ETUDE THERMODYNAMIQUE DU SYSTEME PLOMB-SELENIUM PAR CALORIMETRIE

K.P. KOTCHI, R. CASTANET et J.-C. MATHIEU

Centre de Thermodynamique et de Microcalorimétrie du CNRS, 26, rue du 141ème R.I.A., 13003 Marseille (France)

(Reçu le 15 decembre 1983)

ABSTRACT

The enthalpy of formation of Pb-Se liquid alloys was measured at nine temperatures by direct reaction calorimetry (drop method) for $0 < x_{\rm Se} < 0.5$ and 883 < T < 1365 K. The enthalpy of formation is strongly negative in the whole range investigated. It is not dependent on the temperature when $x_{\rm Se} < 0.3$ but increases strongly with temperature when $0.3 < x_{\rm Se} < 0.5$ ($\Delta C_{\rm p,max} \simeq 90$ J K⁻¹ mol⁻¹ at $x_{\rm Se} = 0.5$).

RESUME

L'enthalpie de formation des alliages liquides de plomb et de sélénium a été mesurée à neuf températures par calorimètrie de réaction directe (méthode de chute) pour $0 < x_{\rm Se} < 0.5$ et 883 < T < 1365 K. L'enthalpie de formation est fortement négative dans tout le domaine étudié. Elle est indépendante de la température pour $x_{\rm Se} < 0.3$ et augmente au contraire fortement avec elle pour $0.3 < x_{\rm Se} < 0.5$ ($\Delta C_{\rm p,max} \simeq 90$ J K⁻¹ mol⁻¹ pour $x_{\rm Se} = 0.5$).

INTRODUCTION

Le nombre élevé de travaux consacrés aux alliages plomb-sélénium tient pour une large part à l'existence du composé semiconducteur PbSe aux applications pratiques déjà anciennes [1,2] et à la présence probable, en phase liquide, d'associations de même stoechiométrie [3].

Les fonctions thermodynamiques de formation de PbSe sont bien connuès depuis les travaux de Finch et Wagner [4], Sadykov et Semenkovitch [5] et Schneider et Guillaume [6] par potentiométrie et ceux de Zlomanov et al. [7], Sokolov et al. [8], Hansen et al. [9] et Drowart et Colin [10] par effusion de Knudsen. La capacité thermique du composé solide est également connue entre 300 K et sa température de fusion par les mesures de Parkinson et Quarrington [11] et surtout de Rasulov et Medzhidov [12].

En ce qui concerne la phase liquide, l'activité du plomb a été déterminée

par potentiométrie entre 1073 et 1343 K par Schneider et Guillaume [6] pour $0,475 \le x < 0,943$. La capacité thermique de l'alliage liquide equiatomique est d'autre part connue entre 1354 et 1480 K depuis les mesures de Rasulov et Medzhidov [12].

Enfin, nous avons récemment déterminé par calorimétrie de réaction directe (méthode de chute) [13], l'enthalpie partielle du sélénium et l'enthalpie intégrale de formation des alliages Pb-Se riches en plomb à six températures comprises entre 611 et 910 K. Cependant, du fait du faible domaine d'existence, à ces températures, des solutions liquides monophasées, le travail précédent n'a pas permis de suivre l'évolution avec la température de l'enthalpie de formation du liquide. Or, l'on sait l'importance que revêt la connaissance de la capacité thermique d'un liquide à fortes interactions lors de l'interprétation de son comportement thermodynamique dans le cadre du modèle associé [14,15]. C'est pourquoi nous avons repris le même type de mesures à plus haute température.

METHODE EXPERIMENTALE

Le dispositif expérimental est essentiellement constitué d'un calorimètre Calvet haute température ($T \le 1100$ °C) et d'une cellule de calorimétrie de chute analogue à celle qui a été utilisée pour le travail précédent.

Les enthalpies partielles du sélénium dans le plomb ont été mesurées à température constante par additions successives de petites quantités δn de sélénium solide à 300 K au bain métallique (plomb liquide pur avant la première addition de sélénium).

