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PROBLEMS WITH THE CALIBRATION OF DIFFERENTIAL-TEMPERATURE- 

SCANNING-CALORIMETERS* 

G.W.H. Hijhne Sektion fiir Kalorimetrie der Universitat Ulm 

Postfach 4066, D 7900 Ulm (F.R.G.) 

Abstract 

The function principle of differential-temperature-scanning- 

calorimeters (heat-flux-calorimeters) gives rise to calibration 

errors in case of phase transitions (and other events within the 

sample) disturbing the steadystate conditions. The cause of the 

problems is the temperature dependence of the coefficients of 

heat transfer, leading to weak non-linearity of the calorimeter 

and thus to a dependence of the calibration factor on parameters 

such as mass and thermal conductivity of the sample, heating rate, 

peak shape and temperature. By theoretical considerations and 

model CalCUlatiOnS quantitative relations can be derived. As a 

result the uncertainty of the calibration factor for heat-flux- 

calorimeters due to variation of sample parameters should be sup- 

posed as 1 to 5 percent depending on temperature and on the 

properties of the calorimeter in question. 

Introduction 

Depending on the method of measuring, two types of scanning calo- 

rimeters can be distinguished. 

Power compensated calorimeters measure the difference of the elec- 
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tric power necessary to heat a sample and a reference at a con- 

stant rate, the temperature of the two supports are controlled 

to be equal to the set-value at every moment. In case of a 

transition of the sample the greater (or smaller) requirements 

of heat are covered by increasing (or decreasing) the power in- 

put to the sample heater appropriately. An electronic device 

evaluates the differential power (corresponding to the heat- 

flux into the sample) and yields it as an analogous voltage on 

the output calibrated in units of heat-flux. 

In heat-flux calorimeters the sample and the reference sample 

are connected to a furnace via a well defined heat conduction 

path and the temperature-difference between sample and reference 

is measured usually with aid of difference-thermocouples. The 

furnace is heated in a controlled manner such that it6 tempera- 

ture increases at a constant rate. Heat arrives at the sample 

and the reference by conduction, this presumes a temperature 

difference between the furnace and the sample and reference. A 

larger heat-flux needs a larger temperature difference, thus the 

latter is a measure for the former. 

This holds both for sample and reference, leading to the conclu- 

sion that the temperature difference between sample and reference 

is a measure for the differential heat flux: 

rlh=~.AT (1) 

Hence the peak area in case of a transition of the sample is 

proportional to the total heat of transition: 

Q, = p4= K. dT*dt 



The superscript $ indicates a proper baseline correction. 

The factor K must be determined by seperate calibration runs with 

substances of well known heat of transition. As equation (1) 

holds for steady-state conditiones only and the steady-state of 

the heat flux is surely disturbed by the larger need of heat 

during transition of the sample,the general validity of egua- 

tion (2) has to be questioned. In particular the indepenaence of 

the calibration factor K from the peak shape AT* (t) and sample 

parameters is only true within certain limits, this is leading 

to anuncertainty connected on principle to this method, what 

shall be demonstrated with aid of the following remarks. 

Differential equation of asymmetric heat-flux calorimeters 

In case of pure conduction heat transfer without radiation and 

convection it is possible to deduce the differential equation 

proper and integrate it getting instructive results. 

Fig. 1 shows a sketch of a heat-flux calorimeter and an equi- 

valent electric network facilitating the set up of the functio- 

nal equations. The current source it corresponds to the additio- 

nal heat-flux during a transition. Kirchhoff's first law states 

that the sum of all currents in a junction is zero, this is 

leading to the following equations for the three junctions 

of the circuit in fig. 1: 

@ : iF = iFS + iFR (3) 

(4) 

(5) 

@ : iFS + it = iSR + is 

0 : iFR + i '._,K = iR 
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uF = u. +a t 

