
Thermochimica Acta, 76 (1984) 359-372 359 
Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands 

REMARKS ON THE DESCRIPTION OF REACTION KINETICS 
UNDER NON-ISOTHERMAL CONDITIONS 

JERZY BLAZ, EJOWSKI 

Institute of Chemistry, University of Gdafisk, 80- 952 Gdatisk (Poland) 

(Received 15 December 1983) 

ABSTRACT 

Many fundamental problems regarding the mathematical description of non-isothermal 
reaction kinetics are still the subject of various considerations. In this communication an 
attempt is made to clarify some aspects concerned with: (1) the use of the degree of 
conversion in the rate equations; (2) fundamental relationships describing non-isothermal 
reaction kinetics; (3) the existence of the total differential of a = fit, T): (4) the physical 
meaning of Doyle's assumption; (5) the possibility of the application of non-isothermal 
techniques on various temperature programs to the investigation of reaction kinetics: and (6) 
other problems arising on examination of thermodynamics and non-isothermal kinetics of 
simple thermal processes. 

INTRODUCTION 

Since the in t roduct ion of thermoanalyt ica l  methods  to the investigation of 
the thermal  behaviour  of various systems, considerable efforts have been 
made  to utilize experimental  da ta  for the evaluat ion of some impor tan t  
parameters  characterizing the kinetics and thermodynamics  of proceeding 
processes [1]. The originally applied isothermal techniques [2,3] made  such 
in format ion  available, however, the full kinetic description of the process 
investigated was made  possible by the da ta  from several independent  experi- 
menta l  runs [1-3]. The non-isothermal  thermoanalyt ica l  methods,  intro- 
duced later, soon gained many  followers, resulting from the fact that all the 
interest ing informat ion  could be obta ined from just  one experimental  run 
[1,2,4]. There is still an emphasis  on non-isothermal  methods  of investigation 
despite some criticism with regard to the mechanist ic  interpretat ion [5-7] 
and numerous  difficulties arising from the mathemat ica l  description of the 
non- isothermal  reaction kinetics [8]. The latter problem has been discussed 
in a previous communica t ion  [8] in which the forms of basic kinetic equa- 
t ions have been derived assuming that the degree of conversion is a function 
of  both  temperature  and time. The soundness  of this fundamenta l  assump- 
tion has however, been quest ioned by Tang  [9] in a recent communica t ion .  
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In the same publication the author also had objection to the recent paper of 
MacCallum [10], who, starting from the premise of the transition state 
theory, derived the two-term rate expression for non-isothermal reactions. 

The intention of this publication is to reconsider some of the problems 
concerned with the mathematical description of non-isothermal reaction 
kinetics in view of recently published experimental facts [11-13]. Some 
aspects regarding the possibilities of the application of non-isothermal 
methods to the examination of kinetics and thermodynamics of simple 
thermal processes are also discussed. 

SOME ASPECTS REGARDING KINETICS OF NON-ISOTHERMAL PROCESSES 

The use of the degree of conversion in the rate equations 

The 
sented by reaction (1) 

A-- ,  B + C  

can be expressed in the form, 

dCA _ dcB _ dec _ f(CA)k(T ) 
dt dt  dt 

general equation describing the rate of the isothermal process repre- 

(1) 

(2) 

where t indicates time, T is temperature, and c denotes concentration of a 
given reactant in the reaction system. In eqn. (2) f(CA) represents the 
hypothetical model of the reaction mechanism [14]. It is generally assumed 
that chemical processes are the activated-type processes [14]. For such 
processes the k(T)  function is most frequently expressed in the form of the 
Arrhenius equation, 

k (T)  = Z exp( - E / R T )  (3) 

although the modern theories predict more complex relationship [8,15], 

k (T)  = Z T  h e x p ( - E / R T )  (4) 

where E is the apparent activation energy, Z is the pre-exponential fac tor ,  
and b denotes a constant. It is worthwhile to mention that k(T) simply 
represents the isothermal rate constant. 

