10” min-‘. 
Solutions were obtained for n = l/3, l/2, and 2/3. The results of the 
Runge-Kutta method applied to eqn. (4) are shown in Table 1. Each of 
these sets of (LX, T) data was then subjected to analysis by the method of 
Reich and Stivala, which is based on the rate law of eqn. (1). As an example, 
Table 2 shows the results of applying the method of Reich and Stivala to the 
computed ((Y, T) solutions for the n = l/2 case. 

The results shown in Table 2 indicate that the method of Reich and 
Stivala will iterate to find a value of n where the intercept is close to zero and 
the correlation coefficient is high. However, the slope is such that a value of 

TABLE 1 

Values of (Y computed from eqn. (4) using a fourth-order Runge-Kutta method a 

T a 

W 
n = l/3 n=1/2 n = 2/3 

410 
415 
420 
425 
430 
435 
440 
445 
450 
455 
460 
465 
470 
475 

0.01044 
0.01827 
0.03 148 
0.05334 
0.08865 
0.14394 
0.22686 
0.34384 
0.49480 
0.66553 
0.82437 
0.93518 
0.98593 

0.01225 
0.02422 
0.04708 
0.08950 
0.16479 
0.28929 
0.47245 
0.69357 
0.88477 
0.97976 
0.99904 

0.01111 
0.02726 
0.06614 
0.15525 
0.33808 
0.61349 
0.9079 1 
0.99634 

a Computed using E = 100 kJ mole-‘, R = 8.31441 J mole-‘, and A/P = 3 x 10" mini’ 
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TABLE 2 

Output for the analysis of (cy, T) data for the n = l/2 case by the iterative method of Reich 
and Stivala a 

Trial n Intercept - Slope E (kJ mole-‘) - Corr. coeff. 

0.000 2.6243 123398 
0.100 2.4652 117463 
0.200 2.287 1 110800 
0.300 2.0875 103317 
0.400 1.8644 94937 
0.500 1.6156 85 572 
0.600 1.3388 75 135 
0.700 1.0322 63558 
0.800 0.6939 50768 
0.900 0.3226 36713 
1.100 -0.5194 4806 
1.010 -0.1158 20 141 
1.001 - 0.0680 22010 

976.63 
921.24 
859.02 
789.34 
711.48 
624.70 
528.45 
422.10 
305.25 

39.96 
167.46 
183.00 

0.9309 
0.9275 
0.9243 
0.9215 
0.9196 
0.9190 
0.9205 
0.9256 
0.9372 
0.9610 
0.4285 
0.9997 
0.9960 

a Based on rate law eqn. (1). Spurious result obtained at n = 1 .OOO. 

E = 183.00 kJ mole-’ is indicated while the actual value should be 100 kJ 
mole- ‘. It must be pointed out that the three-point iterative method [8] does 
no better. In fact, the (LX, T) data shown in Table 1 for n = l/2 gave an 
apparent n of 0.92 and E = 201.4 kJ mole-’ by the three-point method. 
These results show that an iterative method based on an incorrect rate law 
will meet the conditions of iteration, but the resulting n and E values will not 
be correct if the reaction obeys a rate law given by eqn. (4). 

Results from the present method 

Because it is necessary here to show that a constant slope (-E/R) is 
obtained, the (a, T) data shown in Table 1 were used to calculate E/R 
values [3]. Table 3 shows the values of E/R for the data obtained for 
n = 2/3. The value of n = 2/3 gives nearly constant E/R values and an 
average E of 99.7 kJ mole-’ over a large range of (Y values. Similar results 
are obtained using the (a, T) data for n = l/3 and l/2. Based on this 
constancy of E/R, the iterative method based on eqn. (7) was performed on 
the ((Y, T) data, and the results are shown in Table 4 for the case when 
n = 2/3. The results shown in Table 4 indicate clearly that the iterative 
method developed for the application of eqn. (7) identifies the correct order 
for this n = 2/3 case and that the resulting activation energy of 100.85 kJ 
mole- ’ is in good agreement with the value of 100 kJ mole-’ used in the 
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TABLE 3 