Fig. 1: Heat-flux scanning calorimeter (schematic) and 

equivalent electric network 

th 
R: resistance equiv. to thermal resistance R 

c: capacitance equiv. to heat capacity c 
P 

i: current equiv.to heat-flux 6 

U: voltage equiv. to temperature T 

Kirchhoff's 

closed loop 

0 I : AuFs 

0 II : 

0 IV : 

second law states that the sum of all voltages in a 

is zero, hence the foilowing equations hold: 

+ '"SR = AUFR (6) 

"S = 4 "SR + UR (7) 

"t = A us + us (8) 

"F = A UFR + uR (9) 
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With aid of the following fundamental relations 

U i=- 3 dU 

RI 
i=dt = C.= 

(R = resistance, q = charge, C = capacitance, t = time) 

and equations (6), (7), (9) the equations (4) and (5) read: 

uF uS --- + s _dUSR + C dUS .- 

RFS RFS 
dt 

RSR ' 
dt 

uF 'R +AUSR _ C dUR --- 

RFR RFR RSR R 
.dt 

(10) 

(11) 

Usually the calorimeter is built as a very symmetrical twin ar- 

rangement, thus the following simplification holds: 

RSR = R2 

RFS 
= R., - 4 R with RI = RFR and AR & RI 

cS 
=C+ACwithC=CRand AC .&C 

R-l 
FS = (R, _ AR)-' a !- . (1 +'J ) 

R1 R1 

As 4 USR = Us - UR is equivalent to the measured quantity AT 

we are led to subtract equation (11) from (10)getting 

+A3 - ‘?!.u 
dt R2 F 

1 

translated into heat conduction language with 

R _ R thermal resistance U d T temperature 

C + C heat capacity q - Q heat 

. 
Qt = (& + &, .AT + c.s + &.Ts +Ac-% - y - TF 

1 2 
R21 1 

(12) 
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The differential equation describes the connection between the 

transition heat-flux 6, and the measured quantityAT in case of 

weak asymmetry. For AR = 0 and AC = 0 it simplifies to the 

well known Tian equation: 

d&T *AT + Cedt (13) 

As a result it can be seen that equation (1) only holds for 

steady state conditions (i.e. dAT/dt = 0) and total symmetry. 

Solution of the Differential Equation 

a) Steady-state case (baseline) 

We assume steady-state conditions without any transition in the 

sample,in other words the temparature of every point changes 

linear in time and the following relations are valid: 

TF=To+ k-t 

TS 
= To -ATE: +K.t (K: heating rate) 

dTS 
dt= 

o( d&T = 
'dt 

0 and 6 = 0 

Hence from equation (12) follows 

(& + L) .A$’ - 2. AT;; +Ac’o(= 0 

1 R2 
R1 

with 

AT;: = 
t (c +Ac,-~+~C] .(R1 -AR) 

(14) 

(15) 

Combination of equations (14) und (15) with the approximations 
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AR'bR%O and AR - 4 C -0 is leading to the result 

R - (C.4R - R+C) 
4Tss = = -K (16) 

R2 
+ 2R, -4R 

This equation describes the baseline of the heat-flux scanning 

calorimeter. As can be seen the baseline depends on the heating 

rate o( and the difference of the heat capacity of the sample and 

reference as well as on the difference of the thermal resistances 

furnace-sample and furnace-reference. 

Usually the steady-state baseline is used to determine the heat 

capacity of the sample if the reference container is empty and dC 

thus can be taken as the unknown sample heat capacity. From equa- 

tion (16) follows,however,that 4 T " is only proportional to AC 

in case of4R = 0, in other words if total symmetry in thermal 

conductivity from furnace to sample and reference is verified. This 

cannot be fulfilled exactly as sample and reference are necessarily 

different substances with different heat transfer properties. Es- 

pecially during transitions the contact between sample and con- 

tainer often changes and causes a step change of the baseline much 

larger than that caused by the change in heat capacity. (See fig.2). 

