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ABSTRACT 

A study has been made of the available information concerning the variation of the 
viscosities of acetonitrile-water mixtures with composition in the acetonitrile-rich region. The 
study shows that the viscosity maximum reported at X(ACN) = 0.9 is an artifact of an 
overparameterised curve fitting procedure. 

The use of a segmented composition model led to some tentative conclusions about the 
patterns of molecular aggregation of this system. 

INTRODUCTION 

Results have been reported of an analysis of excess viscosities of 
acetonitrile-water mixtures using a model which incorporates the assump- 
tion that this system possesses three distinct composition segments [l]. The 
data employed in that analysis were taken from a tabulation by Moreau and 
Douheret [2] which they had generated by interpolation of the primary data 
of Mato and Hernandez [3]. 

The primary data consists of viscosity values for both of the pure liquids 
and for eight mixtures at each of five temperatures. A disturbing feature of 
that data is the sparseness of information for mole fractions of acetonitrile 
(X,) > 0.4. Bearing in mind that the tabulation of ref. 2 contains an 
interesting viscosity maximum at X, = 0.9, it was thought to be desirable to 
look for additional information about the acetonitrile-rich composition 
region. 

A number of viscosity measurements were made in this laboratory at 
several different temperatures and, while there were no major discrepancies 
between these values and those of ref. 3, there was no indication of a 
viscosity maximum at X, = 0.9. Three additional viscosity data sets were 
found in the literature [4-61. While the data of ref. 4 differs quite signifi- 
cantly from the other sets, those of refs. 3,5 and 6 form a combined set with 
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a reasonable level of internal consistency but with no suggestion of a 
viscosity maximum at X, = 0.9. 

There is a further source of information about the transport characteristics 
of this system in the form of tritiated water and i4C-labelled acetonitrile 
tracer diffusion coefficients [7]. 

The original objective of this work was to explore the temperature 
dependence of the three-segment model parameters for excess viscosity and 
to determine, and if possible interpret, the model parameters for the excess 
molar enthalpies and entropies of viscous flow activation. 

It soon became apparent that the first priority was to settle the basic 
question of the shape of the viscosity curve at higher acetonitrile mole 
fractions. That particular venture was substantially facilitated by the availa- 
bility of a modification of the original three-segment model, which had been 
developed in the course of a series of analyses of the excess molar volumes of 
the acetonitrile-water system [8]. 

In addition to its utility as a curve-fitting tool, the three-segment model 
appears to have the merit that its parameters are each related to some aspect 
of the patterns of molecular aggregation of the system. Consequently, there 
exists the hope that, from the analyses of a variety of physical properties, 
one may be able to form a progressively clearer idea of the nature of the 
dominant structural and energetic features of this particular class of binary 
liquid mixtures. 

The three-segment model was derived for the analysis of excess extensive 
properties of binary liquid systems. From the standpoint of curve fitting, it 
does not really matter how the ideal, and hence excess, properties are 
defined. Nor is the distinction between intensive and extensive properties of 
any real consequence. Those factors do, however, represent areas of concern 
when the model parameters are to be contemplated as items of structural 
information. 

EXCESS TRANSPORT PROPERTIES 

There does not appear to be an obvious preferred choice of definition for 
the viscosity of an ideal binary liquid system. As a consequence, different 
authors may present alternative versions of the excess viscosities of the same 
system. The approach that has been adopted in this work differs in several 
respects from that described in ref. 2. 

Equation 1 was chosen, for the analyses reported in ref. 1, on the grounds 
that it has been described as being satisfactory for systems which behave 
ideally in other, less ambiguous, contexts [9] 

In 9 (ideal) = (1 - X, ) In T& + X, In $, (I) 

where X, is the mole fraction of acetonitrile and T& and T& are the 
viscosities of pure water and acetonitrile, respectively. 
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A more realistic definition might be one that also reflects the sensitivity of 
the viscosities of liquids to their molar volumes 

ln( qv )(ideal) = (1 - XA) ln( &,v$.) + X, ln( $vi) (2) 

It is noted that the product qll/is a molar property with units of J s mol-‘. 
As such it is presumed to be a more appropriate candidate for analysis by 
the three-segment model. 

Numerous authors have explored the relationship between tracer diffusion 
coefficients and viscosity. The Stokes-Einstein equation is probably the 
most familiar and the one most frequently employed as a basis for compari- 
son with others. 

where D, is the diffusion coefficient of species j moving in a liquid of 
viscosity q and r, is the molecular radius of that species. 