Les premières additions de sélénium conduisaient à un alliage monophasé liquide

$$\delta n \operatorname{Se}(\operatorname{cr}, 300 \text{ K}) + N \operatorname{Pb}_{1-x} \operatorname{Se}_{x}(1, T) \to (N + \delta n) \operatorname{Pb}_{1-x-\delta x} \operatorname{Se}_{x+\delta x}(1, T) \tag{1}$$

où T est la température du calorimètre; x est la fraction molaire en sélénium du bain avant l'addition; et $\delta n (\ll N)$ est la quantité molaire de sélénium dont l'addition provoque une variation δx de la fraction molaire en sélénium du bain. L'effet thermique produit, rapporté à une mole de soluté, noté $\Delta_{\text{diss}}h$, comprend la variation d'enthalpie du sélénium entre 300 K et T, $\Delta_{300}^T h$ (Se), et l'enthalpie partielle de mélange du sélénium à la température T, $\Delta_{1}h_{\text{Se}}(x, 1, T)$

$$\Delta_{\text{diss}} h = \frac{\Delta H}{\delta n} = \Delta_{T0}^T h(\text{Se}) + \Delta_f h_{\text{Se}}(x, 1, T)$$
 (2)

Lorsque le domaine diphasé est atteint par saturation de la phase liquide, toute addition de sélénium se fait alors suivant le mécanisme suivant

$$\delta n \text{Se(cr, 300 K)} + N \text{Pb}_{1-x^{\text{L}}} \text{Se}_{x^{\text{L}}}(1, T) + N' \text{PbSe(cr, } T)$$

 $\rightarrow (N' + \delta n') \text{PbSe(cr, } T) + (N + \delta n - 2\delta n') \text{Pb}_{1-x^{\text{L}}} \text{Se}_{x^{\text{L}}}(1, T)$ (3)

TABLEAU 1 Enthalpie partielle du selenium et enthalpie intégrale de formation des alliages Pb-Sc par référence aux constituants purs liquides en fonction de la fraction molaire en sélénium

$x_{\rm Se} \times 10^2$	$-\Delta_{\rm f}h_{\rm Se} ({\rm J~mol}^{-1})$	$-\Delta_{\mathbf{f}}h$ $(\mathrm{J\ mol}^{-1})$	$x_{\rm Se} \times 10^2$	$- \Delta_f h_{Se} $ $(J \text{ mol}^{-1})$	$-\Delta_f h$ (J mol ⁻¹)
T = 883 K		. <u> </u>			
0,17	63 647	109	6,95	120 332	7 874
0,21	68 454	146	10,84	122 545	12 678
0,44	66 350	297	14,60	125 110	17 414
a	а	а	17,85	122 633	21 418
0,71	114 813	682	21,30	122 633	25 665
0,79	117 415	707	23,20	124 281	26 644
1,07	112 227	1 084	24,22	125 164	29 367
1,24	114 771	1 222	26,96	125 152	32 828
1,38	115 663	1 443	27,50	123 955	32 100
1,63	115 993	1 682	29,35	125 407	35 852
1,67	124 319	1 807	31,44	125 855	38 518
1,91	122 729	2 100	31,62	125 127	37 376
2,01	118 173	2 129	33,54	123 156	41 112
2,20	123 085	2 456	35,13	118 629	41 551
2,31	116 578	2 481	35,93	124 043	44 095
2,53	123 612	2 908	37,84	120 654	44 857
2,73	118 587	2 975	38,05	122 804	46 693
2,89	120 683	3 309	40,74	121 198	48 421
3,13	120 968	3 468	43,21	123 160	51 530
3,28	122 202	3 786	45,57	121 177	54 425
3,55	120 273	3 970	47,74	116 859	56 915
3,69	122 833	4 284	49,96	112 558	59 287
4,03	121 206	4 552	51,37	97 194	60 350
4,51	120 064	5 130	•		
T = 954 K					
0,24	76 931	188	20,51	126 687	24 359
0,58	66 881	410	24,47	129 210	29 585
0,79	86 454	59 0	27,93	130 955	34 233
1,08	95 943	870	31,21	130 511	38 618
a	a	a	34,38	126 846	42 677
1,58	117 901	1 473	37,03	128 202	46 128
1,96	121 742	1 933	39,51	127 616	49 338
2,31	124 775	2 372	41,66	127 194	52 116
2,66	124 574	2 803	43,49	127 068	54 4 67
3,08	125 729	3 335	45,37	128 993	56 936
3,49	129 344	3 862	47,12	120 972	58 994
3,90	127 674	4 402	48,87	97 952	60 279
4,30	129 306	4 912	50,50	109 834	61 856
4,73	128 185	5 464	52,24	89 412	62 827
5,13	129 737	5 987	53,74	86 182	63 563
5,55	130 310	6 548	55,16	83 835	64 187
10,80	124 018	11 740	56,48	92 441	64 186
15,81	128 499	18 318	58,27	80 617	65 655