As a result it has to be stated that the change in dR cannot be 

neglected and the determination of heat capacities from baseline 

signals of heat-flux calorimeters is very problematically in parti- 

cular as R 
1 

and R 2 and C in equation (16) depend on temperature. 

b) Transition case (peak) 

Suppose a transition takes place in the sample within the time- 

interval (t,, t2) with a transition heat flux 6, "switched on" in 

this period and 

. 
TF - TS =dTFS = Q,,' (R,- 4R) = (C+6C)' 

dTS PT . dt + 5 - Q, e(R,-4R) 3 
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h Cp/J.g-‘.K-’ 

“1 1 1.5 tlmin 
0 I I I 

556 551 T/K 

Fig. 2: Plots of transition of RbN03 at 557 K measured 

a) with a heat-flux calorimeter (Du-Pont TA 1090/910) and 

b) with a power-compensated scanning calorimeter (Perkin- 

Elmer DSC-2) of the same sample . 

The left curve shows a greater 

right one. 

which follows with aid of equation (4) 

language and 6, = Cs - dTS/dt, then we 

baseline shift than the 

translated into heat-flux 

get from equation (12) the 

following differential equation in a good approximation conside- 

ringAR .AR%o and AR *dC+O 

(1 _bR) .Qt= 
R1 

$i_).qT + C.!?$ - (C’dR -dc)- 2 
I. 2 R1 

(17) 

This equation must be integrated in the time interval (t,, t2): 
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t2 t2 t2 

(1 - $6 dt = 
1 2 bR 

R1 lz 
-).A Tdt+ 

(q + 5 - R.,.R2 
C.dAT 

dt dt 

‘2 

- I C.dR 
(R 

dTS 

1 
-AC ),cdt (18) 

If we assume Rl, R2, AR, C and A C as independent of temperature 

(a problematic assumption, see last section) and hence of time 

within the period in question, and the time interval large 

enough to guarantee steady-state conditions at t., and t2, the 

following is valid: 

dT (tl) = LIT (t2) = AT” 

t2 
ddT - dt = 
dt 

dAT = 0 

T(t,) 

and from equation (16): 

cI,_L!l_AC ATE?’ 

R1 
=&+2_$+ .- 

R1 R2 1’ 2 d 

Consequently equation (18) reads 

t2 

(, - dR). 

R1 
($dt = (1 + ?- - $-). 

R1 R2 1' 2 

3 5 5 
(19) 

The three integrals can be integrated: 

t2 

I 
&dt = Q, (heat of transition) 

5 



t2 

(dT"+AT=) dt = + ATSS.(t2 - t,) 

5 3 

t2 

1 

dT 
--? dt = TS 
dt 

(t2) - TS (t,) = o(. (t2 - t,) 

Hence equation (19) reads: 

R2 + 2 R, -&R 
t2 

Q, = R2 (R1 -AR) - J ~3 T+ dt (20) 

Comparing this with equation (2) yields the calibration factor 

R2+2R -AR 
K= 

R2 (R1 -bR) 
(21) 

It should be emphasized,however,that equation (20) and (21) only 

holds in case of pure conduction heat transfer and independence 

of R,, R2 and A R from temperature. Usually d R changes during a 

transition as the heat transfer to (and trough) the sample chan- 

ges, this is bringing about a change of the baseline correspon- 

ding to A R(t) which must be well known to avoid integration 

errors. As can be seen in fig. 2 different assumptions relative 

to the course of the baseline (which cannot be measured) result 

in large differences in determination of the heat of transition 

in question. To decrease the influence of this source of error 

R, and R2 have to be chosen as dominant and AR as small as 

possible, leading to the constructions used by Boersma and Tian- 

Calvet and applied nowadays in most commercial heat-flux calori- 

meters. 
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Numerical Solution of the Heat Conduction Equation 

The equation (I) is not valid in case of disturbances of the 

steady-state conditions as is the matter during transitions in the 

sample, hence we were interested to study the influence of the 

magnitude of these disturbances on the calibration factor. Thus 

we had to solve the heat conduction equation for the geometrical 

arrangement of the calorimeter in question. This is only possible 

by numerical methods (Sucec, 1975) as boundery and initial condi- 

tions are complicated. In a first approximation the heat conduc- 

Fig. 3: Sample support disk of a heat-flux calorimeter and 

‘C, , Qt 

Ci = Vi *pi Ci ~~ = Ai+/ di 

quasilinear cell chain for approximative calculation 

of heat transfer. 