To describe the kinetics in homogeneous systems some intensive quanti- 
ties, being directly proportional to the reaction progress, can be used in eqn. 
(2) instead of concentrations. For the description of the extent of reaction in 
heterogeneous systems involving solids (for example if A and B are solids 
and C is a gaseous product) the most convenient method is to use the degree 
of conversion (a)  [14]. In the case of a simple irreversible process, e.g., given 
by eqn. (1), a is equal to (C0A - C A ) / C o A  ~ CB/CoA , o r  C c / C o A  , since C~A can be 
assumed to be equal to 0. From the foregoing considerations we get 

d c  A dc B = d c  c da  
dt - dt dt = c°Adt  (5) 
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and 

CA = C0A(I - -a )  (6) 

Substitution of eqns. (5) and (6) into eqn. (2) leads to the expression 

d a _  1 f [CoA( l_a ) ]k (V)  (7) 
dt  C0A 

The phenomenological description of kinetics of reactions proceeding in 
gaseous and homogeneous liquid phases assumes that f(CA) is some power 
function of c A and that the magnitude of the power represents the reaction 
order. Hence, f[c0A(1 - a ) ]  can be expressed as a product, f(C0A ) f(1 - a ) ,  
and eqn. (7) gives 

_ f ( c 0 A )  f (1  - (S )  
dt  C0A 

The integration of the above equation by the elementary methods [8] leads to 
the expression 

g(1 - a ) =  t f(c°A) k(T)  (9) 
C0A 

Neither eqn. (8) nor (9) is suitable for use in the description of reaction 
kinetics in gaseous and homogeneous liquid solutions. As the ratio f(C0A)/C0A 
is generally not equal to 1, the specific rate constants derived by any of these 
equations would depend on the initial concentration of substrates. For 
reactions involving solids the concentration of chemical species can be 
expressed in mole fraction units since other concentration units, applied in 
homogeneous kinetics, have no physical meaning [14]. Therefore, c o is always 
equal to 1. In other words, there is a great number of initial states in 
solutions of various initial concentration but there is only one initial state for 
solids in which c o is constant. 

Taking into account the above facts the appropriate equations describing 
isothermal kinetics of reactions involving solid substrates are, respectively 

da  
d t  = f ( 1  - ( 1 0 )  

and 

g(1 - a ) =  t k ( r )  (11) 

It may be noted that the dimension of the rate constant in eqns. (8)-(11) is 
always 1/t ime.  

In the description of the solid-state reaction kinetics not only power 
functions of (1 - a) are considered. It has been assumed that eqns. (10) and 
(11) are formally valid for more complex f ( 1 -  a) or g ( 1 -  a) functions, 
whose forms and physical meaning have been discussed by many authors 
(e.g., refs. 2, 14, 16, 17). It may be shown that any of these functions satisfy 
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the expression f[C0A(1 -- a)] = f(1 -- a) and, thus, eqns. (10) and (11) remain 
valid. It is also worthwhile noting that some authors use less complicated 
symbols, namely f(a) and g(a), instead of f(1 - a) and g(1 - a). 

In view of above considerations we cannot agree with the final conclu- 
sions of Fatu and Segal [18]. Only intensive quantities should be used in rate 
equations. Thus, the mass of the sample, being an extensive quantity, is not 
suitable for this purpose, unless it is used for the evaluation of a. Therefore, 
the questions of Criado [19] regarding the accuracy of Chaterjee's method 
[20] seem to be fully understandable. Starting from eqn. (10) and assuming 
w -- w0(1 - a) a relationship can be derived for evaluating the reaction order 
[19] 

,nt ) ln( J ]2 - In %1 
1 1'1}02 

n = (12) 
In wl  - In %1 

W 2 W02 

Thus, only when w01 = w02 we obtain the expression proposed by Chaterjee 
[20]. Therefore, eqn. (12) may be used by simply taking two points from the 
same thermogram. This approach appears to be very similar to that proposed 
by Freeman and Carroll [21] for the examination of the kinetics of non-iso- 
thermal processes. 

Fundamental relationships describing non-isothermal reaction kinetics 

Acceptable expressions for the description of reaction kinetics under 
non-isothermal conditions have been derived from eqn. (10). Namely, in 
non-isothermal experiments time can be expressed as some function of 
temperature 

t = h ( T )  (13) 

hence 

dt  = h ' (T)  dT  (14) 

Substitution of relationship (14) into eqn. (10) gives 

dc~ 
d T -  h ' (T)f(1 - ~ )k (T)  (15) 

this is the basic equation used in further considerations. 
Under  linear temperature increase conditions h ' ( T ) =  1//~ ( ~  = heating 

rate) and assuming for k(T) relationship (4) eqn. (15) can be rearranged to 
the form 

d~ 
= Z f(1 - oe)T b e x p ( -  E / R T )  (16) 

d T  
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The integral expression corresponding to the above differential form is given 
below 

