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ABSTRACT

The dehydration of magnesium acetate tetrahydrate was studied by simultaneous
TG-DTG-DTA under various sealed atmospheres (open, quasi-sealed, and completely
sealed) . It had been reported for this salt that dehydration was a single-stage loss of water . In
the case of quasi-sealed systems (29.8, 60 and 100 µml tungsten wires), however, stable
monohydrate was obtained

Mg(CH 3000)2 . 4 H 2O Mg(CH 3000)2 -H 2O+3 H2O

Mg(CH 3000)2 • H ,O -+ Mg(CH 3000) 2 + H20

Monohydrate is easily removed from the apparatus, and identified by means of X-ray
diffraction .

INTRODUCTION

In the case of the thermal decomposition of producing gases, the equi-
librium will be attained for the partial pressure of the gases and the
decomposition will be influenced by the composition of the atmosphere .
Q-derivatography (quasi-isothermal and -isobaric thermogravimetry), which
applies well to self-generated atomospheres, has been devised and good
results obtained. The thermal decomposition of ammonium heptamolybdate

(6-)tetrahydrate, (NH,)6Mo7O24-4 H20 (AHM), was studied by means of
simultaneous TG-DTG-DTA [1] . It was found that H 2O and NH 3 were
produced at the same time under both static air atmosphere and flow
conditions of various gases . This system also used Q-derivatography and
home-built quasi-sealed thermogravimetry . It was proposed that the reaction
can be separated into two steps. However, as a result of studies of reproduci-
bility and sample size, it was concluded that the sample size should be made
as small as possible. Micro-Q-TG will be needed in order to study the
dehydration reaction .

A quasi-sealed system was applied to about a 10-mg sample and good
results were obtained in the case of calcium sulfate dihydrate (CaSO4 . 2
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H 2O) [2] and magnesium sulfate heptahydrate (MgSO 4 . 7 H 20) [3] . In the
case of CaSO4 - 2 H 2O [2], the dehydration reaction was a single-stage loss of
water under an open system, however, under completely and quasi-sealed
systems the reaction could be separated into two stages . The hemihydrate
analysis was carried out with this apparatus . In the case of MgSO4 - 7 H 2O
[3], only the monohydrate (MgSO4 • H 2O) intermediate was confirmed under
a completely sealed system, whereas the tri-, di-, and monohydrates (MgSO 4
3 H2O, MgSO4 -2 H 2O, and MgSO4 .H2O, respectively) were confirmed

under a quasi-sealed system .
In this communication, the dehydration of magnesium acetate tetrahy-

drate, Mg(CH 3000) 2 .4 H 2O, is studied by means of simultaneous TG-
DTG-DTA under various atmospheres, corresponding to three systems
(open, completely sealed, and quasi-sealed) . Moreover, new intermediate
compounds of the reaction stage are confirmed by means of high-tempera-
ture oscillation X-ray diffraction with a rotating anode-type large capacity
generator .

The synthesis of magnesium acetate monohydrate from solution has
already been reported [4] . The thermal decomposition of magnesium acetate
tetrahydrate has also been reported [5,6] .

The analysis of magnesium acetate monohydrate was carried out under a
quasi-sealed system without solution and was confirmed as monohydrate by
the percent weight-loss of TG and high-temperature X-ray analysis .

EXPERIMENTAL

Materials

Magnesium acetate tetrahydrate (Kanto Co .) was used in powder form .
The sample sizes used were generally 10 .0 mg and the reference material
used for DTA was a-A1 203 .

Apparatus

A modified thermoflex 8002 (Rigaku Denki Co .) was used for simulta-
neous TG-DTG-DTA measurement . The range of temperature covered was
usually from room temperature to 420°C and the sample was heated in most
cases at a rate of 1°C min - ' . The range of TG used was usually 10 mg and
the range of DTA used was ± 100 µV (upper limit corresponds to the
exothermic reaction) .

A JEOL-ROTEX rotating anode-type large capacity generator (model
JRX-12) was used for the high-temperature and high-temperature oscillation
X-ray diffraction. The temperature of the hot stage was controlled by an
ULVAC-RIKO thermal program controller (model HPC-5000 series) .



Sealing techniques

The techniques of completely sealed and quasi-sealed systems had already
been described [2]. In the case of a completely sealed cell, the critical
explosion pressure was thought' to be above 3 atm [7], however, by the
present examination it was redetermined to be above 7 .3 atm .

RESULTS AND DISCUSSION

Open system

With a platinum cell (Fig . 1), simultaneous TG-DTG-DTA measure-
ments were taken. The magnesium acetate tetrahydrate samples were 10 .0
mg. A typical result is shown in Fig . 2 .