314

TABLEAU 1 (suite)

$x_{\rm Se} \times 10^2$	$-\Delta_{\rm f} h_{\rm Sc} ({\rm J~mol}^{-1})$	$-\Delta_{\mathfrak{f}}h$ $(\operatorname{J}\operatorname{mol}^{-1})$	$x_{\rm Se} \times 10^2$	$- \Delta_{\rm f} h_{\rm Sc} ({\rm J~mol}^{-1})$	$-\Delta_{\rm f}h$ (J mol ⁻¹)
T = 1040 K					
0,77	60 643	360	13,25	133 185	14 627
1,72	71 053	594	14,21	136 281	16 008
2,47	83 358	1 222	15,14	132 950	17 255
3,20	96 801	1 862	16,09	133 996	18 623
3,69	94 583	2 343	17,26	127 850	20 096
4,51	102 529	3 146	21,05	129 695	25 091
a	a	a	24,90	126 060	30 166
5,22	118 072	3 929	28,15	128 085	34 305
5,91	127 988	4 812	31,30	128 834	38 501
6,65	125 712	5 720	34,98	128 222	43 359
7,63	132 202	7 037	37,56	127 955	46 622
8,75	134 222	8 540	40,09	123 892	49 923
9,53	129 737	9 623	42,13	127 403	52 455
10,35	131 306	10 690	44,37	127 503	55 438
11,43	130 243	12 163	46,35	123 554	57 835
12,29	136 955	13 397	48,16	115 420	60 011
13,14	129 679	14 489	49,89	79 550	61 224
T = 1118 K					
0,71	51 610	368	13,89	132 344	11 999
1,66	53 049	870	14,85	131 762	13 326
2,58	54 183	1 368	15,55	131 474	14 305
2,96	52 886	1 565	16,80	128 825	15 221
3,39	53 651	1 803	20,20	127 616	19 824
4,21	55 882	2 263	23,89	130 239	24 932
5,28	56 195	2 862	26,92	131 315	29 154
6,21	60 764	3 435	29,45	128 411	32 602
6,26	55 534	3 402	32,15	131 850	36 392
7,15	60 865	4 008	34,63	130 716	39 844
8,14	63 191	4 640	37,18	134 984	43 555
8,34	58 015	4 611	39,16	132 222	46 346
a	a	a	41,38	130 499	49 421
9,18	95 700	5 669	43,56	128 951	52 375
10,06	121 645	6 791	45,93	131 825	55 714
11,04	125 562	8 083	47,86	125 984	58 224
12,00	128 030	9 385	49,09	122 131	59 730
13,05	129 976	10 824			
T = 1168 K					
0,82	61 099	385	15,85	141 243	11 908
2,05	54 794	699	16,67	142 247	13 297
3,19	56 354	1 372	17,53	140 110	14 522
4,27	54 986	1 987	18,30	140 812	15 744
5,41	57 438	2 611	19,05	143 775	16 828
6,64	55 680	3 297	19,82	142 373	18 075
6,68	59 153	3 351	20,58	142 101	19 313
7,91	61 923	4 092	21,96	138 168	21 138

TABLEAU 1 (suite)