Z fTTb exp( - E / R T ) d T  (17) g(1 - a ) = ~  r,, 

The integral on the right-hand side of eqn. (17) can be solved assuming 
the concept of Doyle [22]. He stated that since T o represents the initial 
temperature,  at which the rate of reaction is equal to 0, it is easiest to assume 
T O to be equal to 0 K. Then eqn. (17) can be rearranged to the form 

Z [ E ~ b + I  ,~  -~b+ 
g(1 - a ) = ~ l ~ I  j,. x 2' e x p ( - x ) d x  (18) 

where x = E / R  T. 
Unfortunately,  the integral appearing on the right-hand side of eqn. (18) has 
no exact solution and this is the most inconvenient  part of this approach. 
Some approximate methods  for evaluating this integral have been reviewed 
elsewhere [23]. 

Another  possible approach,  previously described [8], is to consider eqn. 
(11) as a primary kinetic relationship. Then, substi tution of eqn. (13) into 
eqn. (11) gives 

g(1 - a) = h ( T ) k ( T )  (19) 

Resulting from the above equation, the differential form is 

d a  = Zf(1 - a ) r  h e x p ( - E / R r ) [ h ' ( T )  + 1 / r h ( T ) ( b  + E / R T ) ]  (20) 
dT 

where expression (4) is taken for the k(T)  function. 
Under  linear temperature increase condit ions h ' ( T ) =  1/(I). For the func- 

tion h(TT ) one may substitute the expression T / ~  resulting from the integral 

1 /~1_  dT [8], if, according to Doyle's assumption [22], the value of 0 K is 
J 

taken for the lower integration limit. Then, eqns. (19) and (20) become, 
respectively 

T 
g(1 - a) = ~ Z T  h e x p ( - E / R T )  (21) 

d a  _ Z f(1 - a)(1 + b + E / R T ) T  h e x p ( - E / R T )  (22) 
d T  

It is worthwhile noting that relationships analogous to eqns. (21) and (22) 
have been derived earlier with a considered as a function of both t and T [8]. 

Does the total differential of ~ = f(t,T) exist? 

As ment ioned earlier eqns. (21) and (22) state that the degree of conver- 
sion is a function of both temperature and time. Of course, a cannot  be 



364 

considered as a state function. The term state function has been introduced 
in thermodynamics. It represents several physical quantities such as total 
energy of the system, its enthalpy, entropy, etc., which are functionally 
dependent on certain variables determining the state of the system. If any 
process proceeds in the system the changes in value of the state function 
depend only on the initial and final values of the state variables, and not on 
the pathway of the process. It is well-known that a state function can be 
expressed as a total differential of the appropriate state variables. From this 
viewpoint any kinetic variables or constants cannot be considered as state 
functions. 

Let us examine, however, whether the total differential of a = f i t ,T) ,  
given by eqn. (23), exists 

For this purpose we assume that eqn. (11) expresses the fundamental  kinetic 
relationship, whose soundness has never been questioned. The mathematical 
rules concerning the existence of a total differential of a given function are 
described in ref. 24. T h e  application of these rules with regard to the 
~ = fit, T) function confirms that eqn. (23) is absolutely valid. This arises 
from the following facts. 

(1) Continuous partihl derivatives of the first order exist, namely 

(Oa07_ r )  = f ( 1 - a ) Z T  h e x p ( - E / R T )  (24) 

~ = f(1 - a) tZ(b  + E/Rrtr  e x p ( - E / R T )  (25) 

The cross differentiation gives the same result (2) 
O2a 

OtOT 

02a 

OTOt 

- f ( 1 - a ) Z ( b + E / R T ) T  b ' e x p ( - E / R T )  

- f ( 1 - a ) Z ( b + E / R T ) T  b ' e x p ( - E / R T )  

(26) 

Equations (24) (27) were derived assuming the k(T)  relationship resulting 
from eqn. (4). 

Since it was established that relationship (23) is true, therefore, eqns. 
(19)-(22) also have to be valid. There is no doubt that eqns. (10) and (11) are 
oversimplified. Nevertheless, if these expressions are assumed to be valid for 
isothermal conditions then eqns. (19) and (20) are adequate forms for 
treating non-isothermal kinetic data. 