On the TG curve, the loss of water starts at 56°C and finishes at 136°C .
The product at 136°C was recognized as anhydrous magnesium acetate from
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Fig . 1 . (a) Schematic diagram of sample cell, aluminium cell . (b) Dimensions of sample cell .
(c) Schematic diagram of sample cell, platinum cell .
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Fig. 2. TG-DTG-DTA of magnesium acetate tetrahydrate under an open system . Sample-
mass, 10 .03 mg; cell, platinum ; heating rate, 1°C min -1 .

a calculation of weight-losses . On the DTA curve, the endothermic peak
owing to dehydration is shown at 77°C . Since no intermediate stages are
shown on the TG curve, and only one peak is shown on the DTG and DTA
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Fig. 3 . High-temperature oscillating X-ray diffraction pattern of magnesium acetate tetrahy-
drate. Heating rate, 2°C min -1 ; range of oscillation angle, 9.49° < 20 < 15 .29° ; oscillation
speed, 8° min - ' ; X-ray source, Cu K,,, 80 mA and 40 kV; counting rate, 2x 10' cps ; time
constant, 0 .2 s .



curves, for the open system, the dehydration reaction is thought to be a
single-stage loss of water .

After producing anhydrate, the sample is thermally stable until 286°C on
the TG curve, but on the DTA curve a weak exothermic peak appears at
235°C. This exothermic process'was attributed to recrystallization from the
amorphous state [5,6], since there are no mass-changes corresponding to this
process and there is a marked change in the high temperature oscillation
X-ray diffraction pattern (Fig . 3) .

For the high temperature oscillation X-ray diffraction pattern, the inten-
sity of magnesium acetate tetrahydrate decreases rapidly at 68°C (Fig. 3) .
This reaction-end temperature is 68°C lower than that of the TG measure-
ment. This is thought to be due to the sample dissolving in the dissociated
water of the crystal, and the crystal structure of magnesium acetate tetrahy-
drate breaking. Furthermore, the intensity of the anhydrous magnesium
acetate after recrystallization increases above 230°C .

The thermal decomposition of magnesium acetate anhydrate begins at
288°C and ends 375°C on the TG curve . The product was recognized as
magnesium oxide from a calculation of weight-loss . On the DTA curve, as
soon as decomposition starts, the exothermic process is quite clear from the
endothermic peak at 322°C, a sharp exothermic peak at 326°C, and a broad
exothermic peak having a peak-top at 350°C. However, the mechanism of
thermal decomposition could not be solved .
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Fig . 4. TG-DTG-DTA of magnesium acetate tetrahydrate under a completely scaled system .
Sample-mass, 10 .00 mg; cell, aluminium ; heating rate, 1°C min -1 .
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Completely sealed system

Putting the sample into an aluminium cell, and sealing completely, simul-
taneous TG-DTG-DTA measurements were taken. Other conditions were .
however, similar to those of the open system . The results for a 10 .00-mg
sample of magnesium acetate tetrahydrate are shown in Fig . 4.

On the TG curve, a sudden explosive loss of water is shown at 159°C,
similar to the experimental systems of decomposition of calcium sulfate
dihydrate [2] and magnesium sulfate heptahydrate [3] . The percent weight-loss
of this dehydration is consistent with that of the change from magnesium
acetate tetrahydrate to an anhydrate (33 .6%) . The product was thought to be
magnesium acetate anhydrate. For the results of DTA, before explosion, an
endothermic peak appears at 76°C . An endothermic peak associated with the
explosion appears at 159°C . The endothermic process at 76°C is thought to
be caused by the dissociation of water of crystal and the dissolution of the
sample into dissociated water of crystal . After heating to 80°C, the sample
cell was removed from the apparatus and opened at room temperature. The
sample was in a glassy state, as shown in Fig . 5. Therefore, the very weak
exothermic process was attributed to the change of crystal structure.

The thermal decomposition of magnesium acetate anhydrate started at
317°C and ended at 420°C .

Quasi-sealed system

By placing thin tungsten wire (29 .8, 60, 100, 130, 150 and 200 µm4)
between an aluminium pan and cover, measurements of the quasi-sealed
system were taken. In each case the results of TG are shown in Fig . 6. The

(a) (b)

Fig . 5 . (a) Represents the sample of magnesium acetate tetrahydrate ; (b) represents the
sample removed from the thermobalanee at a temperature of 80°C under a completely sealed
system .



typical TG-DTG-DTA results for interposing 60 µm4' tungsten wire are
shown in Fig . 7 .

