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The equation of non-isothermal kinetics

da A ,
——=— exp(— E/RT 1
where a, B8, A, E, R, T have the usual meanings, leads to the following
integral form for linear heating rate
« da A Ty
Fla)=| —=— expl—E/RT)dT la
(@ =[ fa =) ew—E/RT) (1a)
The right-hand side of eqn. (1a), called “temperature integral”, leads to a
solution by series and, in order to obtain a better approximation, some finite
solutions have been proposed.
(1) Coats and Redfern [1] have suggested the form
FC-R =£(1 _ 2RT) RT?
() B E E
for this integral, which is the result of an integration by parts of eqn. (1a).
(2) Doyle [2] and Gorbachev [3] have suggested another equation, namely
A RT?

F<€>_G=§'E—+—27ﬁ exp(—E/RT) (3)

exp(—E/RT) (2)

A method of comparing the approximation degree of these two solutions
was proposed by Gorbachev [3], and consists of considering the derivatives
of eqns. (2) and (3) with temperature

C—R 22
dFf 7" _4 (1 — 6REZT ) exp(— E/RT) (2a)

dT B
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2R*T?
(E+2RT)’

dFD—G_A

1__
dT B

exp(—E/RT) (3a)

and comparing the results with the right-hand side of eqn. (1). As
6RT*? - 2R*T?
E*  (E+2RT)

eqn. (3) is a better approximation of the solution.

Based on Gorbachev’s suggested method, a general finite approximative
solution of the temperature integral is proposed.

Let us suppose

1(T)=f:2 exp(— E/RT) dT = q(T) exp(~ E/RT) (4)

q(T) being an unknown T function which will be determined by calculus.
The derivative of eqn. (4) with temperature leads to the differential equation

dg , £

dT+RT2q=1 (4a)
For the next form of q(7')
q(T) = bT", i€R (5)
equation (4a) becomes
b(iT+£)T"2=1 (4b)
R
or
oL
. Lipi-2
(1T+ R )T
Taking into account eqn. (5), eqn. (4) becomes
RT?
W7T) =% x7 (- E/RT) (6)
Equation (1a) with eqn. (6) becomes
2
o4 R o o(—E/RT) (7)

= B E+iRT

and it is obvious that FQ=F2 ¢

From eqn. (7) other approximations can be derived for different values of
I

In a previous paper [4], based on a non-linear heating programme assump-
tion, the following equation has been proposed

F(a)=AaT exp(—E/RT) (8)
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where
R 1
a=rgTloar

Ar
But for Ar — 0 which means also T, » T
R 1 R_1

a=lim Ehoar “ETB
At
and eqn. (8) becomes
A RT?
F(,,)‘—‘ﬁ'—E——exp(-—E/RT) (8a)

which can also be obtained from eqn. (7) for i = 0. This identity leads to the
conclusion that kinetics with linear and non-linear heating programmes show
two sides of the same reality, the linear heating programme kinetics being
the limit, for short time intervals, of the non-linear heating programme
kinetics [5].

From eqn. (7), taking into account the derivative with temperature

HE SR

dFO i
—-——(a)=£ep(——E—) 1- ELE E (7a)
dT B RT RT\?
(1 +,-—)
E
The condition for obtaining an exact solution of eqn. (7a) is
~N_|RT ., (RT , 1 _
g(l)_lEl (E 1)' 2]X1 RTp D ®)
+ig ]
with two roots
RT RT 2 RT
| 75“1#(7“) AT
11.2 = 2&* (10)
E

The functions F(})’ and F{?’ are the exact solutions of the temperature
integral. The two roots have different signs, namely i, >0, i, <0. 1t is
obvious that 1 < i, <2, The diagram of g(i), presented in Fig. 1, shows that
for i€ (E/RT,+ ), g(i) is a continuous growing function, so that the
comparison of [g(1)| with [g(2)| will indicate a better approximation for an
integer value of i. As
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Fig. 1. Plot of g(i) vs. /.

‘ g)| 1 (1+2RT/E) o
g(2) ZEEZ (1+ RT/E)

for any T and E values, it appears that |g(2)| is the smallest value, and

2)= A—G
Ea) —Ea)

is the best i-integer value approximation of the solution F{}}.

CONCLUSIONS

The general form

2
F(l) — _"‘1 ____RI___
(@ B (E+IiRT)
proposed in this paper solves the temperature integral by approximations.
Two particular functions, £}, F\?, derived from this general function,
were obtained. The two functions solve exactly the temperature integral. The

values i; and 7, can be computed from

RT RT  \* RT

| “E—‘li\/(7“) A
" LRT
E

exp(— E/RT), i€R
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The best approximation for an integer value of i was found to be

F(2)5F0‘0=A RT?

(a) (a) E E+2RT exp(_E/RT)

The kinetics with linear heating programme is the limit for short time
intervals of the kinetics with non-linear heating programmes.
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