(ci: heat capacity, V.: volume, 9.: density, c.: specific 
I. 1 1 

heat capacity, Ai: jacket aera, ai: thermal conductivity 

di: distance and Li: coefficient of heat transfer of cell 

number i) 
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ting disk, used in most of commercial heat-flux calorimeters as 

a sample and reference support, was considered to be composed of 

ring-shaped cells with radial heat transfer. Thus the calculation 

can be done in a quasilinear manner taking a propper sector of 

the disk as linear chain of cells (with sample and reference 

container as branches, see fig. 3) and computing the temperature- 

change with aid of the balance heat transfer and the heat capa- 

city and transition heat of the cell in question. The time inter- 

val and the cell size has to be chosen small enough to guarantee 

a good approximation. The method allows variation of all para- 

meters, the temperature dependence of heat capacity and heat 

transfer (inclusive radiation and convection) can easily be in- 

cluded into the computer program, which calculates the 4T(t)-curve 

and thus allows to determine the calibration factor with aid of 

equation (2). In the following some results got from a model 

which meets the real conditions in most commercial heat-flux 

calorimeters with Boersma principle are presented. 

a) Pure conduction heat-transfer 

In case of absence of convection and radiation heat transfer and 

weak temperature dependence of the thermal conductivity the cali- 

bration factor is found to be totally independent of the degree 

of disturbance of the steady-state during transitions within the 

sample. Vsriations ofpsranaters suchas the ccefficientofheattransfer, 

mass, specific heat of transition within a wide range has no 

effect on the calibration factor. This can even be shown theo- 

retically with aid of the method of Greens function. 

(H. Hoff, Appendix of this paper). 

On the other hand the position of the sample on the heat conduc- 
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ting disk has a great influence on the calibration factor. To 

reduce this effect different measures were taken in commercial 

calorimeters to position the sample container exactly and measure 

the temperature difference beneath the sample and reference not 

very locally but averaged over a certain area with aid of several 

thermocouples, a thermodisc or a flat resistance thermometer 

with a large sensitiv area. Calibration runs (with the sample in 

different positions within the container) have to show wether the 

method in question is satisfactory. 

b) Radiation and convection heat transfer 

For radiation heat transfer the Stefan-Boltzmann law holds 

(22) 

(6,: radiation heat-flux emitted, b : Stefan-Boltzmann constant, 
B 

f: emissivity, a: area, T: temperature) 

The heat-flux absorbed on the other hand: 

. 

QA 
= kB- (K- a. T*F 

(&: absorbtivity, TF = temperature of surroundings) 

The balance heat-flux exchanged of a small body with the surroun- 

ding furnace by radiation is (Sucec, 1975) 

h, = a a[* FB*(T4 - T4,) (23) 

For small temperature differences, as usual in calorimeters, 

equation (23) reads 

+a+bB' 4*T3R* dTF (24) 

