Note

ON THE TEMPERATURE INTEGRAL IN NON-ISOTHERMAL KINETICS WITH LINEAR HEATING RATE

C. POPESCU

Centrul Cercetari Materii Prime, Auxiliari, Ape Reziduale, Str. Siret 95, Bucharest (Romania)

E. SEGAL

Polytechnical Institute of Bucharest, Institute of Chemistry, Department of Physical Chemistry *and Electrochemical Technology, Bd. Republicii nr. 13, Bucharest (Romanra)* (Received 16 August 1983)

The equation of non-isothermal kinetics

$$
\frac{\mathrm{d}\alpha}{f(\alpha)} = \frac{A}{\beta} \exp(-E/RT) \tag{1}
$$

where α , β , \dot{A} , \dot{E} , \dot{R} , \dot{T} have the usual meanings, leads to the following integral form for linear heating rate

$$
F(\alpha) = \int_0^{\alpha} \frac{d\alpha}{f(\alpha)} = \frac{A}{\beta} \int_{T_1}^{T_2} \exp(-E/RT) dT
$$
 (1a)

The right-hand side of eqn. (1a), called "temperature integral", leads to a solution by series and, in order to obtain a better approximation, some finite solutions have been proposed.

(1) Coats and Redfern [l] have suggested the form

$$
F_{(\alpha)}^{C-R} = \frac{A}{\beta} \left(1 - \frac{2RT}{E} \right) \frac{RT^2}{E} \exp(-E/RT)
$$
 (2)

for this integral, which is the result of an integration by parts of eqn. (la). (2) Doyle [2] and Gorbachev [3] have suggested another equation, namely

$$
F_{(\alpha)}^{D-G} = \frac{A}{B} \cdot \frac{RT^2}{E + 2RT} \exp(-E/RT)
$$
 (3)

A method of comparing the approximation degree of these two solutions was proposed by Gorbachev [3], and consists of considering the derivatives of eqns. (2) and (3) with temperature

$$
\frac{\mathrm{d} F^{C-R}}{\mathrm{d} T} = \frac{A}{\beta} \left(1 - \frac{6R^2 T^2}{E^2} \right) \exp(-E/RT) \tag{2a}
$$

0040-6031/84/\$03.00 © 1984 Elsevier Science Publishers B.V.

$$
\frac{\mathrm{d}F^{D-G}}{\mathrm{d}T} = \frac{A}{\beta} \left[1 - \frac{2R^2T^2}{\left(E + 2RT\right)^2} \right] \exp\left(-E/RT\right) \tag{3a}
$$

and comparing the results with the right-hand side of eqn. (1). As

$$
\frac{6R^2T^2}{E^2} > \frac{2R^2T^2}{(E + 2RT)^2}
$$

eqn. (3) is a better approximation of the solution.

Based on Gorbachev's suggested method, a general finite approximative solution of the temperature integral is proposed.

Let us suppose

$$
I(T) = \int_{T_1}^{T_2} \exp(-E/RT) dT = q(T) \exp(-E/RT)
$$
 (4)

q(T) being an unknown *T* function which will be determined by calculus. The derivative of eqn. (4) with temperature leads to the differential equation

$$
\frac{\mathrm{d}q}{\mathrm{d}T} + \frac{E}{RT^2}q = 1\tag{4a}
$$

For the next form of $q(T)$

$$
q(T) = bT^i, \qquad i \in R
$$
\n⁽⁵⁾

equation (4a) becomes

$$
b\left(iT + \frac{E}{R}\right)T^{i-2} = 1\tag{4b}
$$

or

$$
b = \frac{1}{\left(iT + \frac{E}{R}\right)T^{i-2}}
$$

Taking into account eqn. (5), eqn. (4) becomes

$$
I(T) = \frac{RT^2}{E + iRT} \left(-E/RT \right) \tag{6}
$$

Equation $(1a)$ with eqn. (6) becomes

$$
F_{(\alpha)}^{(i)} = \frac{A}{\beta} \cdot \frac{RT^2}{E + iRT} \exp(-E/RT) \tag{7}
$$

and it is obvious that $F_{(a)}^{(2)} \equiv F_{(a)}^{D-G}$

From eqn. (7) other approximations can be derived for different values of I.