$x_{\rm Se} \times 10^2$	$-\Delta_{\rm f}h_{\rm Se} ({\rm J~mol}^{-1})$	$-\Delta_{\mathfrak{f}}h$ $(\mathbf{J} \operatorname{mol}^{-1})$	$x_{\rm Se} \times 10^2$	$- \Delta_{\rm f} h_{\rm Se} ({\rm J~mol}^{-1})$	$-\Delta_{\rm f}h$ (J mol ⁻¹)
9,02	65 810	4 807	22,06	144 139	21 447
10,11	65 601	5 540	22,79	143 816	22 548
11,11	71 651	6 242	26,21	140 180	27 811
11,70	69 036	6 678	29,73	138 164	33 100
11,90	70 500	6 816	33,16	144 428	38 346
12,08	61 722	6 887	36,41	136 557	43 384
a	a a	a	39,11	138 838	47 396
12,12	98 688	6 970	41,88	138 649	51 601
13,03	120 156	8 021	44,24	143 775	55 158
13,93	130 637	9 234	46,54	141 950	58 776
14,89	124 867	10 610	48,87	132 917	62 304
T = 1235 K					
0,93	52 748	356	23,65	121 796	16 296
1,88	55 300	544	24,59	77 697	17 389
2,83	57 045	1 054	a	a	a
3,87	55 672	1 569	25,08	143 800	18 008
4,29	56 007	1 908	. 26,64	115 123	20 234
5,02	58 220	2 309	27,30	108 725	21 108
6,24	57 471	3 012	27,70	123 754	21 631
8,43	61 354	4 335	29,95	142 084	25 028
9,64	58 191	5 062	32,35	151 054	29 200
10,65	63 747	5 682	34,72	155 306	33 602
12,90	66 208	7 209	36,64	156 176	37 158
14,69	67 446	8 439	38,57	133 867	40 380
15,03	62 279	8 640	41,34	146 097	44 936
16,24	70 839	9 456	44,13	144 168	49 722
17,65	74 931	10 518	46,72	122 373	53 588
19,24	78 090	11 799	48,82	95 776	55 760
20.64	76 785	12 937	50,15	99 926	56 831
21,21	65 442	13 376	51,17	91 780	57 689
22,22	119 608	14 384			
T = 1262 K					
3,16	53 362	1 686	29,62	73 069	19 158
6,48	59 003	3 652	33,58	81 512	22 669
9,41	56 392	5 305	35,91	112 838	25 828
13,00	58 392	7 405	a	a	a
15,35	64 747	8 958	38,78	181 828	32 815
18,32	65 312	10 937	40,54	162 615	36 547
20,30	68 425	12 326	41,98	110 370	38 334
22,51	66 078	13 815	43,59	97 730	40 011
26,11	70 914	16 468			
T = 1333 K					
2,26	55 948	1 268	31,68	79 052	21 184
4,39	57 906	2 498	33,77	82 881	23 071

_	-	T .	w T	4		
IΑ	ĸІ	HΑ		1 1	(suit	-

$x_{\rm Se} \times 10^2$	$\frac{-\Delta_{\rm f} h_{\rm Se}}{({\rm J~mol}^{-1})}$	$-\Delta_{\mathfrak{f}}h$ $(J\;mol^{-1})$	$x_{\rm Se} \times 10^2$	$\frac{-\Delta_{\rm f} h_{\rm Se}}{({\rm J~mol}^{-1})}$	$-\Delta_{\mathbf{f}}h$ (J mol ⁻¹)
6,84	57 752	3 912	36,56	86 780	25 756
10,84	58 864	6 272	38,99	93 450	28 350
13,10	60 157	7 644	41,68	98 562	31 443
16,06	63 578	9 544	43,92	103 901	34 225
18,48	66 316	11 180	45,86	133 122	37 664
21,38	66 542	13 146	a	a	a
23,96	69 199	14 987	47,93	260 127	46 154
26,52	72 906	16 937	48,70	1 145	45 455
29,06	75 521	18 970			
T = 1365 K					
3,96	55 358	2 192	37,43	83 810	25 865
9,22	57 680	5 230	41,92	89 634	30 434
15,09	61 107	8 841	44,20	100 257	33 175
20,36	63 588	12 246	46,81	105 437	36 564
27,07	68 743	16 958	49,09	98 098	39 200
32,70	74 956	21 485	50,94	51 086	39 630

a Limite de phases.

et l'on peut écrire

$$\Delta_{\text{diss}} h = \frac{\Delta H}{\delta n} = \frac{1 - x^{L}}{1 - 2x^{L}} \Delta_{f} h(\text{PbSe, cr, } T) + \frac{1}{2x^{L} - 1} \Delta_{f} h(\text{Pb}_{1 - x^{L}} \text{Se}_{x^{L}}, 1, T) + \Delta_{300}^{T} h(\text{Se})$$
(4)

où $\Delta_f h(\text{PbSe, cr, }T)$ et $\Delta_f h(\text{Pb}_{1-x}\text{Se}_x, \text{l, }T)$ sont respectivement les enthalpies de formation à la température T du composé PbSe solide et de l'alliage liquide en équilibre par référence aux constituants purs liquides et x^1 , la fraction molaire en sélénium du liquide en équilibre avec PbSe solide.