Before looking at any specific models for viscous flow, it is appropriate to 
draw attention to a number of empirical relationships. 

It was observed by Easteal [7] that 

D&&,(1.985) = D$&(2.006) (4) 

D,w&(1.469) = D,$$(1.506) (5) 

where the unit of the products Dq is lo-’ g cm s-*. 0: and 04 are the 
respective diffusion coefficients of acetonitrile in pure water and of water in 
pure acetonitrile. 

The differences are comparable in magnitude to the precision of the 
various measurements. 

From those two conditions it follows that 

~(1.332)=~(1.352)=f(l.319) 
A A A 

Somewhat less exact is the condition that 

= (1.430) 

In the same general context, it is noted that 

(6) 

(7) 

Contrary to the inference that might be drawn from eqns. (4) and (5), the 
products D,q and DAq show quite significant deviations from being con- 
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stant across the entire composition range. The ratio D,/D, also varies quite 
markedly with composition. 

It is found that the available data is reasonably consistent with the 
equation 

This is a modified version of an empirical relationship proposed by 
Albright [lo]. It differs from the original in so far as it drops the distinction 
between the partial molar volumes of the components and their pure liquid 
molar volumes. 

It is suggested that the variations in the ratio Dw/DA, with composition, 
arise because the molecules of the two components are moving in different 
time-averaged local environments. It seems appropriate to introduce the 
concept of effective component viscosities as defined by 

(11) 

where D$ is the diffusion coefficient for water in a mixture of composition 

XA. 

Thus eqn. (10) becomes 

qF= (1+ x,) T&V, + XAT12VA (12) 

It is customary to treat the translational motions of individual molecules 
in a liquid medium as consisting of a sequence of jumps, which are separated 
by periods of libration. The jumps are characterised by a distance X and a 

frequency Y. 
In Eyring and co-workers’ treatment, the diffusion coefficient is expressed 

by VW1 
D, = (A’v)~ (13) 

The same model defines the viscosity to be 

a, kT 
v=-- 

a2a3 X2v 

where a, is the distance separating two adjacent molecular layers, a2a3 is the 
area of contact between one molecule and those of the next layer, and k is 
the Boltzmann constant. 

The number of model parameters can be reduced by replacing the ratio 
a1/a2a3 by a2/Vm (where V,( = r/N) is the molecular volume), thus 

a2 NkT 
77=y7 05) 

Combining eqns. (8) and (9) with (13) and (15) leads to 

(16) 
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The most significant aspects of Eyring’s work result from the analogy 
drawn between the jump frequency for viscous flow and a chemical reaction 
frequency. Using the general approach of absolute reaction rate theory, he 
produced the following expression for the jump frequency 

v= f$ exp(-G#/RT) 
i 1 (17) 

where GZ is the molar free energy of activation for a molecular jump, h is 
Planck’s constant and N is Avogadro’s number. 

What exactly is embraced by the term free energy of activation is not 
altogether clear. A hole must be created for the mobile molecular to jump 
into. At the same time the mobile molecule must detach itself from one 
group of neighbours in order to join a new group. In the case of a pure liquid 
both processes involve disruptions to the same pattern of molecular aggrega- 
tion. Consequently it is not surprising to discover that there is a rough 
proportionality between enthalpies of activation and heats of vaporization. 

To obtain more explicit expressions for the diffusion coefficients, it is 
necessary to furnish an estimate of the jump distances h. A reasonable 
choice, in the case of a pure liquid might be a molecular diameter, i.e. 

xw = ( V,/N)1’3 (18) 

This leads to the equations 

exp( -GG’/RT) (19) 

0 - qw - ---$-hN exp( G&‘/RT) 
W 

(20) 

A more difficult choice is that of an expression for a jump distance of the 
type A$,,,; that of a water molecule in a purely organic environment. 

It is suggested that, so long as the two molecular species do not differ too 
greatly in size that, it is reasonable to adopt the assumption that 

x”,=X”w=(v$‘N)“’ (21) 
If such is the case, then from eqns. (6) (7), (13) and (21) we derive 

Thus 
A 

VW 
0 

VA 

44 v” A =-=- 
W v” (23) 

VA W 

Combining eqns. (17) and (23) leads to 

vi 
~0 = exp[ ( Gz” - G=P)/RT] 

W 
(24) 
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or 

Gz” - GGA = RTln( c/V:) (25) 

It is appropriate to seek a suitable definition of the ideal molar Gibbs free 
energy of activation for a mixture of composition X,. 

