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ABSTRACT

The predictive applicability of the Lee—Kesler equation of state was studied over a wide
range of P -V —T values for a series of pure compounds by means of the available experimen-
tal compressibility data. A comparison of calculated and experimental compressibility values
indicates that the Lee—Kesler equation should be used with caution in the vicinity of the
vapour—liquid critical point and in the low pressure region (Z < 0.1). The compressibility
root mean square (RMS) percent errors increase with increasing dipole moment values, and
relate non-linearly to Pitzer’s acentric factor, w.

INTRODUCTION

The demand for accurate volumetric properties of various fluids is increas-
ing in process industries. One of the equations of state which has proved to
be successful in process industries in predicting the phase equilibria is the
Lee—Kesler equation {1].

This study has analyzed the predictive applicability of the Lee-Kesler
equation of state through the use of the available compressibility data
including those found in the low pressure range, near the critical point and
in the liquid state. In this work the calculated compressibility values were
compared with the experimental compressibility data. The comparison was
done for each experimental data point in terms of the root mean square
(RMS) percent error defined as

n

Y (% error)® |2

| =
RMS = | =——— (1)
in which
anlc - Zexp
% error = | —=—— [ X 100 (2)
Zexp

Table 1 presents the summary of data used and contains the results
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Fig. 2. Histogram of the absolute value of Pitzer’s acentric factor, w.
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of RMS percent error and the acentric factor |w| distribution. Figure 3 on the
other hand implies that there may be a connecting relation between the
magnitude of the obtained RMS percent error and the isothermal dipole
moment, p, value in terms of compounds considered. Finally, Table 2

provides a list of Lee—Kesler constants.

LEE-KESLER EQUATION OF STATE

The Lee-Kesler equation is a classical corresponding states correlation
[1,2-6]. To predict the compressibility factors, Lee and Kesler [1] took the

TABLE 2

Lee-Kesler constants (cf. footnote on p. 214; eqns. 4-7)

Simple fluid Reference fluid
Z© calculation Z calculation

b, 0.1181193 0.2026579

b, 0.265728 0.331511

b, 0.154790 0.027655

b, 0.030323 0.203488

< 0.0236744 0.0313385

cy 0.0186984 0.0503618

c5 0.0 0.016901

C4 0.042724 0.041577

d, X 104 0.155488 0.48736

d, X 104 0.623689 0.0740336

B 0.65392 1.226

Y 0.060167 0.03754
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macroscopic corresponding states correlation of Pitzer et al. [2—-6]
Z=29+40z® (3)
and used a modified Benedict-Webb—Rubin equation given in reduced
coordinates as

PV B C D C, Y Y
Z =— T 1+V;+V2+Vr5+Tr3Vr2('8 Vz)exp(—; (4)
to predict the values of Z©® and ZV (eqn. 3). Constants B, C and D in eqn.
(4) are defined as *

r

B=by=(by/T,) = (bs/T,) ~ (b4/T,) (5)
= = (e/T) +(ey/T7) (6)

D=d, +(d,/T,) (7)

The pseudo-reduced volume, V,, is given as

V.= PV/RT, (8)

The theoretical basis of the predictive applicability of the Lee—Kesler
equation is found in the inherent characteristics of Pitzer’s use of the
macroscopic theorem of corresponding states [2-5] and the range of applica-
bility of the modified BWR relation [7] (eqn. 4). It is well'’known that Pitzer’s
macroscopic theorem of corresponding states being a first order perturbation
about simple fluid (reference fluid, acentric factor w =0) corresponding
states, effectively can be applied only to moderately large nonspherical
molecules. As such the work of Lee and Kesler is based on experimental data
for hydrocarbons ranging from methane to n-octane as the heavy reference
fluid with a subsequent adjustment to other substances. It is questionable
whether the linear form of the Z — w relation (eqn. 3) may be extended
through the inclusion of higher order Taylor expansion terms [2-5,8].
Attempts have been made [8-12] to extend the applicability of the linear
Z — w relation (eqn. 3) at regular intervals of 7, and P, in the region of
0.2 <T,<5.0and 0.0 < P, <12.0. These extensions are valid strictly only for
simpler molecules and certain groups of compounds, therefore, quantum
gases and highly polar molecules may not be included in this type of
correlation [8,12].

EXPERIMENTAL DATA USED

The summary of experimental data used is presented in Table 1. The
experimental gas and liquid state compressibility values for the given set of

* Constants used (eqns. 5-7) are found in Table 1. Note that w in the Pitzer relation (eqn. 3)
is replaced by w/0.3978 for the Lee—Kesler equation. A value of 0.3978 represents the w
value for the reference fluid used (n-octane).
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compounds (Table 1) were taken from various sources. These, from the
literature data obtained, were thought to be sufficiently reliable, therefore,
no further study to reevaluate their accuracy was made. Indeed, the data set
used * for this study was regarded to be only a representative one. Following
the prototype of McFee et al. [12], our program reads-in the experimentally
determined compressibility factor Z at the T and P of interest, and compares
these data with the compressibility factor calculated by means of the
Lee—Kesler equation of state at the same thermodynamic conditions. The
RMS percent error (eqn. 1) is used as the basis for a comparison yielding a
measure of accuracy of fit for the given set of state data points.