On the TG curve, the decrease due to dehydration starts at 89°C, and is
steepest from 116 to 130°C . From 140 to 170°C no changes on the TG curve
are observed. After that temperature the gradual loss of water starts, ending
at 195°C. From a calculation of weight-losses, the products at 140 and
195°C seem to be magnesium acetate monohydrate and magnesium acetate
anhydrate, respectively . According to the above results, a dehydration of
magnesium acetate tetrahydrate may be considered as follows

Mg(CH 3000)2 . 4 H20 -* Mg(CH3COO) 2 - H 2O + 3 H 2O

Mg(CH 3000)2 " H 2O -. Mg(CH3COO)2 + H 2O

On the DTA curve, the endothermic peaks were recognized at 69, 73, 121,
and 186°C, and the exothermic peak appeared at 238°C . The endothermic
process at 69°C is thought to correspond to the dissociation of water of
crystal

Mg(CH3000)2 .4 HAS) -. Mg(CH 3000)2(s)+4 H 20(1)

Fig. 6 . TG results of magnesium acetate tetrahydrate under a quasi-sealed system .
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The next endothermic process at 73°C is thought to be caused by the
dissolution of water of sample into the dissociated water of crystal [8] . The
endothermic process at 121 °C is thought to be caused by the evaporation of
three molecules of water

Mg(CH 3COO)2(aq) -> Mg(CH 3COO)2 - H20(S) + 3 H 20(g)

The fourth endothermic process corresponds to dissociation of a molecule of
water as described below

Mg(CH 3 000)2 . H 20(s) -* Mg(CH3COO)2(s) + H 20(g)

The exothermic process is thought to be attributed to crystallization from
the amorphous state

Mg(CH 3000)2(amorphous) -* Mg(CH 3COO) 2(crystal)

After heating to 150°C, the cell was removed from the apparatus, and the
sample was transferred to a new cell . Tungsten wire (60 µm¢) was placed
between the aluminium pan and cover, measurements of the quasi-sealed
system were taken. The results are shown in Fig . 8. The weight-loss started at
155°C and ended at 187°C. The percent weight-loss corresponded to that of
the change from magnesium acetate monohydrate to an anhydrate (11 .23%) .
The X-ray diffraction pattern of the former sample was consistent with the

Fig. 7. TG-DTG-DTA of magnesium acetate tetrahydrate under a quasi-sealed system
(using 60 µmO tungsten). Sample-mass, 10.01 mg ; cell, aluminium ; heating rate, 1 °C min -I .
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Fig. 8 . TG-DTG-DTA of magnesium acetate monohydrate under a quasi-sealed system
(using 60 µm4' tungsten) . Sample-mass, 8 .85 mg; cell, aluminium : heating rate, 1°C min - ' .

ASTM card of magnesium acetate monohydrate [9] . Furthermore, from the
high-temperature oscillation X-ray diffraction, the peak intensity of mag-
nesium acetate monohydrate diffraction decreases rapidly at 151°C (Fig . 9) .
As mentioned above, it was recognized that magnesium acetate monohydrate
could be removed from the apparatus, and identified by means of X-ray
diffraction .

Fig. 9 . High-temperature oscillating X-ray diffraction pattern of magnesium acetate monohy-
drate. Heating rate, 2°C min - ' ; range of oscillation angle, 9.08° < 29 <13 .91 0 ; oscillation
speed, 8° min - ' ; X-ray source, Cu K,,, 80 mA and 40 kV ; counting rate. 8X103 cps : time
constant, 0 .2 s .
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CONCLUSIONS

In connection with the above-mentioned experimental results, the follow-
ing conclusions may be drawn :

(1) under open and completely sealed conditions, dehydration of mag-
nesium acetate tetrahydrate was a single-stage loss of water, but under
quasi-sealed condition using 29.8, 60, and 100 µmo tungsten wires, it was
separated into two steps . Magnesium acetate monohydrate could be easily
removed from the apparatus ;

(2) as the amount of sample used for the present examination was small,
the amount of intermediates was also small . It was thought to be difficult to
take X-ray diffraction measurements using small sample sizes, however, this
is made possible with the present method due to its greater power compared
to the sealed X-ray generator . The intermediate was recognized as mag-
nesium acetate monohydrate .

This method will be applied to various dehydration systems of some
inorganic salts, especially those for which it is thought to be difficult to
remove as intermediates .

7 T. Senda, personal communication, 1979 .
8 T. Homma, Nippon Kagaku Kaishi, (1975) 1512 .
9 ASTM Index 14-828, magnesium acetate monohydrate .
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