HYDRATION MECHANISM OF TRICALCIUM ALUMINATE WITH LIME AT 1:1 MOLE RATIO AT LOW WATER/SOLID RATIO AND IN SUSPENSION

F.H. MOSALAMY and M.A. SHATER Building Research Institute, Dokki, Cairo (Egypt)

H. EL-DIDAMONY and R. EL-SHEIKH Faculty of Science, Zagazig University, Zagazig (Egypt) (Received 16 September 1983)

ABSTRACT

The hydration mechanism of tricalcium aluminate C_3A with CaO at 1:1 mole ratio was studied in paste as well as slurry from 5 min up to 7 days of hydration. These studies were made with the aid of X-ray diffractometry, differential thermal analysis and thermogravimetric analysis. The results illustrate that the hydrate phases C_4AH_{13} and C_3AH_6 are still formed in the paste and slurry hydrations from 5 min up to 7 days. It was concluded that the free $Ca(OH)_2$ is also found in the two hydrated systems after 7 days. The amount of C_3AH_6 is maximum at 24 h and then decreases, whereas the amount of C_4AH_{13} increases with curing time.

INTRODUCTION

The quaternary system comprising CaO, Al_2O_3 , SiO_2 and Fe_2O_3 as well as H_2O are of importance in studying the chemistry and morphology of hydrous calcium silicates and aluminates in hydrating cement. Portland cement is composed of four major phases: tricalcium silicate C_3S , B-dicalcium silicate B- C_2S , tricalcium aluminate C_3A , and tetracalcium aluminoferrite C_4AF . C_3S and B- C_2S liberate Ca(OH)₂ during the hydration of portland cement. It has been pointed out by some workers, such as Forsen [1], Seligman and Creening [2], Mori [3], Stein [4] and Copeland and Kantro [5], that calcium hydroxide liberated from the hydration of calcium silicates controls the formation of ettringite even in the early stage of C_3A hydration. Tricalcium aluminate [6] reacts with excess water to form C_2AH_8 and either or both C_3AH_6 and C_3A . Ca(OH)₂ \cdot 12 $H_2O \cdot C_2AH_8$ reacts with Ca(OH)₂ to form C_4AH_{13} or C_3AH_6 , depending on the hydration conditions.

The aim of the present investigation is to elucidate the hydration mechanism of C_3A in the presence of $Ca(OH)_2$ (1:1 mole ratio) in paste and in

suspension. The hydration is studied from 5 min up to 7 days by differential thermal analysis and X-ray diffraction technique.

EXPERIMENTAL

Tricalcium aluminate C_3A was synthesized as described previously [7]. The dry components of C_3A and $Ca(OH)_2$ (1:1 mole ratio) were dry-mixed in a ball mill for 1 h to ensure homogeneity. The hydration was made with 0.50 and 10.0 water/solid ratios by weight for the paste and slurry, respectively. The preparation of the paste as well as slurry was discussed in an earlier work [7]. The hydration kinetics and products were determined by X-ray diffraction technique and differential thermal analysis and thermogravimetry. From the results of TG analysis, the amount of C_4AH_{13} ,

Fig. 1. X-Ray diffraction patterns of $C_3A + CaO$ paste (1:1 mole ratio) in relation to curing time. $C_3 = C_3AH_6$, $C_4 = C_4AH_{13}$, and $CH = Ca(OH)_2$.

 C_3AH_6 , $Ca(OH)_2$, as well as the chemically-combined water content, W_n , were calculated. The chemically-combined water content was estimated from the total loss at 600°C minus the water of calcium hydroxide.

RESULTS AND DISCUSSION

Paste hydration

Figure 1 illustrates the X-ray diffraction patterns of $C_3A + CaO$ (1:1 mole ratio) hydrated in paste form in relation to curing time from 5 min up to 7 days. The patterns show the formation of C_4AH_{13} and C_3AH_6 after 5 min of hydration. After 30 min, the amount of calcium aluminate hydrate increases and C_3A decreases. The pattern of C_3A as well as $Ca(OH)_2$ is still present up to 7 days. At 7 days of hydration, the hydrated phases are

Fig. 2. DTA thermograms of $C_3A + CaO$ paste (1:1 mole ratio) as a function of curing time.

 C_3AH_6 and C_4AH_{13} ; unhydrated C_3A and $Ca(OH)_2$ are also present.

The DTA thermograms of $C_3A + Ca(OH)_2$ paste (1:1 mole ratio) as a function of curing age are shown in Fig. 2. After 5 min, four endothermic peaks at 170, 290, 460 and 480°C are shown. The first effect is attributed to the dissociation of C_4AH_{13} , the second and third peaks are due to C_3AH_6 , and the last endothermic peak at 480°C is attributed to the decomposition of $Ca(OH)_2$ [2-8]. On prolonged hydration, the amount of C_4AH_{13} and C_3AH_6 increases. The free $Ca(OH)_2$ content decreases with increasing hydration time. It is seen that C_3AH_6 and C_4AH_{13} as well as a small amount of $Ca(OH)_2$ are found in the hydrated system after 7 days of hydration.