RESULTATS

Les mesures d'enthalpie partielle du sélénium ont été effectuées à 882, 954, 1040, 1118, 1168, 1235, 1262, 1333 et 1365 K. Elles complètent celles qui ont été déjà réalisées à 611, 712, 774, 837, 892 et 910 K et présentées par ailleurs [13]. On notera que les mesures n'ont été effectuées qu'entre x = 0 (Pb pur) et x = 0.5 (PbSe pur) à l'exception de T = 954 K et de quatre compositions à d'autres températures. En effet, pour x < 0.5, presque tout le sélénium présent en phase liquide est associé sous forme PbSe [16], ce qui diminue considérablement l'activité de Se et rend les pertes par évaporation négligeables.

Les résultats obtenus sont consignés dans le Tableau 1 en ce qui concerne l'enthalpie partielle de Se, $\Delta_f h_{Se}$, et l'enthalpie intégrale $\Delta_f h$ calculée par

Enthalpie partielle à dilution infinie du sélénium dans le plomb, $\Delta_l h_{\infty}^{\pm}$; paramètre d'interaction, $\eta_{\infty}^{\rm Sc}$; écart type σ de la régression $\Delta_l h_{\infty} = \Delta_l h_{\infty}^{\rm Sc} +$ TABLEAU 2

Entitalple partiene a diffution of $\eta_{Se}^{se} x_{Se}$; limite de validité de la	ité de la re	Infinite du selement dans le pionio, $\Delta_f n_{Se}$, parametre d'interaction, η_{Se} , ecart expandant au liquidus riche en plomb	x*; fract	ion molai	re x ^L cor	responda	nt au liqu	idus richt	e en plom	مارد مرد ا	Example particle a unution infinite du setembre dans le pionio, $\Delta_1 n_{Sc}$, parametre u interaction, η_{Sc} , example de validité de la regression, x^* ; fraction molaire x^1 correspondant au liquidus riche en plomb
T (K)	883	892	910	954	1040	1118	1168	1235	1262	1333	1365
$-\Delta_t h_{\infty}^{\infty}$ (J mol ⁻¹)	65208	67279	86229	64007	52898	50334	54304	53120	53647	55676	53170
$-\eta_{S_a}^{Se}$ (kJ mol ⁻¹)	344	42	1333	2609	1171	126	6,8	83	39	33	52
σ (J mol ⁻¹)	1924	4062	7050	8368	3510	1782	3180	1481	1937	506	225
**	0.0044	0.0068	0.0091	0.0108	0.045	0.083	0.101	0.107	0.130	0.131	0.151
χ^{L}	900.0		0.010	0.013	0.049	0.088	0.121	0.248	0.374	0.469	



Fig. 1. Enthalpie molaire intégrale de formation des alliages liquides plomb-sélénium, $\Delta_t h$, en fonction de la fraction molaire en sélénium, $x_{\rm Se}$, par référence aux constituants purs liquides à 883 K (A), 1168 K (B) et 1365 K (C).

l'intermédiaire de la relation de Gibbs-Duhem. Ils sont illustrés à 883, 1168 et 1365 K par les Figs. 1 et 2. Aux températures inférieures au point de fusion du composé PbSe ($T_{\rm fus}=1354$ K), le domaine de composition examiné peut se décomposer en deux parties. La première correspond au liquide monophasé, la seconde aux alliages diphasés $1+{\rm PbSe}(s)$. Lors du franchissement du liquidus, $\Delta_{\rm f}h_{\rm Se}$ subit une discontinuité et $\Delta_{\rm f}h$ un changement de pente qui permettent de déterminer la limite de phases, $x^{\rm L}$, avec une bonne précision. Les valeurs de $x^{\rm L}$ ainsi obtenues figurent dans le Tableau 2 et sont représentées sur la Fig. 3. Elles sont en excellent accord avec les résultats de Seidman [16] et infirment également la présence d'une lacune de miscibilité en phase liquide du côté riche en plomb.