Given that 

G+=H+-TS+ (26) 

it seems reasonable to assume that 

Hf (ideal) = (1 - X,) HG” + XAHzo (27) 

The ideal entropy of a mixture is usually defined as 

S= (1 - X,)S& + X,gi - R ln[ (1 - x,)“-~*‘x,XI] (28) 

It also seems to be reasonable to assume that the mixing term applies to 
both the equilibrium and activated complex states of the mixtures and, thus 

$’ ideal = (1 - X, ) ,?G” + XA,?zo (29) 

which gives 

@ ideal = (1 - X, ) cG” + XA?$’ (30) 

This is consistent with eqn. (2), if 

(7711) ideal = g exp( c# ideal/RT) (31) 

If the apparent Gibbs free energy of activation for a mixture of composi- 
tion X, is defined by 

(32) 

then the excess quantity is 

AC+= RTA ln(qV) (33) 

When viscosity and molar volume values are available over a range of 
temperatures, it is common practice to plot ln(n1/) against T-’ to derive a 
value for the molar enthalpy of activation. 

We may write the equation 

ln(~V)=ln(hN/277)+$$-$ (34) 

Some assumptions have to be made in order that plots of ln(nV) versus 
T-’ can become the source of H’ and Sz values: . 

(a) It is assumed that HZ and Sz are both insensitive to temperature 
changes. If that be the case, the plot should reveal a linear dependence of 
ln(nV) upon T-‘. 
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(b) The validity of the values derived for S# are directly related to the 
validity of the term hN/2n, part of which is inherent in the Eyring 
model and part in the adoption of eqn. (8). 

It is suggested that so many assumptions are involved in the evaluation of 
S+ by this approach that the numbers that one arrives at are essentially 
meaningless. 

Some of the problems that might be associated with those assumptions 
will diminish if interest is restricted to the excess molar quantities AH+ and 
AS, where 

(35) 

THE THREE-SEGMENT MODEL 

The derivation of the equations which make up the original (five parame- 
ter) version of the three-segment model is described in ref. 1. The model 
incorporates the assumption that the total composition range of the 
acetonitrile-water system may be treated as consisting of three distinct 
segments. The equations are derived from the Gibbs-Duhem equation along 
similar lines to those used to obtain the Margoules equations. It is assumed 
that both the excess molar quantity AQ and its composition derivative 
dAQ/dX, are single valued at both of the segment junctions X, = X, and 
x, = xi,. 

The model equations for the three segments are, respectively: For the 
water rich segment, 0 < X, < X, 

AQ= SX,(l - X,) + A&X, 
i 

(1 - x,) -(l - xi)* 

X: 

+AQ;X,-: &,X,(X,-X,)* 

for the central (microheterogeneous) segment, Xi < X, < Xi, 

AQ= SX,(l - X,) + A&(1 - X,) + AQ;X, 

For the acetonitrile rich segment, X,, < X, < 1 

(36) 

(37) 

AQ=BX,(l-X,)+A&,(l-X,)+A@(l-X,) 

- tc,(l - xA)(xA - x,I)2 (38) 

The parameters AQ& and ApA appear in the derivation of the model 
equations as excess molar properties of hypothetical standard states of 
acetonitrile and water, respectively, for the central composition segment. The 
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term microheterogeneous has been applied to that segment to express its 
authors’ contention that the molecules of each component tend to self 
aggregate in some globular or layered fashion [13]. In ref. 8, the excess molar 
volume parameters AF$, and Avi were determined for this system, for 
ranges of both temperature and applied pressure, and interpreted as being 
properties of the component microphases. 

B, Cw and C, are Margoules parameters. B represents the effects upon the 
property 0 of interactions between unlike pairs of molecules and thus 
describes the interface between the two microphases. C, and C, are related, 
in some fashion, to the interactions between the aggregates of the central 
segment and those of the pure liquids. 

It was noted in ref. 8 that the number of model parameters can be reduced 
from five to three by requiring that d*A@dXi must be single valued at each 
of the segment junctions. The additional constraints lead to the conditions 
that 

In the analyses of excess molar volume data, it was found that there is 
relatively little difference between the optimal fitted curves derived from the 
three- and five-parameter models. It was judged that, in that particular 
context, one should only venture to use the more flexible, and thus error-sen- 
sitive, five parameter version when dealing with data with a high point 
density and a high level of precision. 