Values of E/R calculated from eqn. (7) using a values for n = 2/3 

T, E/R 
(K) 2) 

n = 0.50 n = 0.60 n = 2/3 a n = 0.75 n = 0.9 

440 450 17277.7 14052.2 12005.0 9602.3 5856.9 
445 450 17543.2 14160.6 12002.7 9462.0 5509.9 
450 455 17754.4 14249.2 12000.8 9343.1 5209.1 
455 460 17920.1 14320.6 11999.3 9243.1 4948.7 
460 465 18049.1 14377.6 11998.1 9159.3 4723.0 

465 470 18148.3 14422.3 11996.6 9098.1 4526.7 

470 475 18181.8 14422.3 11966.1 9008.0 4343.9 

a Average E/R value = 11995.5 corresponding to E = 99.7 kJ mole- ‘. 

numerical solution of eqn. (4). However, even using the correct iterating 
function shown in eqn. (7) the results for the n = l/3 case are not accurate 
(n = 0.253 and E = 112.66 kJ mole- ‘). This results from the numerical 
nature of the equations at small values of n. 

TABLE 4 

Output for the analysis of (a, T) data for the n = 2/3 case by the present iterative method 

Trial n Intercept - Slope E (kJ mole-t) - Corr. coeff. 

0.000 - 0.4852 15936 132.50 0.942 1 
0.100 - 0.4324 14443 120.09 0.9452 

0.200 - 0.3767 13067 108.65 0.9494 

0.300 -0.3161 11904 98.98 0.9588 
0.400 - 0.2478 11088 92.19 0.9716 
0.500 -0.1673 10832 90.06 0.9871 

0.600 - 0.0698 11357 94.43 0.9973 
0.700 0.0452 12768 106.16 0.9994 
0.610 - 0.0591 11462 95.30 0.9982 

0.620 - 0.0482 11570 96.20 0.9985 
0.630 - 0.0370 11692 97.21 0.999 1 
0.640 - 0.0258 11817 98.25 0.9989 
0.650 -0.0143 11961 99.45 0.9998 
0.660 - 0.0027 12 104 100.64 0.9997 
0.670 0.009 1 12264 101.97 1.0002 
0.66 1 -0.0015 12121 100.78 0.9998 

0.662 - 0.0005 12130 100.85 0.9996 
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Comparison of results from the iterative methods 

The results for the n = l/2 case shown in Table 2 indicate that analysis of 
((Y, T) data by iterative methods based on eqn. (1) do not yield correct 
kinetic parameters when the reaction follows eqn. (4). An appropriate 
iterative method based on eqn. (7) does, however, yield acceptable kinetic 
parameters, at least for values of n 2 l/2. 

Table 5 shows a summary of the output of the two iterative methods 
applied to ((Y, T) data for various values of n. It is obvious that, while a 
method based on an incorrect rate law can not be expected to give correct 
kinetic parameters [6], the present work gives the first numerical comparison 
of results. Furthermore, the results shown in Table 5 indicate that, for the 
two rate laws tested here, the agreement gets worse for larger values of n. 

We are currently developing a series of iterative methods corresponding to 
the rate laws of the most common mechanisms. Using these methods, it will 
be possible to test ((Y, T) data assuming a variety of mechanisms. It must be 
pointed out, however, that, even though a particular combination of n and 
iterated function gives an intercept of zero with a high correlation coeffi- 
cient, the mechanism is not confirmed. In fact, a different choice of n and 
iterated function may also give an intercept of zero with a high correlation 
coefficient. 

The results obtained in this work confirm the caution made by Criado and 
Ortega regarding iterative methods developed from one rate law being 
applied to data for a reaction following a different rate law 161. Certainly no 
claim was made that the iterative method of Reich and Stivala would 
identify correct n and E values for a reaction that follows a rate law different 
from the one on which their derivation is based [4]. In fact, it now appears 
that the most definitive answer that can be given by the iterative analysis of 
((Y, T) data is that, if one rate law applies, the kinetic parameters are n and 
E. If another rate law applies, the values may be greatly different (say n’ and 
E’). Based on the iterative method used to analyze the data, nothing about 
the mechanism is ascertained and to identify n and E correctly requires that 
the actual rate law be known. 
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