Dans le domaine monophasé, l'enthalpie partielle du sélénium est linéaire en fonction de x entre 0 et une valeur x^* qui dépend de la température. On peut donc écrire

$$\Delta_{\rm f} h_{\rm Se}(T) = \Delta_{\rm f} h_{\rm Se}^{\infty}(T) + \eta_{\rm Se}^{\rm Se}(T) x$$

où $\Delta_f h^\infty_{\rm Se}$ et $\eta^{\rm Se}_{\rm Se}$ sont, respectivement, l'enthalpie partielle à dilution infinie de

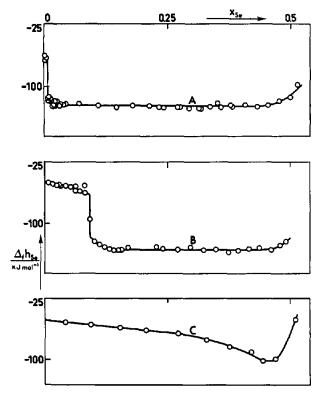


Fig. 2. Enthalpie molaire partielle de mélange du sélénium, $\Delta_f h_{Se}$, en fonction de la fraction molaire en sélénium, x_{Se} , par référence au sélénium liquide à 883 K (A), 1168 K (B) et 1365 K (C).

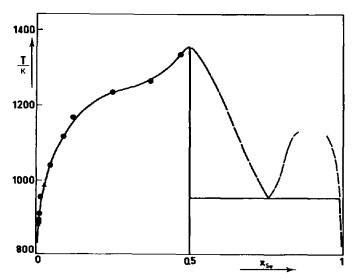


Fig. 3. Diagramme de phases du système binaire plomb-sélénium. (\bullet) Nos résultats obtenus à partir des discontinuités de $\Delta_f h_{Se}$ (voir Fig. 2, courbe B).

TABLEAU 3 Enthalpie molaire intégrale de formation des alliages liquides Pb-Se par référence aux deux constituants liquides sous la forme $\Delta_f h(T) = \Delta_f h(0) + C_p^{\rm E} T$

x	$\Delta_{\rm f} h({\rm J~mol}^{-1})$	x	$\Delta_{\mathfrak{f}}h(\operatorname{J}\operatorname{mol}^{-1})$
0.004	$335 - 0.355 T \pm 21$	0.25	$-16460 + 0.611 T \pm 100$
0.01	$238 - 0.510 T \pm 67$	0.30	$-20406 + 0.661 T \pm 176$
0.05	$1355 - 3.104 T \pm 221$	0.35	$-35666 + 8.719 T \pm 406$
0.10	$-1862 - 2.882 T \pm 192$	0.38	$-62499 + 26.409 T \pm 422$
0.15	$-8883 + 0.021 T \pm 188$	0.40	$-72385 + 32.162 T \pm 515$
0.20	$-14874 + 2.067 T \pm 150$	0.42	$-87709 + 41.446 T \pm 661$
		0.45	$-116370 + 60.187 T \pm 962$

Se par référence au sélénium pur liquide et le paramètre d'interaction entre les atomes de sélénium. Les valeurs de $\Delta_f h_{Se}^{\infty}$ et η_{Se}^{Se} sont consignées dans le Tableau 2 avec l'écart type correspondant σ et la limite de validité x^* de ces coefficients. On peut constater que $\Delta_f h_{Se}^{\infty}$ augmente avec T et qu'il semble qu'il en est de même pour η_{Se}^{Se} .

Une des grandeurs thermodynamiques les plus caractéristiques d'un alliage binaire associé est sa capacité thermique d'excès C_p^{E}

$$C_{\rm p}^{\rm E} = C_{\rm p}({\rm alliage}) - \sum_{i} x_i C_{\rm p}(i)$$

où $C_{\rm p}(i)$ est la capacité thermique du constituant i pur. $C_{\rm p}^{\rm E}$ peut être mesurée directement par calorimétrie de réaction directe puisque

$$C_{\rm p}^{\rm E} = \frac{\delta \Delta_{\rm f} h}{\delta T}$$

TABLEAU 4 Enthalpie molaire intégrale de formation, $\Delta_f h$, des alliages liquides Pb. Se par référence aux constituants purs liquides en fonction de x_{Se} pour différentes températures

