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ABSTRACT 

A technique to characterize calorimetric systems which uses a non-linear curve-fitting 
algorithm to approximate their unit pulse response has been tested satisfactorily and applied 
to the variable mass case of a calorimeter working with a continuous mixing device. 

INTRODUCTION 

In order to construct heat conduction calorimeters well suited to different 
experimental conditions an accurate mathematical description of the experi- 
mental system is necessary: 

(1) The response of the apparatus to a unit pulse provides a model in the 
time domain, h(t). The mathematical theory of heat transport in finite, 
invariable heterogeneous systems shows h(t) to be a sum of exponential 
functions [ 1,2]. 

(2) Given the form of h(t), its Laplace transform, H(s). is a quotient of 
polynomials whose roots are their zeros and poles [1,2]. 

(3) The Bode diagram, obtained by considering H(jw). allows the study 
of the frequency response of the system [2,3]. 

(4) The Fourier transform, which is now feasible thanks to Fast Fourier 
Transform algorithms (FFT) and thus can be applied directly to experimen- 
tal thermograms [4], gives a gain and phase diagram equivalent to the Bode 
diagram. 

Although a theoretical model of a system can always be obtained, the 
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determination of its parameters, the time constants, is a tricky affair in 
practice. This paper presents the results obtained using a technique giving 
the poles and zeros of the system after approximating h(t) by a least squares 
non-linear curve-fitting procedure due to Marquardt [5,6]. The method has 
been tested in almost ideal conditions (high signal-to-noise ratio, constant 
mass, no stirring, etc.) using resistors introduced into the calorimeter cell to 
generate heat by the Joule effect. In this way the transfer function H(s) has 
been obtained in real situations with various contents. The results have been 
compared with those obtained by applying the FFT to the corresponding 
thermograms. 

THE IDENTIFICATION OF THE SYSTEM 

Assuming the experimental device to be a linear, causal, time-invariant 
system [l-3], its transfer function in terms of the complex variable s is 

,?I 

lx-c,) 
H(s)=k ‘T;’ 

r-b-P,) 
/=1 

where c, (j= l,... ,m) are the zeros of the system, thep, (i=l,...,n) its 
poles, and k is a constant. Concerning actual calorimetric systems m must be 
smaller than n and p -c 0 (stability condition). 

Although a given thermogenesis (instantaneous power released) can usu- 
ally be well reproduced using an approximation consisting of three or four 
poles, we have always obtained a model with five poles and up to three 
zeros. The corresponding unit pulse response is therefore expressed as: 

where S is the sensibility of the system, given by 

rI 7, 
S=p+ 

r-I 7/ 
/=1 

and the A, are coefficients of the form 
,,I 

(2) 

(3) 

(4) 
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The set of variables 7, = - l/p,, 7;” = - l/c, and S thus characterize the 
calorimetric model. 

OBTAINING THE PARAMETERS OF THE MODEL 

The parameters of the calorimeter which has been used are experimentally 
determined from its response to step signals: 

x(t) = 
i 

W O<t<t, 

0 otherwise 
(5) 

where W is the electrical power dissipated by the Joule effect. The response 
to this input is given by: 

y(t) = J++(t) -4t - to>1 (6) 
where e(t) is the response to a unit Heaviside function. The sensibility S is 
calculated from 

S =$-/“ye(t)dt 
0 0 

(7) 

where y,( t) is the thermogram, i.e., the experimental 
eter. 
The remaining parameters are obtained minimizing 

N 

X2b,) = ,F, [Y&J -Yb,)] 

response of the calorim- 

(8) 

where the ai are the poles and zeros sought, y, is the analytical expression of 
the calorimetric response, and N is the total number of experimental points 
considered. 

Since yj is a non-linear function of the a,, then x2 is too. Nevertheless, if y, 
is replaced by its first order Taylor series approximation in the neighbour- 
hood of the initial values LZJ” of the a,, eqn. (8) becomes 

, 

(9) 

which is linear with respect to the increments ~?a,. At the minimum of x2, 
andfork=l,...,n+mgives 

or, in matrix form, 

p=ff-6a 
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where /? and the curvature matrix cx are defined by 

The values of Sa sought are therefore given by 

6a = a-‘/3 03) 

In practice, the algorithm described by Marquardt [6] uses a modified 
form of the curvature matrix, CX’, in which 

I a,,(1 + A) i =j 
a;, = 

a 'J i#j 
(14) 

Fig. 1. Flowchart of the algorithm used to calculate A. 
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TABLE I 

Time constants of the model transfer function for the lower limit of average calorimeter 
behaviour (fitted with 5 poles). L88. Values of model used. A. Without deformation of the 
simulated output signal. B. with a 50 dB signal to noise ratio. C. Like B, but with positive 
baseline drift, roughly l/400 of the peak signal. D. Like C, but with negative drift 

71 72 9 74 75 ‘6 77 Tfl 

L88 192 49 18 4 2 1.2 0.4 0.3 

A 191.69 49.54 17.01 4.17 4.32 - _ _ 

B 191.71 49.54 17.02 4.25 4.24 _ _ _ 

C 196.12. 47.16 18.55 3.99 3.98 - _ - 

D 187.24 51.85 14.55 4.55 4.54 - _ - 

where h is a variable parameter used to control the progress of the algorithm 
and improve the rate of convergence. Figure 1 shows how A was chosen. 

