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ABSTRACT 

Most conduction calorimeters do not behave, strictly speaking, as time invariant systems 
(e.g., calorimeters used to study titrations). In this communication the performance of 

standard deconvolutive techniques applied on thermograms calculated from discrete variable 
models is analysed (RC models whose physical parameters change with time). Secondly, two 
new algorithms are developed which yield the power released inside the calorimetric cell even 
when the parameters of the system are changing during the experiment. The first algorithm 
takes advantage of the system of differential equations ruling the time evolution of the 
discrete model whereas the second deals with inverse filters with variable time constants. In 
the cases studied, both methods produce equivalent results. 

INTRODUCTION 

Identification and deconvolution in time invariant calorimetric systems 
have been thoroughly and extensively analysed during the last few years. 
These systems are defined, from a physical point of view, by a set of physical 
parameters, such as heat capacities or thermal conductivities, which are 
assumed to remain constant during the whole experimental manipulation. In 
other words, the set of poles and zeros which define their transfer function 
are constant. However, the introduction of new identification techniques has 
shown that the time constants of certain systems actually change throughout 
the measurement. Although the change detected is small, it may be quantita- 
tively evaluated [l-6]. 

A first estimation of the effects brought about by such a change are 
analysed in ref. 7, where the most outstanding features encountered are 
modifications in the static gain of the calorimeter and in the functional 
dependence of the pulse response of the system. 
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In this communication we consider also discrete calorimetric models (RC 
models) [8-lo] where the parameters defining the model may be a function 
of time. Particularly, we are interested in those cases where the heat capacity 
of the laboratory cell is changing. In this way, a model whose time constants 
are roughly equal to those of an ARION-Electronique calorimeter, type BCP 
[5], has been built up. This calorimeter, used to obtain the excess partial 
molar enthalpy of liquid mixtures, exhibits a clear evolution of its time 
constants during the mixing process. This change may reach up to 10% of 
the main time constant. 

Once the parameters of the model are fixed, a variable model allows the 
calculation of simulated thermograms belonging to a known power input if 
the time dependence of the parameters defining the model (heat capacity of 
its different elements and coupling coefficients between them) is also known. 
Two algorithms are devised which allow the deconvolution of such thermo- 
grams. The first one is based on the same differential equations which define 
the variable model whereas the second one is an extension of an inverse filter 
by considering variable poles and zeros. Both methods have been tested on 
thermograms affected by different amounts of noise. 

The results clearly show that standard time-invariant deconvolutive tech- 
niques produce incorrect power inputs when applied to these thermograms 
whereas the methods developed, which include the variation in the parame- 
ters, yield the correct power input. In the case studied here, the results 
produced using either the RC differential equations or a time dependent 
inverse filter are equivalent. 

Definition of the model 

RC models [S-lo] are based upon a discrete representation of the calori- 
metric system. In each cell or element the temperature is taken to be 
homogeneous. If we denote C, as the heat capacity of the ith element, P,] and 
P, as the coefficients of Newtonian heat losses towards elementsj and to the 
thermostat, respectively, the energy balance in each element leads to the 
following system of differential equations: 

CT,%+ CP,.,(T,- q)+p,T,= W,(t) i= l,..., N, P,, = P,, 
,‘I 

where W,(t) is the instantaneous power released in the i th element. 
This formalism allows an easy introduction of variable physical parame- 

ters for we only have to consider their explicit time dependence in the 
equations given above. If all the coefficients are actually constant, the 
solution to the system of N linear first order differential equations is a series 
of exponentials where the time constants are functions of the parameters of 
the model. These time constants are also directly related to the poles of the 
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Fig. 1. Schematic representation of the RC model discussed. The values of the different 
parameters are shown in Table 1. 

transfer function of the system. However, if any of these coefficients is a 
function of time, the solution cannot be obtained any longer except for 
extremely simple cases [7]. 

Bearing in mind the experimental situation already described, we have 
built a simple model consisting of three elements (Fig. 1) in such a way that 
the power is released in element 1 and the temperature which is experimen- 
tally detected is associated to the temperature of element 3. The stirring 
device of the actual calorimetric system ensures a proper homogenization of 
the heat dissipation, so we may take element 1 as the laboratory cell. With 
this choice, the resulting chain-like model is more easily solved; that is, 
either we may easily calculate the temperature evolution in the different 
elements once the power released JVi(t) is known or, on the contrary, we 
may obtain the power released once T3(t) is given [11,12]. 