In a previous paper [4], based on a non-linear heating programme assumption, the following equation has been proposed

$$
F(\alpha) = A a T \exp(-E/RT)
$$
 (8)

254

where

$$
a = \frac{R}{E} T_0 \frac{1}{\frac{\Delta T}{\Delta t}}
$$

But for $\Delta t \rightarrow 0$ which means also $T_0 \rightarrow T$

$$
a = \lim_{\Delta t \to 0} \frac{R}{E} T_0 \frac{1}{\frac{\Delta T}{\Delta t}} = \frac{R}{E} T \frac{1}{\beta}
$$

and eqn. (8) becomes

$$
F_{(\alpha)} = \frac{A}{\beta} \cdot \frac{RT^2}{E} \exp(-E/RT)
$$
 (8a)

which can also be obtained from eqn. (7) for $i = 0$. This identity leads to the conclusion that kinetics with linear and non-linear heating programmes show two sides of the same reality, the linear heating programme kinetics being the limit, for short time intervals, of the non-linear heating programme kinetics [5].

From eqn. (7), taking into account the derivative with temperature

$$
\frac{d F_{(a)}^{(i)}}{dT} = \frac{A}{\beta} \exp\left(-\frac{E}{RT}\right) \left\{1 - \frac{\frac{RT}{E} \left[\frac{RT}{E}i^2 - i\left(\frac{RT}{E} - 1\right) - 2\right]}{\left(1 + i\frac{RT}{E}\right)^2}\right\} \tag{7a}
$$

The condition for obtaining an exact solution of eqn. (7a) is

$$
g(i) = \left[\frac{RT}{E}i^2 - \left(\frac{RT}{E} - 1\right)i - 2\right] \times \frac{1}{\left(1 + i\frac{RT}{E}\right)^2} = 0\tag{9}
$$

with two roots

$$
i_{1,2} = \frac{\frac{RT}{E} - 1 \pm \sqrt{\left(\frac{RT}{E} + 1\right)^2 + 4\frac{RT}{E}}}{2\frac{RT}{E}}
$$
(10)

The functions $F_{(a)}^{(i_1)}$ and $F_{(a)}^{(i_2)}$ are the exact solutions of the temperature integral. The two roots have different signs, namely $i_1 > 0$, $i_2 < 0$. It is obvious that $1 \le i_1 \le 2$. The diagram of $g(i)$, presented in Fig. 1, shows that for $i \in (E/RT, +\infty)$, $g(i)$ is a continuous growing function, so that the comparison of $|g(1)|$ with $|g(2)|$ will indicate a better approximation for an integer value of i. As

Fig. 1. Plot of g(i) vs. i.

$$
\left| \frac{g(1)}{g(2)} \right| = \frac{1}{2\frac{RT}{E}} \cdot \frac{\left(1 + 2RT/E\right)^2}{\left(1 + RT/E\right)^2} > 1
$$

for any T and E values, it appears that $|g(2)|$ is the smallest value, and $F^{(2)}_{(\alpha)} \equiv F^{\Delta-}_{(\alpha)}$

is the best *i*-integer value approximation of the solution $F_{(a)}^{(i_1)}$.

CONCLUSIONS

The general form

$$
F_{(a)}^{(i)} = \frac{A}{\beta} \frac{RT^2}{(E + iRT)} \exp(-E/RT), \qquad i \in R
$$

proposed in this paper solves the temperature integral by approximations.

Two particular functions, $F_{(a)}^{(l_1)}$, $F_{(a)}^{(l_2)}$, derived from this general function were obtained. The two functions solve exactly the temperature integral. The values i_1 and i_2 can be computed from

$$
i_{1,2} = \frac{\frac{RT}{E} - 1 \pm \sqrt{\left(\frac{RT}{E} + 1\right)^2 + 4\frac{RT}{E}}}{2\frac{RT}{E}}
$$

The best approximation for an integer value of i was found to be

$$
F_{(\alpha)}^{(2)} \equiv F_{(\alpha)}^{D-G} = \frac{A}{\beta} \cdot \frac{RT^2}{E + 2RT} \exp(-E/RT)
$$

The kinetics with linear heating programme is the limit for short time intervals of the kinetics with non-linear heating programmes.

REFERENCES

- 1 A.W. Coats and J.P. Redfern, Nature (London), 201 (1964) 68.
- 2 C.D. Doyle, Nature (London), 207 (1965) 290.
- 3 V.M. Gorbachev, J. Therm. Anal., 8 (1975) 349.
- 4 C. Popescu and E. Segal, Thermochim. Acta, 54 (1982) 357.
- 5 C. Popescu and E. Segal, J. Therm. Anal., 24 (1982) 309.