TESTING THE METHOD BY SIMULATION 

To evaluate the method of characterization described above, the upper 
and lower boundaries of the average behaviour of conduction calorimeters in 
a relative frequency scale were simulated in a computer using the unit pulse 
response functions L88 and L89, whose time constants are shown in Tables 1 

and 2, respectively (see refs. 7-9). In different runs the simulated output also 
included various conditions of noise and drift. In all cases the time constants 
calculated by applying our method of characterization, which are also shown 
in Tables 1 and 2, agree well with the true values. 

TABLE 2 

Time constants of the theoretical transfer function for the upper limit of average calorimetric 
behaviour (fitted with 5 poles and 2 zeros). L89. Values of model used. A. Without 
deformation of the simulated output signal. B. With a 56 dB signal to noise ratio. C. Like B, 
but with positive baseline drift, roughly l/400 of the peak signal. D. Like C, but with 

negative drift 

71 72 73 74 5 ‘6 77 7: c 

L89 192 49 9 4 1.2 0.4 0.3 64 6 

A 192.87 48.89 12.11 3.14 3.17 - _ 64.98 9.11 

B 192.87 48.89 12.11 3.18 3.15 - _ 64.98 9.11 

C 196.55 48.58 12.93 3.19 3.16 - _ 65.89 9.72 

D 187.00 41.65 13.28 3.30 3.04 - - 55.60 9.79 
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TABLE 3 

Details of the experiments carried out. The number of the record (thermogram) analysed is 
given together with the sampling period T (s), the initial and final points where the Joule 
dissipation or the injection take place (N, and N,), the total number of experimental points 
used (NT) and the mass and volume of the calorimetric cell 

Joule 
Injection 
Joule 
Joule 
Injection 
Joule 
Injection 
Joule 

Measurement T No 4 N, Cell contents 

Type Number m (g) V (cm3) 

3000 10.477 11.9 
4100 
3000 14.542 17.1 
3000 20.525 12.0 
4100 
3000 12.557 14.6 
4100 
3000 14.589 17.2 

DUB 125 1.5 

DUB 126 3.0 
DUB 127 1.5 

DUB 128 1.5 

DUB 129 1.5 
DUB 130 1.5 

DUB 131 1.5 

DUB 132 1.5 

50 
50 
50 
50 
50 
50 
50 
50 

130 
2800 

130 
130 

2800 
130 

2800 
130 

EXPERIMENTAL RESULTS 

Table 3 shows the details of two groups of continuous mixing experiments 
in which cyclohexane was injected into a calorimetric cell containing benzene 
[lo]. In the first group a Joule dissipation takes place before and after 
injection so as to characterize the apparatus with different cell contents. In 
the second group injection was done in two steps, with a third Joule 
dissipation between them. The results of the identification are shown in 
Table 4 together with those obtained from the thermogram decay after 
stopping the injection. In this case the output is considered to be the decay 
from a Heaviside function. Figure 2 shows the variation of the transfer 
function of the calorimeter with the heat capacity of the cell. 

TABLE 4 

Time constants of the system obtained from the thermogram corresponding either to the 
Joule dissipation or after stopping the injection (see Table 3) 

Thermogram 
number 

DUB 125 223 36 15 3.0 2.9 17 

DUB 126 245 21 21 2.5 2.5 10 
DUB 127 242 33 16 3.5 3.3 17 
DUB 128 216 47 19 12 0.02 36 

DUB 129 229 24 24 9.4 0.62 21 
DUB 130 227 34 25 4.0 2.3 28 
DUB 131 236 24 23 0.02 0.02 15 
DUB 132 237 44 16 4.3 3.4 25 
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Fig. 2. A and A’ measurement DUB 128. A, modulus and phase of the frequency response of 
the calorimeter. (a) Experimental (by FFT), (b) model-fitted. A’ Models fitted (expansion of 
low frequencies region) at measurements DUB 128 (a), DUB 130 (b). and DUB 132 (c). B 
and B’ measurement DUB 130. B, modulus and phase of the frequency response of the 
calorimeter. (a) Experimental (FFT), (b) model-fitted, (c) model-fitted at DUB 129 after 
stopping the injection. B’ Expansion of the low frequency region (no difference between 
them). C and C’ measurement DUB 132. C, modulus and phase of the frequency response of 
the calorimeter. (a) Experimental, (b) model-fitted, (c) model-fitted at DUB 131. C’ Expan- 
sion of the low frequency region. The sampling frequency is Av = 0.0003255 Hz. 
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CONCLUSIONS 

Table 4 shows the change of the time constants of the system with the 
mass of the calorimetric cell contents. The variation of the first time constant 
is consistent with the mathematical results obtained by means of the heat 
transfer theory [ 111. 

The values obtained for the time constants of the simulated theoretical 
system (Tables 1 and 2) show that the identification algorithm used is 
effective even when applied to noisy signals with drifting baselines. 

Although on-line correction of calorimetric output signals is useful as a 
first approximation to the true thermogenesis, off-line analysis is necessary if 
optimal quantitative results are required. 

The results of Tables 3 and 4 show that the identification by the Joule 
effect agrees with that obtained from the thermograms after stopping the 
injection. Even when it is not possible to introduce a resistor into the 
calorimetric cell, a sufficient approximation may therefore be obtained from 
the latter. 
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