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The equation of non-isothermal kinetics 

dcu 
-,A exp(-E/RT) 
f(a) P 

(1) 

where (Y, /I, A, E, R, T have the usual meanings, leads to the following 
integral form for linear heating rate 

F(a)=/ua&=$lTyexp(-E/RT) dT (14 

The right-hand side of eqn. (la), called “temperature integral”, leads to a 
solution by series and, in order to obtain a better approximation, some finite 
solutions have been proposed. 

(1) Coats and Redfern [l] have suggested the form 

(2) 

for this integral, which is the result of an integration by parts of eqn. (la). 
(2) Doyle [2] and Gorbachev [3] have suggested another equation, namely 

2 

FO-G=$.EfrRT exp(-E/RT) (a) (3) 

A method of comparing the approximation degree of these two solutions 
was proposed by Gorbachev [3], and consists of considering the derivatives 
of eqns. (2) and (3) with temperature 

dFC-R A 
-=p[l -F) exp(-E/RT) 
dT 

(24 
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dFD-y!. 1_ 

[ 

2R2T2 

P (E+2RT)’ 1 exp( - E/RT) 
dT 

(34 

and comparing the results with the right-hand side of eqn. (1). As 

6R2T2 2R2T2 

E2 ’ (E + 2RT)2 

eqn. (3) is a better approximation of the solution. 
Based on Gorbachev’s suggested method, a general finite approximative 

solution of the temperature integral is proposed. 
Let us suppose 

I(T) =/” exp(-E/RT) dT=q(T) exp(-E/RT) (4) 
=I 

q(T) being an unknown T function which will be determined by calculus. 
The derivative of eqn. (4) with temperature leads to the differential equation 

~+-+=1 (44 

For the next form of q(T) 

q(T) = bT’, iER 

equation (4a) becomes 

(5) 

or 

b= 
1 

Taking into account eqn. (5), eqn. (4) becomes 

I(T) = ER+T;T(-E/RT) (6) 

Equation (la) with eqn. (6) becomes 

2 

ER+?;RT exd-E/RT) 

w 

(7) 

and it is obvious that Fc(,:)=Fcf;’ 
From eqn. (7) other approximations can be derived for different values of 

I. 
In a previous paper [4], based on a non-linear heating programme assump- 

tion, the following equation has been proposed 

F( CX) = AaT exp( - E/RT) (8) 
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where 

.z&- 1 

E ‘AT 

At 

But for At -+ 0 which means also I& + T 

a= lim &T- 
At-0 E ’ A1T E ji’ 

=RT1 

At 

and eqn. (8) becomes 

- E/RT) 

which can also be obtained from eqn. (7) for i = 0. This identity leads to the 
conclusion that kinetics with linear and non-linear heating programmes show 
two sides of the same reality, the linear heating programme kinetics being 
the limit, for short time intervals, of the non-linear heating programme 
kinetics [5]. 

From eqn. (7), taking into account the derivative with temperature 

(7a) 

The condition for obtaining an exact solution of eqn. (7a) is 

with two roots 

(9) 

+k/(~+l)2+4Jg 
11.2 = 

2RT 

E 

The functrons F,zj’ and F,:;’ are the exact solutions of the temperature 
integral. The two roots have different signs, namely i, > 0, i, < 0. It is 
obvious that 1 < i, -C 2. The diagram of g(i), presented in Fig. 1, shows that 
for i E (E/RT, + co), g(i) is a continuous growing function, so that the 
comparison of ]g(l)] with ]g(Z)] will indicate a better approximation for an 
integer value of i. As 
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Fig. 1. Plot of g(i) vs. i. 

g(l) I I 1 - =-. 
g(2) 

(1 -t 2zW/q2 > ] 

2T (1+ zW/q2 

for any T and E values, it appears that lg(2) 1 is the smallest value, and 
F’&F”-G 

(a) (a) 

is the best i-integer value approximation of the solution F/i\‘. 

CONCLUSIONS 

The general form 

F(‘) = !!. RT2 
(a) jj (E+ I’RT) exp(-E/RT)’ iGR 

proposed in this paper solves the temperature integral by approximations. 
Two particular functions, <;a, (‘I), F(cf), derived from this general function, 

were obtained. The two functions solve exactly the temperature integral. The 
values i, and i, can be computed from 
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The best approximation for an integer value of i was found to be 

F((=;‘FD-G = ! 
a (a) p * E +“;;, exp(-E/RT) 

The kinetics with linear heating programme is the limit for short time 
intervals of the kinetics with non-linear heating programmes. 
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