RESULTS AND DISCUSSION

The fully generalized, classical corresponding states method of Lee and
Kesler was studied with physical constant values (critical temperature and
pressure, acentric factor, w, dipole moment, p) taken from Reid et al. [13].
The results show a varying degree of reliability for all the compounds in all
regions studied. For instance, of the sample of 33 compounds considered
(Table 1), 14 compounds have an RMS percent error of less than 1.5%, while
15 compounds have an RMS percent error in excess of 2%. Table 1 indicates
that compounds which follow the corresponding states principle for simple
and normal fluids (eqn. 3) and for which the intermolecular forces are
conformal, show a high degree of compatibility with the Lee—Kesler equa-
tion of state in all regions considered as expected **.

Compounds which do not follow the corresponding states principle accu-
rately and whose intermolecular forces are not conformal, do show dewvia-
tions from the experimental results where compressibility calculations are
performed using the Lee—Kesler method of P-V-T data prediction. Table 1
shows that for non-conformal fluids these deviations appear to be associated
first with various forms of compounds and natures of intermolecular forces
(i.e., quantum fluids such as He; hydrogen bonded fluids such as NH, or
H,0; olefinic type fluids such as cis-2-butene), and secondly, with thermody-
namic state condition (i.e., pressure and temperature range of the experimen-
tal study).

Since the predictive ability of the Lee—Kesler equation of state involves
the use of basic assumptions of Pitzer’s corresponding states principle (cf.

* This also includes the listed (Table 1) acentric factor, w, and dipole moment, u, values.
** Note that the Lee—Kesler analytical method expresses Pitzer’s macroscopic corresponding
states correlation (eqn. 3) through a reduced form of a modified Benedict—Webb-Rubin
equation of state (eqn. 4) in which a set of constants (eqns. 5-7) for the simple fluid are
determined from the data of argon, krypton and methane and that of the reference fluid
are from the data of n-octane [1]. See also footnote on p. 214.
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eqn. 3; footnotes on pp. 214, 215) it seems feasible to expect that the RMS
percent error found in compressibilities (Table 1) may relate to physical
parameters expressing intermolecular force interactions.

Two parameters were considered in this study: the acentric factor, w (eqn.
3) which measures the overall deviation of the intermolecular potential
function from that of the simple spherical molecules; and the dipole mo-
ment, u, which account specifically for the polarity effects of the given
compound. The scattering (Fig. 1) shows that RMS percent error values
increase with increasing absolute value of the acentric factor, reaching a
maximum at around an |w| of 0.26. The |w| histogram (Fig. 2) shows that
most of |w] values fall within the same |w| range as that obtained for the
RMS percent error (Fig. 1). However Fig. 3 indicates that the Lee—Kesler
equation following the simple corresponding states principle (eqn. 3) may
not completely account for polarity effects since RMS percent errors are
shown to correlate distinctly with dipole moment, u, values. Whether this
indicates that the derivation of the Lee~Kesler equation should be modified
through the introduction of an extended theorem of a simple corresponding
states [12] in preference to the presently used Pitzer’s simple corresponding
states principle (eqn. 3), is an open question. Yet it should be recalled that
there are many non-conformal substances whose interactions cannot be
described through an intermolecular potential function and which therefore
cannot be subject to a corresponding states principle.

Table 1 shows that in general the non-conformal fluids possess large
absolute maximum error values within the critical region and at high
pressures. Yet some of the simpler paraffins, such as n-propane, iso-pentane,
n-pentane, iso-octane and n-heptane, show considerable irregularities at low
pressures. Although recently Hsiao and Lu [8] extended the applicability
range of the linear Pitzer correlation (eqn. 3) in the 7, — P, region of
0.2<T,<5.0and 0 < P, <12.0 and the experimental compressibility values
were erratic at given low pressures, it is still felt that at these low pressures,
the use of the Lee—Kesler equation should be tempered with caution.

LIST OF SYMBOLS

B, C, D, by, b,, b,, by, ¢y,

€3, €35 C4» dy, dy, B, ¥ Lee—Kesler equation constants
P pressure

R universal gas constant

T temperature

Z compressibility factor

¢ density

w acentric factor
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Superscript
0 reference, ideal
Subscripts

¢ critical state
r reduced state with respect to the vapour—liquid critical state
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