EXCESS VISCOSITIES AT 25°C 

It should be recognised that ref. 3 contains viscosity data for 15, 20, 30, 40 
and 50°C but not for 25°C. It was however a simple matter to derive 25°C 
values by interpolation for each of the eight mixtures studied. The inter- 
polated values all lie close to the fitted curve, derived from the same data, 
which is given in ref. 2. 

The 25°C viscosity data of refs. 3, 5 and 6 were analysed individually and 
collectively using both the five and three parameter versions of the three-seg- 
ment model. The segment junctions were fixed at Xi = 0.25 and X,, = 0.70, 
which had been found to be the optimum combination for the excess molar 
volume data [8]. Analyses were also performed upon the viscosity curve that 
is derived from the tracer diffusion coefficient data of ref. 7 using eqn. (12). 
For what was primarily regarded as a curve fitting exercise, the analyses were 
carried out on the excess viscosities AT) as defined by eqn. (1). The results of 
these analyses are set out in Table 1. 
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10 

Fig. 1. A comparison of the three- and five-parameter fitted curves for the excess viscosities of 
acetonitrile-water mixtures derived from the data of Mato and Hernandez [3]. (p ) 
three-parameter curve, (- - - - - -) five-parameter curve. The data points are represented by 

crosses. 

The fitted curves derived using the five-parameter model for the three 
individual data sets are all markedly different. The fitted curve for the data 
of ref. 3 is very similar to that described in ref. 1 for the analysis of the 
tabulation of ref. 2. Of those three viscosity data sets only that of ref. 6 
yields a fitted curve which is similar in form to those obtained from analyses 
of the combined data. 

There is a pleasing consistency among the parameters derived from the 
various three-parameter analyses. Each of the fitted curves possesses a 
prominent maximum at X, = 0.15 and a relatively shallow minimum at 
X, = 0.75. These fitted curves are quite similar in form to those obtained 
from the five-parameter analyses of the data of ref. 6, of the combined 
viscosity data and of the excess viscosities that were generated from the 
diffusion coefficient data of ref. 7. 

The difference between the fitted curves derived from the three- and 
five-parameter analyses of the excess viscosity data obtained from ref. 3 is 
shown in Fig. 1. It should be pointed out that ref. 7 contains a comparative 
plot of the Moreau-Douheret viscosities [2] and viscosities calculated from 
diffusion coefficients. That plot shows the same general difference of form in 
the acetonitrile rich segment as is seen in Fig. 1. 

Easteal[7] attributed the difference to a failure in Albright’s equation [lo]. 
It now seems clear that the peak at X, = 0.9 is spurious and is an artifact of 
the combination of less than perfect data and an overly flexible fitting 
function. 

The question arises as to whether the differences between the results of the 
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three- and five-parameter analyses, of the combined excess viscosity data set 
and of the data derived from diffusion coefficients, are significant. The 
appropriate answer would appear to be that the distinction drawn in the 
five-parameter model between the values of A&, and - +CW‘X: is probably 
significant in a purely curve fitting context, but is not so obviously so that it 
could be treated as a reliable piece of information about the structural and 
dynamic characteristics of the system. 

It should be pointed out that the diffusion coefficient values, tabulated by 
Easteal [7], are those of smooth curves fitted to his own primary data. From 
the accompanying graphs it is evident that the point density of the primary 
data is high enough so that there is no possibility that the smooth curve 
contains any significant artifacts of the type identified in the tabulation of 
ref. 2. 

ANALYSES OF A ln( TV?--) 

In view of the doubts expressed about the appropriateness of using the 
three segment model as an interpretive tool for analysing intensive proper- 
ties, and the existence of eqn. (33), analyses were carried out upon the 
quantities Aln( nv). 

The results of those analyses are given in Table 2. The five-parameter 
results are only given for the data of refs. 6 and 7 and for the combined data 

of refs. 3, 5 and 6. 
Also given in Table 2 are the results of three-parameter analyses carried 

out on viscosity data obtained at several different temperatures. 
Both three- and five-parameter analyses were performed upon the quanti- 

ties Aln(nWv) and Aln(qIAv) where the quantities qW and qA are the 
effective component viscosities defined by eqn. (11) and derived from the 
diffusion coefficient data of ref. 7. The results are reported in Table 3. 