In the actual experimental situation, the steady injection of one compo- 
nent into the laboratory cell leads to an increase of its heat capacity [7]. 
Consequently, the system of differential equations ruling the time evolution 
of the system turns into a system of linear differential equations with 
variable coefficients. In a general case, it is difficult to obtain a numeric 
solution to the system (ten elements or more). However, given that the 
signal/noise ratio in this system is roughly 60-70 dB, it seems feasible an 
approximation to the transfer function consisting only of two or three poles 
or, equivalently, an RC model of two or three elements, at least with respect 
to the standard case where the parameters do not change with time. The 
model considered in this case is shown in Fig. 1, and the corresponding set 
of differential equations is [7]: 

dT, 
‘,(‘) dt - + f’, ,(T, - T,) + C,(f)T, = K(f) 

c dT2 
2-j7- + f’, 2(T, - T,) + k(T2 - T,) = 0 

C3!$+P23(T,-T2)+P3T3=0 

where the numerical value of the parameters and the associated time 
constants may be found in Table 1. 

The heat capacity C, is taken to depend linearly on time: 

C,(t) = C,, + C,,T 0 < I < 2050 s 

C,(t) = C,, + 2050 C,, t > 2050 s 
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TABLE 1 

Heat capacities, coupling coefficients and coefficients of heat losses to the thermostat 
corresponding to the model of three elements shown in Fig. 1 (the values of the time 
constants associated to the different C, are also shown) 

C,=20JK-’ P,, = 0.35 W K-’ 
C,=20JK-’ Pzx =1.25 W K-’ 

P,=O.79 W K-’ 

C, (J K-‘) 71 (s) 72 (s) 73 (s) 

40 225.3 31.8 6.5 
42 235.0 32.0 6.5 
44 244.5 32.2 6.5 
48 263.9 32.6 6.5 

accounting for a steady injection. This system has been numerically solved 
considering a constant power input of 1 W during 2050 s. The temperature 
has been recorded during 4100 s to follow its evolution until the final 
equilibrium state is reached. Three different variable models have been 
considered, namely total variations in C, of 5%, 10% and 20% during the 
2050 s of injection. The different values of the time constants associated with 
these three time-invariant models are also-shown in Table 1. 

Figure 2 shows the first time constant of the model as a function of the 

heat capacity C,. In the case of a non time-invariant model, this may 

represent the evolution of the time constant of the system vs. time while the 
injection is taking place. It is to be noted that, strictly speaking, it is 

meaningless to refer to the time constants of the system because they no 
longer exist in these kind of models. We may refer to them only in 

Fig. 2. First time constant vs. time. The values shown are those listed in Table 1. The time 
scale is defined by considering a steady injection from C, = 40 to 48 J K-’ lasting 2050 s. 



171 

association with the instantaneous value of the parameters of the model. In 
this sense, Fig. 2 shows the first time constant vs. time although they have 
been calculated considering fixed model parameters whose value corresponds 
to that particular time. We note a linear behaviour in the particular model 
chosen. 

RESULTS 

Firstly, we obtain the simulated thermograms corresponding to a known 
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Fig. 3. (a) Thermogram corresponding to a step input (W= 1 W) in a system where C, 
changes from 40 to 48 J K-’ in 2050 s. After that W= 0 W and the parameters are kept 
constant. The signal/noise ratio is roughly 70 dB. (b) Deconvolution by means of standard 
inverse filtering. The time constants used correspond to C, = 40 J K-‘. (c) Deconvolution by 
means of standard inverse filtering. The time constants used correspond to C, = 48 J K-‘. (d) 
Deconvolution by the system of differential equations defining the model. The correct time 
evolution of C, is explicitely considered. 
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power input and to the specified functional dependence of the parameters of 
the model. The power dissipation is defined as follows: 

1 w w,(t)={, w 

0 < t -c 2050 s 
t > 2050 s 

and 7”(t) is calculated by numerically solving the system of differential 
equations which define the model. We have used for this purpose the routine 
DHPCG from the FORTRAN SSP (IBM). 