The radiation heat transfer is thus likewise proportional to the 

temperature difference as conduction heat transfer is, but the 



coefficient depends strongly on temperature of its surroundings 

giving rise to nonlinearity of the device and thus calibration 

problems (see appendix). This fact can easily be understood by 

taking in mind that in heatflux calorimeters the temperature 

of the sample is almost constant during the transition takes 

place, thus the temperature field around the sample and its 

change in time depends on sample parameters, more precisely on 

the magnitude of the effect. Hence the part of heat exchanged by 

radiation after with the change of sample parameters and thus the 

calibration factor. To get a quantitative result the quasi- 

linear model described above was taken for calculation of the 

AT(t) signal and the calibration factor, the following table 

shows the results: 

tempera- changed parameter calibration 
ture factor 

' IO2 J/K-s 
800 K transition enthalpie 0,3 J 5.353 

transition enthalpie 3,0 5.445 

300 K transition enthalpie 0,3 J 4.423 
transition enthalpie 3,0 4.464 

800 K sample coeff. of heat transfer 0,005 W/K 5.427 
sample coeff. of heat transfer 0,001 5.460 
sample coeff. of heat transfer 0,0005 5.490 

800 K heating rate 2 K/min 5.445 
heating rate 5 5.456 
heating rate 10 5.468 
heating rate 20 5.507 

table 1: Dependence of calibration factor on sample parameters 

calculated by numerical solution of the heat transfer 

equations with aid of a model shown in fig. 3 

As can be seen the calibration factor changes weakly with varia- 

tion of characteristic sample parameters in a range of 1 to I,5 

percent. Taking the convection heat transfer into account (which 

likewise depends on ATK with a temperature dependent coefficient) 
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the results of table 1 must be modified. The convection heat 

transfer is in the same order of magnitude as the radiation heat 

transfer is for temperatures ar~3 temperature differences in questian, 

but the coefficient of convection heat transfer doesn't change as 

strongly with temperature as the coefficient of radiation heat 

transfer do, thus the influence on the calibration factor is 

more weak. In summa the calibration factor may change by I,5 to 

2 percent for variation of parameters as in table 1. 

Conclusions 

The model calculations have shown that the calibration factor of 

heat-flux scanning calorimeters depend principally on Sample 

parameters due to the nonlinearity of convection and radiation 

heat transfer involved. The magnitude of this effect is about 

1 to 5 percent for variations of sample parameters usuall:y common. 

Thus the uncertainty of the measurements got from heat-flux calo- 

rimeters is hardly lower if no special measures were taken, such 

as doing special calibration runs with sample and calibration 

standard as equal as possible in all parameters. The dependence of 

the calibration factor on location of the sample within the sample 

container has to be proved carefully. The dependence of the base- 

line on differences in heat capacity and thermal resistance 

gives rise to problems in its separation from the peak leading to 

integration errors. 

Surely allthese effects don't influence the result more than a 

few percents and may be forgotten for measurements with an un- 

certainty of about 5 %, but for precision measurements they 

should be well minded. 
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Appendix: PHENOMENA PREVENTING THE PRECISE CALIBRATION OF A 

HEAT FLOW CALORIMETER 

H. Hoff, Sektion fur Kalorimetrie, Universitat Ulm 

7900 Ulm (FRG), Oberer Eselsberg 

I. Representation of the signal 

Transport of heat is calculated by the balance equation 

div 1 (r,t) + ;1 (g,t) = c (r) aTa(t't) (I,l) - 

in combination with the phenomenological equation 

1 (r,t) = 1 * grad T(f,t) (I,2) 

The latter holds for transport by conduction. Inserting into 

(1,l) yields the well known equation of heat conduction 

1. div grad T (r,t) + 4 (r,t) = c (c) . PC iL,t) at (I,3) 

or 

grad A CL) - grad T (g,t) + a div grad T (r,t) + G (r,t) = c (r) 

.aT (r,t) 
at (1,4) 

refering to a homogeneous and to an inhomogeneous medium, respec- 

tively, where the conductivity a(~) depends on space. Both par- 

tial differential equations are linear with respect to space and 

time, thus a brief introduction to the theory of linear response 

is given. 
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I.1 Theory of linear response 

The theory of linear response is based upon linear differential 

equations.Suppose g being a linear operator describing the rela- 

tion between the solution x(t) and the inhomogeneity I(t) 

$*x(t) = I(t) (I,5) 

and the Green function G(t) being the solution with respect to a 

pulse shaped inhomogeneity S(t) 