ACTIVATION PARAMETERS 

From Table 2, it is seen that the data of ref. 4 are clearly inconsistent with 
all of the other sources of information. It is further seen that the three 
parameters B, Aln( SF)‘& and Aln( qv)i vary in a fairly regular fashion with 
temperature. 

Assuming that all of the appropriate conditions prevail, those three 
quantities were plotted against T-’ to give the components of AH+ and 
AS. 

The same quantities can be derived from the Mato-Hernandez data in 
another way. For each of the eight mixtures and the two pure liquids, one 
may calculate ln( TIT) at each of the five temperatures. Thus, for each 
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TABLE 2 

Results of analyses of the quantities Aln(nv) for acetonitrile-water mixtures using the 
three-segment model (X, = 0.25, X,, = 0.70) 

Three parameter version (T = 25°C) 
Ref. B Aln( q&g Aln( nv)i u 

3 - 0.056 0.353 - 0.095 0.0219 

5 - 0.104 0.373 - 0.050 0.0143 

6 - 0.063 0.371 -0.116 0.0116 

356 + 0.070 0.345 -0.110 0.0173 

7 + 0.015 0.358 - 0.083 (0.0081) 

Five parameter version (T = 25 “C) 
Ref. B AIn( AIn( - fCwX, ‘C -z A 0 

(I- X,d3 

6 - 0.052 0.443 - 0.132 0.093 0.016 0.0041 

3,596 + 0.262 0.308 - 0.162 0.418 0.019 0.0173 
7 + 0.205 0.330 - 0.143 0.371 0.081 (0.0056) 

Three parameter version (T = 15-50°C) 
Ref. T(“C) B Aln(nv)& Aln( vv)i (I 

3 15 -0.137 0.397 - 0.105 0.0231 
3 20 - 0.106 0.376 - 0.101 0.0227 

3 30 0.016 0.327 - 0.089 0.0203 

3 40 0.054 0.295 - 0.079 0.0165 
3 50 0.086 0.270 - 0.078 0.0149 

4 20 - 0.255 0.422 0.116 0.0204 

TABLE 3 

Results of analyses of the quantities Aln( n w v) and Aln( qIA?) for acetonitrile-water mixtures 
using the three-segment model (X, = 0.25, X,, = 0.70) 

B AIn( Aln(nv)i -+c,x,s ‘C -I A 0 

(I-- x,,s 

Three parameter version 
AWqwv) 1.098 0.186 0.032 0.0092 
Aln(d - 0.371 0.209 - 0.004 0.0029 

Five parameter version 
AIn(q,v) 1.359 0.118 -0.019 0.414 0.072 0.0043 
Aln(d? - 0.406 0.221 0.001 0.162 0.005 0.0024 
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TABLE 4 

Three-segment model parameters for the excess molar enthalpies and entropies of activation 

for viscous flow of the acetonitrile-water system 

B Ai% @Z 0 

From the AG */RT parameters of Table 2 
AH + /R - 623 345 
ASZ/R - 2.04 + 0.80 
a 0.0233 0.0055 

From the AHf/R and A.?+/R curves 
AH+/R - 641 349 
AS+/R - 2.10 + 0.82 

-78 
- 0.17 

0.0027 

-76 31.1 
- 0.16 0.089 

mixture one may obtain the quantities AH+ and AS+. The two curves thus 
generated may then be analysed using the three parameter version of the 
three-segment model. The results of these analyses are given in Table 4. 

DISCUSSION 

Curve fitting 

For high quality data sets of the excess properties of a binary liquid 
system, it is customary to fit the data with a continuous function of the form 

n 
Ae= X,(1 - X,) c A,(1 - 2X,)‘-’ (41) 

where the coefficients A., are determined by least-squares optimisation and 
the mole fractions X, rmght be replaced by volume fractions. 

This is equivalent to fitting an n + 1 order polynomial to the property G 
For mixtures of water and polar organic liquids, it is found that the number 
of terms needs to be at least five to provide a satisfactory replica of the data 
set. If all that is required of a fitting function is the provision of an algebraic 
summary of the data and, in the value of the standard deviation a( Ag), a 
measure of the quality of the data, there would generally be no need to resort 
to the use of any other equation. 