Random signals of different amplitudes also have been superimposed on 
the thermogram in order to check the performance of the deconvolutive 
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Fig. 4. (a) Thermogram corresponding to a step input (W =l W) in a system where C, 
changes from 40 to 48 J K-r in 2050 s. After that W = 0 W and the parameters are kept 
constant. The signal/noise ratio is roughly 50 dB. (b) Deconvolution by means of standard 
inverse filtering. The time constants used correspond to C, = 40 J K-‘. (c) Deconvolution by 
means of standard inverse filtering. The time constants used correspond to C, = 48 J K-t. (d) 
Deconvolution by the system of differential equations defining the model. The correct time 
evolution of C, is explicitely considered. 
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methods under different experimental conditions (i.e., under different sig- 
nal/noise ratios). 

The deconvolution of these records has been performed in three different 
ways: standard (time invariant) inverse filtering, putting them back into the 
system of differential equations and solving for W,(t) and, finally, consider- 
ing an inverse filter whose time constants are function of time. 

In the first case, we have considered two different filters, namely, those 
corresponding to the time constants before and after the injection. Figures 3 
and 4 show the results obtained concerning signal/noise ratios of roughly 
100 and 60 dB, respectively. The fluctuations observed in Fig. 4 are mainly 
due to the third-order derivative required to filter three time constants. Also, 
this derivative is multiplied by the product ~~7~7~ which leads to a decrease in 
the effective signal/noise ratio. 

Both examples are affected by overcorrections at the beginning of the 
injection when considering the time constants corresponding to the end and 
vice versa. In order to avoid this problem, we have devised an algorithm 
based on the system of differential equations where the change in the 
parameters may be taken into account in a natural way. The algorithm is the 
generalization of its time invariant counterpart which may be found in ref. 
11. The results obtained, concerning both signal/noise ratios, are also shown 
in Figs. 3 and 4. The thermogenesis obtained is no longer affected by over- 
or undercorrections. 

Finally, given that in our model the first time constant is found to depend 
linearly on the heat capacity (i.e., on time, see Fig. 2), a generalization of a 
standard filter has been also applied to the aforementioned thermograms. In 
this case, the time constants defining the filter are assumed to depend 
linearly on time. For instance, a one step filter is defined as follows: 

dT,W 
z-p(t)= T3(t)+Tl(t)-I&- 

Strictly speaking, it is meaningless to consider a time constant dependent on 
time because the pulse response of the system is no longer, in the variable 
case, a series of exponentials. This filter is to be interpreted only as a local 
approximation if the change in the physical parameters of the system is slow 
enough in the time scale of the measurement. Only in this case we may 
consider, as a first approximation, that, locally, the system may be repre- 
sented by a set of time constants. 

The result given by this method in the case of the lowest signal/noise 
ratio is shown in Fig. 5. Concerning the particular model chosen the same 
power input is given by the two variable methods described. This fact 
suggests that it is feasible to consider an inverse filter with variable time 
constants in those cases where the physical parameters of the system do not 
change appreciably in the time scale of the measurement. Nevertheless, in 
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Fig. 5. Deconvolution by means of variable inverse filtering of the thermogram shown in Fig. 
4. The time constants used change linearly from their value at C, = 40 J K-’ to the value at 
C, = 48 J K-‘. 

this case, a proper identification of the system before and after the injection 
is essential. 

CONCLUSIONS 

Even though non time-invariant calorimetric systems cannot be handled 
analytically, it is feasible to attempt to perform the deconvolution of the 
experimental records. A simple algorithm has been built up for when the 
values of the heat capacities and coupling coefficients defining the RC model 
associated to a particular device are known; this produces the correct 
instantaneous power released inside the laboratory cell. The method is based 
on physical arguments; i.e., the increase in the mass of the laboratory cell is 
explicitly contained in the deconvolutive procedure. The method is affected 
as much by the experimental noise as is standard inverse filtering. 

It is also feasible to introduce a time dependent inverse filter where the 
poles and zeros considered are functions of time provided that the change in 
the physical parameters of the system is slow enough; otherwise, this local 
approximation does not make sense. In this case, a correct identification of 
the system at the beginning and at the end of the experiment is essential. 

In the particular model studied, the time constants are found to change 
linearly vs. time. Inverse filtering including this linear behaviour leads to the 
same result as the one given by the previous method (which incorporates the 
explicit variation of the heat capacity). 
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