$x_{\rm Se} \times 10^2$	$-\Delta_{\mathbf{f}}h$ (kJ m	ol ⁻¹)							
	$\overline{T(\mathbf{K}) = 883}$	954	1040	1118	1168	1235	1262	1333	1365
0.004	268	293	268	205	164	109	96	155	134
0.01		778	632	523	406	368	406	540	385
0.05				2707	2385	2301	2778	2849	2790
0.10					5464	5284	5648	5778	5711
0.15						8623	9146	8862	8786
0.20						12414	12117	12209	12012
0.25							15648	15778	15535
0.30							19497	19765	19338
0.35							24593	24254	23614
0.40								27290	26447
0.45								29510	28480
0.50								32459	31133
0.55								36141	34212

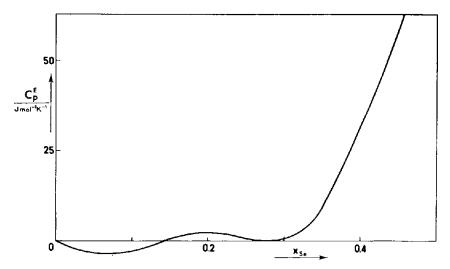


Fig. 4. Capacité thermique d'excès, C_p^E , des alliages liquides plomb-sélénium par référence aux constituants purs liquides.

pour un certain nombre de fractions molaires, nous avons donc représenté $\Delta_t h$ par une expression linéaire en T (Tableau 3)

$$\Delta_{\rm f} h(T) = \Delta_{\rm f} h(0) + T C_{\rm p}^{\rm E}$$

puisque pour x > 0.38 (cf. Tableau 4), les mesures d'enthalpie de formation n'ont été effectuées qu'à deux températures (1333 et 1365 K) et que pour x < 0.38, il apparait que c'est une loi linéaire qui représente le mieux les résultats.

Les valeurs de C_p^E par référence aux constituants purs liquides sont illustrées par la courbe de la Fig. 4 qui montre que C_p^E est sensiblement nul pour x < 0.30 et prend des valeurs fortement positives pour 0.30 < x < 0.50. L'extrapolation de nos résultats à x = 0.5 (PbSe liquide) permet de trouver C_p^E (x = 0.5) ≈ 90 J K⁻¹ mol⁻¹. Cette valeur est en bon accord avec celle qu'ont obtenue Rasulov et Medzhidov [12] juste au-dessus du point de fusion de PbSe (132 J K⁻¹ mol⁻¹) compte tenu de la difficulté de son obtention.

DISCUSSION

D'une manière générale, le comportement thermodynamique des systèmes binaires de sélénium avec les métaux B révèle l'existence de forts écarts négatifs à l'idéalité:

- (1) diagramme de phases comportant un ou plusieurs composés dont la température de fusion congruente est très élevée vis à vis de celles des constituants et où l'on observe une ou deux lacunes de miscibilité en phase liquide très excentrées par rapport à l'alliage équiatomique;
 - (2) enthalpie de formation des alliages liquides fortement négative avec un

minimum très accentué, voire un point de rebroussement, pour une composition particulière qui coïncide souvent avec celle d'un des composés solides;

- (3) coefficient d'activité en phase liquide de chacun des constituants proche de zéro pour les fractions molaires où le constituant considéré est minoritaire par rapport à la composition correspondant au minimum enthalpique;
- (4) enfin. capacité thermique d'excès de la phase liquide fortement positive et décroissante lorsque la température s'élève.

Le comportement thermodynamique du système Pb-Se correspond parfaitement à ce schéma:

- (1) la température de fusion de PbSe est égale à 1354 K alors que la température moyenne de fusion des constituants purs est considérablement plus faible (548 K). Nos résultats infirment l'existence d'une lacune de miscibilité en phase liquide du côté riche en plomb mais une lacune existe du côté riche en sélénium;
- (2) l'enthalpie de formation des alliages liquides Pb-Se montre des déviations négatives à l'idéalité puisque, à 1365 K, $\Delta_f h = -39.5$ kJ mol⁻¹ pour x = 0.5;
- (3) d'après Schneider et Guillaume [6], le coefficient d'activité du plomb est proche de zéro pour $0 < x_{Pb} < 0.5$ ($a_{Pb} = 2.43 \cdot 10^{-4}$ pour $x_{Pb} = 0.32$ à 1073 K);
- (4) nous avons montré dans ce travail que la capacité thermique d'excès des alliages liquides Pb-Se est fortement positive aux environs de $x_{Se} = 0.5$. Rasulov et Mezhidov [12] ont montré que $C_p^E(x_{Se} = 0.5)$ décroit rapidement lorsque la température croît entre $T_{fus}(PbSe) = 1354$ et 1472 K.