'&G(t) = s(t) (I,6) 

The solution with respect to an arbitrary inhomogeneity is found 

by multiplication and integration 
00 00 

s 
%*G(t-t') - I(t')dt' = 

s 
I(t') - 6 (t-t')dt' (I,7) 

-0 -Do 
I(t) 

By consequence of linearity f can be interchanged with the inte- 

gration and it is obtained 

ba 

0-L 
G(t-t') I(t')dt' = I(t) (1,8) 

Comparison with (1,5) yields the solution 

(b 

x(t) = 
r 
G(t-t') - I(t')dt" (I,9) 

-00 

Now (1,9) is applied to a given physical system: x(t) is con- 

sidered as the response to a given "force" I(t) acting from out- 

side upon the system. Obviously G(t) represents the dynamical 

properties of the system itself, thus it does not depend on the 

strength of the "force" I(t) or its quickness. According to the 

convolution integral (1,9) the response plays the role of some 

internal memory with respect to the past time, where the force has 

acted. 
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ALL G(t)-functions according to this interpretation of (1,9) which 

represent the dynamical behaviour of a physical system, have to 

fulfill certain important criteria, which can be due to funda- 

mental physical laws: 

a) 

b) 

c) 

6) 

a) 

law of causality (future cannot act on the actual response) 

stability (past time will be forgotten; the response to a 

steady "force" will converge to a steady value) 

reproducibility (the same response will be observed if the 

same action I(t) is repeated). 

is fulfilled automatically by (1,9) as G(t-t') depends on 

the difference t-t' (it does not depend on both times t,t'), 

is fulfilled, if 

G(t<O) s 0 

Thus x(t) is written as 

x(t) = G(t-t') * I(t')dt' 
-ca 

Postulate b) involves that 

lim x(t) = x = 

t-*m 

lim 

t+w 

s G(t-t') Iodt' = IO G(t')dt' 
a 
Y 

= 

(I,lO) 

(I,ll) 

K'Io 

(1,12) 

converges, i.e. that K is finite. 

I.2 Signal of the calorimeter 

Evidently, the signal of a calorimeter has to agree with the 

postulates a), b) 

ty of (1,3), (1,4 

t 

AT(t) = 5 G(t-t 
-0 

I c) . Furthermore it can be shown by the lineari- 

) that the signal AT (t) is represented as 

') - i, (t')dt' (I,13) 
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AT (t) denotes the difference of temperature between the sample 

and the reference, Q (t) the production of heat due to a thermal 

event in the sample. For scanning calorimeters (1,13) holds only 

if the heat capacity of the sample and the reference are equal, 

otherwise a constant shift of the base line, which depends on the 

heat capacities and on the heating rate must be added: 

t 

AT(t) = s 'a(' (A 
sample 

-; 
reference 

) + J G(t-t') Q(t')dt' 

-00 , v , T I 

Qi ATt (t) 
(1,14) 

By consequence of stability a constant production of heat in- 

side the sample produces a steady signal according to (I,12) 

dTt(t) = K * 6 

where K is defined as 

DD 

K= 
s 
G(t')dt' 

0 

Now we show that 

01 

J ATt(t)dt = K - Q 

-ti 

(Ir15) 

(1,16) 

(1,17) 

where K is defined as (1,16), i.e. the relation between the total 

heat and the integrated signal does not depend on the way,how 

the heat is produced - the relation holds for a fast production 

of heat as well as for a slow one. Assuming that 

lim i(t) = lim G(t) = 0 

t-b-m t+w 

we have 

t 
a0 00 

5 ATt(t)dt = 
IS 

G(t-t') i, 

-00 -W,go 
W OD 

’ = G(t')dt' * 
s 5 

Q(Z)d’T= K 
-00 -4m 

a 

(t')dt'dt = 
U 

G(t') ;(t-t')dt'dt 

-DC 

. Q (1,18) 
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Calorimeters of this type can be calibrated by measuring a re- 

action, the enthalpy of which is known. 