In this work, however, we have encountered data sets which are too sparse 
to warrant the use of a fitting function with the flexibility of eqn. (41). It is 
the sparseness more than the imperfections of the Mato-Hernandez data 
that result in the fitted curve of ref. 2 including features which are demon- 
strably spurious. The same feature also appears in the fitted curve that is 
generated by the five parameter version of the three-segment model. 
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The fitted curves that are generated using the three parameter version of 
the three-segment model with the excess viscosity data all have the same 
general form, which happens to be that of the combined data. The three 
parameter version is to be preferred to more flexible models when the data is 
restricted to some ten or less points. That may well mean that certain 
interesting features, at the extremes of the composition range, will be missed 
but that is a situation which can only be avoided by improving the data base. 

STRUCTURAL INFORMATION 

The addition of acetonitrile to water, up to X, = 0.1 produces a significant 
increase in viscosity. This, despite the fact that acetonitrile itself is much less 
viscous than water. From Tables 1 and 2, it is evident that this increase in 
viscosity is associated with the variation of the pattern of water self-aggrega- 
tion. In ref. 8, it was reported that the excess molar volume data for this 
system is consistent with the idea that, in the presence of acetonitrile, water 
adopts a more compact than normal mode of grouping to form “micro- 
phases”. It is also apparent that these microphases represent a lower en- 
thalpy state of water [l]. 

If the activation parameters are meaningful quantities, we deduce from 
the results given in Table 4 that microphase water has a higher enthalpy and 
entropy of activation than does normal water, This is consistent with a 
situation in which the activated complexes of the two states of water are 
essentially the same and in which the microphase state is of lower enthalpy 
and entropy. It is interesting to note that, in a recent review article, Stillinger 
describes the effect upon the aggregative pattern of the water molecules in 
the immediate vicinity of an inert solute as leading to decreases in both 
enthalpy and entropy [14]. 

From the results given in Table 3, it appears that the formation of 
microphase water diminishes the mobilities of both components. There is a 
shoulder in the Aln( nwv) curve at X, = 0.10, which is strongly reminiscent 
of one in the AC curve of ref. 15. It is the accommodation of this shoulder 
which is primarily responsible for the decrease in the standard deviation 
a(A ln(nw&) on going from the three- to the five-parameter model. The 
parameter C, is tentatively associated with interactions between microphase 
and normal water aggregates. Work is currently in progress to see if it is 
possible to arrive at a clearer concept of the implications of that parameter 

WI. 
From Table 2, it appears that microphase aggregation of acetonitrile 

results in a net lowering of the free energy of activation for viscous flow. 
From Table 4 it is seen that there is a modest lowering of both the enthalpies 
and entropies of activation in the change from normal to microphase 
acetonitrile. That description seems to be consistent with the earlier findings 



163 

that the microphase acetonitrile is both less dense and of higher en_thalpy 
than the normal liquid [l]. The results of the analyses of Aln(nwV) and 
Aln(q*v) are ambiguous in so far as information about the acetonitrile 
microphase is concerned. 

Parameters of the type B are associated with the interactions between 
unlike pairs of molecules. Thus, in some fashion, they contain information 
about the interface between the two microphases. The results of Table 2 
reveal that the B contribution to the excess free energy of activation is 
relatively small. It should be borne in mind that the maximum contribution 
BX,(l - X,) is only 0.25B. The parameter is fairly strongly temperature 
dependent. B( AH+) and B( AI\S#) are both significantly negative. 

It is seen that the respective B parameters for Aln(nwv) and Aln( q*v) 
are very different. It appears that the interfacial interactions tend to restrict 
the mobility of water molecules but there is a modest increase in the 
acetonitrile mobility. 

One may speculate endlessly about the significance of these results, but 
one keeps coming back to the realization that not only is the three-segment 
model itself a relatively untried approach to analysis, but one is also working 
with general models of viscous flow which are of questionable validity. 

SUMMARY 

The shape of the viscosity versus molar composition curve, for the 
acetonitrile-water system has been studied and, in so far as its major 
features are concerned, it has been characterised. It has been demonstrated 
that the tabulation of ref. 2 contains a spurious peak in the acetonitrile-rich 
segment. It has also been demonstrated that a simplified version of the 
three-segment model of ref. 1 is a reasonably safe curve-fitting tool for the 
primary data of Mato and Hernandez. 

An effort has been made to formulate a procedure for interpreting the 

various sets of transport property data that are to be found in the literature. 
Results of analyses, using the three-segment model are presented. The 

dominant viscosity peak is attributed to the formation of aqueous micro- 
phases in the presence of acetonitrile. The profound difference between the 
excess tracer diffusion coefficients of tritiated water and “C-acetonitrile are 
associated with the effects of the existence of microphase interfaces on the 
mobilities of the component molecules. 
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