Cet ensemble d'observations ne peut s'interpréter que par l'existence d'associations hétéroatomiques fortes dans le liquide, centrées autour de la composition $Pb_{0.5}Se_{0.5}$ et donc, sans nul doute, en corrélation avec le seul composé solide du système, PbSe. Cette conclusion est d'ailleurs confortée par l'évolution de nombreuses propriétés physiques telles que, par exemple, la viscosité [17]. D'après Glazov et al. [3], les liaisons dans les alliages IV VI sont iono-covalentes. Dans le cas de Pb Se, Glazov et al. [3] et Chaussemy [17] concluent à une structure moléculaire pour PbSe liquide, Chaussemy expliquant la forme des isothermes de viscosité du côté riche en plomb par l'existence d'une transition semiconducteur-métal à rapprocher de la courbe $C_p^E = f(x_{Se})$ que nous avons déduite de nos mesures enthalpiques.

Le comportement des alliages liquides de plomb et de sélénium a conduit Schneider et Guillaume [6] à représenter thermodynamiquement le système par un modèle régulier associé comportant cependant des hypothèses simplificatrices importantes inspirées de Jordan [18]. Le modèle suppose notamment l'égalité des paramètres d'interaction entre Pb et PbSe et entre PbSe et Se, ce qui devrait impliquer une symétrie du comportement thermodynamique du liquide de part et d'autre de $x_{\rm Se} = 0.5$, symétrie contredite par l'observation expérimentale. C'est pourquoi nous reprendrons dans un pro-

chain article le modèle régulier associé déjà appliqué précédemment aux alliages liquides Pb Se à moyenne température [13].

REFERENCES

- 1 K.W. Nill, F.A. Blum, A.R. Calawa et T.C. Harman, Appl. Phys. Lett., 19 (1971) 79.
- 2 Yu.I. Ravitch, B.A. Efinova et I.A. Smironov, Semiconducting Lead Chalcogenides, Plenum, New York, 1970.
- 3 V.M. Glazov, S.N. Chizhevskaia et N.N. Glagoleva, Liquid Semiconductor, Plenum Press, New York, 1969.
- 4 C.B. Finch et J.B. Wagner, J. Electrochem. Soc., 107 (1960) 932.
- 5 K.B. Sadykov et S.A. Semenkovitch, Izv. Akad. Nauk. Turkm. SSR, Ser. Fiz.-Tekh. Khim. Geol. Nauk., (1966) 25.
- 6 M. Schneider et J.C. Guillaume, J. Phys. Chem. Solids, 35 (1974) 471.
- 7 V.P. Zlomanov, B.A. Dopovkin et A.V. Novoselova, Zh. Neorg. Khim., 4 (1959) 2661.
- 8 A.V. Sokolov, A.S. Pashinkin, A.A. Ryantsev, V.A. Dolgikh et S.A. Klinchikova, Izv. Akad. Nauk. SSSR, Neorg. Mater., 5 (1969) 5.
- 9 E.E. Hansen, Z.A. Munir and M.H. Mitchell, J. Am. Ceram. Soc., 52 (1969) 610.
- 10 J. Drowart et R. Colin, U.S. Air Force Contract A.F. 61 (052)-225, Tech. Note No. 15 (1963).
- 11 D.H. Parkinson et J.E. Quarrington, Proc. Phys. Soc., London, Sect. A, 67 (1954) 569.
- 12 S.M. Rasulov et R.A. Medzhidov, Teplofiz. Uys. Temp., 16 (1978) 304.
- 13 K.P. Kotchi, C. Chatillon-Colinet et J.-C. Mathieu, J. Chim. Phys., 77 (1980) 791.
- 14 C. Bergman, R. Castanet, H. Saïd, M. Gilbert et J.-C. Mathieu, J. Less-Common Met., 85 (1982) 121.
- 15 R. Castanet, M. Gilbert et J.-C. Mathieu, J. Less-Common Met., 96 (1984) 1.
- 16 D.N. Seidman, Trans. Metall. Soc. AIME, 236 (1966) 1361.
- 17 G. Chaussemy, Thèse, Lyon, 1981.
- 18 A.S. Jordan, Metall. Trans., 1 (1970) 239.