II. Deviation caused by nonlinearity 

Because of Stefan-Boltsmann's law the loss of heat by radiation 

to the surroundings is not negligeably small at higher tempera- 

tures. Taking into account this kind of transport and, that even 

in the case of heat conduction the local conductivity usually 

depends on the local value of temperature (this dependence is 

weak) a pseudolinear phenomenological equation is obtained 

J(r,t) = %(T(~,t),r) * grad T(r,t) (II,?) 

which leads with the help of (1,l) to the balance equation 

a;l 
ay grad T(r,t) . grad T(r,t) + gradr %(T(r,t),r) s grad T(r,t) 

- 

+a (T(g,t) ,r) 
aT(r,t) 

* div grad T(r,t) + 6 (r,t) = C(K) - at 

(II,2) 

grad r denotes the gradient with respect to the explicit depen- - 

dence on space. Evidently the first term is nonlinear, thus the 

theory of linear response cannot be applied. 

II.1 Representation of nonlinear response 

The general representation (1,ll) can be extended to nonlinear 

relations by considering the linear response as beeing the first 

term of a series 

x(t) = G(j)(t-t, 
t+j)e 

Jr 
I.=1 I(t (II,S) 

I..., 
-.* -00 
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Evidently this extended representation converges asymptotically 

for small I(t) to the representation of linear response as it 

should be. The postulates a), c) require that 

Gck) (t, O,...,tj CO) I 0 j = l,... (II,41 

and 

j 
lim x(t) = x = L 12 I-~lG(ji(tl,...,,j) . 5 dtl 

0 

t-*m j=l c l=l 
. 

, (11,s) 

K 
j 

= K.1 j 
70 

j=l I... 

is finite. The postulate of reproducibility will be fulfilled by 

isoperibol heat-flow ca 

written as 
t 

j=l -00 
I... 

A scanning calorimeter, 

orimeters, thus the response can be 

(t-t, t-t. 
3 

. & &tl)dtl (II,61 
,...I 

l=l 

however, may require a more complicated 

representation, because the dynamical properties will depend on 

the actual temperature, i.e. on time. Thus the homogeneity with 

respect to a translation in time can be disturbed. Additionally 

the deviation of (1,13) is based upon the superposition principle, 

i.e. the responses with respect to the heat production in the hea- 

ter and in the sample are superposed. The superposition principle 

does not hold in the nonlinear case, thus the dynamical behaviour 

may depend on the heating rate and it should be written 

ATt(t) = 1 r.j-G’j’ !t,t-t,, . . .,t-tj) 1=, b 6(tl)dtl 
j=l , . . Tw 

(11,7) 
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II.2 Consequences 

We now try to find a relation equivalent to (1,18). In the case 

of an isoperibol heat flow calorimeter we find 

00 

I A Tt(t)dt = x i ,_)G'j' (t-t,,__ 

-00 j=l -00 -a 

i 

= K,.Q + x [ l...I G(j) (t, t.) 

j=2 -O" -00 
,...I 7 

J 

, t-ti) fi &tl)dtldt 

j 
l=l 

(II,81 

.ff Q(t-tl)dtldt 
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(11,9) 

Obviously the integral of (II,91 cannot be related to the total 

j 
heat because of the product 7; 

1=2 
Q(t-tl) - it is a functional of 

the heat production Q (t) (-b c t.cx). The case of a scanning 

calorimeter (11,7) is even worse, because a linear term corres- 

ponding to the first one on the r.h.s. of (11,9) cannot be 

splitted from the total sum (11,8). 

Consequently these nonlinear phenomena forbid a precise calibra- 

tion: the exact heat only can be obtained by simulating 6 (t) by 

the Joule heat of an electrical resistor instead 

of the sample. One has to look for that production of Joule 

heat, which yields the same signal AT(t) as the original one. 

The total heat is found by integration of the production of the 

Joule heat. 