Suspension hydration

Figure 3 shows the X-ray diffraction patterns of $C_3A + CaO$ in suspension (1:1 mole ratio) as a function of curing time. After 5 min, the patterns

Fig. 3. X-Ray diffraction patterns of $C_3A + CaO$ suspension (1:1 mole ratio) in relation to curing time. $C_3 = C_3AH_6$, $C_4 = C_4AH_{13}$, and $CH = Ca(OH)_2$.

show the lines of C_4AH_{13} , C_3AH_6 with the lines of unhydrated C_3A and $Ca(OH)_2$. As the hydration progresses, the amount of hydrated calcium aluminate increases, whereas the C_3A disappears after 24 h of hydration. As in the case of the paste hydration, the hydrated phases in the suspension are C_4AH_{13} and C_3AH_6 , with some unhydrated Ca(OH)₂.

The DTA derivatograms of the hydrated mixture of $C_3A + CaO$ in suspension (1:1 mole ratio) as a function of curing time are shown in Fig. 4. After 5 min of hydration, the thermogram illustrates three endothermic effects at about 190, 300 and 480°C. The low endothermic peak at 190°C is attributed to the decomposition of C_4AH_{13} , whereas the endothermic effect at 300°C is due to the dissociation of C_3AH_6 , and the third endothermic peak at 480°C is due to Ca(OH)₂. As the hydration proceeds, the extent of two endothermic peaks at 190 and 300°C increases and the third peak of Ca(OH)₂ at 480°C decreases. It can be seen that after 7 days of hydration

Fig. 4. DTA thermograms of $C_3A + CaO$ suspension (1:1 mole ratio) as a function of curing time.

the hydrated phases are C_3AH_6 and C_4AH_{13} , with some unhydrated $Ca(OH)_2$.

Kinetics of hydration

The hydration mechanism of $C_3A + CaO(1:1 \text{ mole ratio})$ can be studied by the quantitative determination of C_4AH_{13} , C_3AH_6 as well as $Ca(OH)_2$ from the results of TG. The kinetics of hydration can also be studied from the determination of chemically-combined water content, W_n , in relation to curing time for the hydration in paste as well as in suspension.

Figure 5 shows the mechanism of formation of C_4AH_{13} and C_3AH_6 and also the consumption of $Ca(OH)_2$ with curing time. It is clear that C_4AH_{13} and C_3AH_6 are formed after 5 min in the paste and in suspension. The amount of C_3AH_6 is greater than C_4AH_{13} . The paste hydration also shows lower values than the suspension. Values of 14.08 and 12.7% are obtained for C_3AH_6 for suspension and paste hydration, respectively, compared with values of 5.9 and 4.2% for C_4AH_{13} . As the hydration continues, the amount of hydrated calcium aluminate increases and $Ca(OH)_2$ decreases. After 3 h the amount of C_3AH_6 of paste hydration is higher than the value obtained in slurry hydration and then increases up to 24 h. Between 24 and 168 h, the amount of C_3AH_6 decreases. On the other hand, the amount of C_4AH_{13} increases gradually with curing time. After 6 h, the degree of paste hydration is higher than the corresponding slurry hydration. On the contrary, the amount of $Ca(OH)_2$ decreases linearly with increasing curing time.

There is no great difference between the amount of $Ca(OH)_2$ in the case of paste and slurry.

Figure 6 shows the kinetics of hydration as measured from the

Fig. 5. C_4AH_{13} , C_3AH_6 and $Ca(OH)_2$ in 1:1 mole ratio $C_3A + CaO$ in suspension and paste as a function of curing time.

Fig. 6. Kinetics of hydration of suspension and paste of 1:1 mole ratio $C_3A + CaO$ as a function of curing time.

chemically-combined water content, W_n . The combined water is determined from the TG losses minus the amount of water of Ca(OH)₂. It is clear from Fig. 6 that hydration of the suspended mixture is faster than the paste hydration at very early stages of hydration then decreases between 4 and 5 h. After 6 h, the paste hydration shows higher values of combined water than the slurry hydration. The behaviour of the chemically-combined water content, W_n , is nearly parallel with the amount of C₄AH₁₃ in the paste and slurry hydrations.

REFERENCES

- 1 L. Forsen, 2nd Proc. Symp. Chem. Cem., Stockholm, 1938, p. 298.
- 2 P. Seligmann and N.R. Creening, Highway Res. Rec., 62 (1964) 80.
- 3 H. Mori, 5th Proc. Symp. Chem. Cem., Tokyo, Part II, 1969, p. 358.
- 4 H.N. Stein, J. Appl. Chem., London, 15 (1965) 314.
- 5 L.E. Copeland and D.L. Kantro, 5th Proc. Symp. Chem. Cem., Tokyo, Part II, 1969, 408.
- 6 V.S. Ramachandran, Applications of Differential Thermal Analysis in Cement Chemistry, Chemical Publishing Company, Inc., New York, 1969.
- 7 F.H. Mosalamy, M.A. Shater and H. El-Didamony, Thermochim. Acta, 69 (1983) 379. publication.
- 8 R.F. Feldamann and V.S. Ramachandrea, J. Am. Ceram. Soc., 49 (1966) 268.