It must be pointed out that the variation in the aforementioned variables, 
i.e., a, t and T, is not completely free. The values of these parameters, having 
a physical meaning, are subject to the following restrictions: 1 >~ a >/0, t >~ 0 
and T >/0. 

(27) 
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The dependence of a on t and T has been clearly shown by Holba and 
Sestak [25] (see fig. 6 of ref. 25), although the authors maintained in their 
conclusions that eqn. (23) is false. The same opinion has been expressed by 
Tang and Chaudhri [4,9] who emphasized that a cannot be considered as a 
state function with t and T. The main argument of the latter authors against 
eqn. (23) is that a cannot decrease even for negative dT. These statements 
require discussion. All kinetic equations hold terms described as f(1 - a) or 
g ( 1 -  a). These functions express the hypothetical model of the reaction 
mechanism or, in other words, the reaction pathway. For a chosen direction 
of temperature changes, e.g., for rising temperature, the forward reaction will 
appear. However, when the temperature decreases the reverse reaction is 
observed. Both these processes may proceed through different pathways. The 
evaluated kinetic constants E and Z are characteristic to a given reaction 
pathway only. The direction of temperature change may lead to different 
values of a, hence, in this sense the degree of conversion cannot be 
considered as a state function. However~ if the well-known reaction pathway 
is kept constant the same values of a should be observed at a given 
temperature a n d / o r  at a given time of reaction. If the above statement is 
false it would be no sense to collect any kinetic information. 

Furthermore, for some physical processes, for example, phase transitions, 
an increase in a may be observed for positive d T  and a decrease in a for 
negative d T. For most chemical processes, however, the reverse reaction is 
not predictable, since some products leave the reaction zone. Moreover, very 
often the reverse reaction is not the subject of interest. 

We also would like to comment  on the recent communication of MacCal- 
lum [10]. The derivation he presented of the rate equation for non-isothermal 
reactions involved the basic premise of the transition state theory, namely 
that the population of the activated complex molecules (NA.) is governed by 
the population of substrate molecules (NA) and the temperature (T).  Thus, 
the total differential of NA. would be 

[ 3 N A . ]  

Dividing both sides of eqn. (28) by dt  and rearranging gives 

d N  A d N A . / d t  (ONA./OT)N. , 

d ~  - ( 3 N A . / O N  A ) ,  - qb (3NA*/ONA) ,  (29)  

where (I) = d T / d  t. 

It may be noted that N A / N o A  = 1 -- a,  (NoA is the initial number of substrate 
molecules) and N A . / N o A  = 1 -- a*. Therefore, eqn. (29) may describe the rate 
of non-isothermal processes involving solids. The partial derivatives can be 
evaluated based on the relationship resulting from the equilibrium condi- 
tions, namely NA. = const, e x p ( - E / R T ) f ( N A ) ,  where f(NA) is some func- 



tion of substrate population dependent on the activation pathway. It may be 
noted that both terms of the right-hand side of eqn. (29) are dependent on 
the temperature. Hence, the substitution of the first term of the right-hand 
side of this equation by the isothermal rate expression does not seem to be 
justifiable. Therefore, the final equation derived by the author probably does 
not describe adequately the rate of non-isothermal reactions. In view of the 
conclusions resulting from this work it seems rather that eqn. (23). primarily 
proposed by MacCallum and Tanner [26], is suitable for this purpose. 

The ph?;slcal rneaning of Doyle’s assumption 

As mentioned earlier, the grow-ing interest with integral methods in 
non-isothermal kinetics has been observed since the early 1960~ when Doyle 
[22] stated that r, = 0 K may be substituted for the lower integration limit of 
integral holding temperature (eqn. 17). To our knowledge this approximation 
has never been questioned. although its physical meaning has not been 
analysed tither. 

All modern theories of reaction kinetics assume that a given process may 
occur if some molecules in the system (activated molecules) attain a certain 
amount of energy exceeding an activation barrier for the process. The 
probability for a reaction to occur is directly- proportional to the number of 
activated molecules present. This probability may be evaluated based on 
energy distribution functions. All of these have an exponential term of the 
type exp( - E/RT). As the latter expression gives a 0 value at T = 0 K, the 
probability for reaction to occur is equal to 0 only at this temperature. For 
any values of T> 0 K this probability gives a certain value greater than 0. 
Thus. the rate of reaction, being directly proportional to this probability, is 
equal to 0 only at T= 0 K, and differs from 0 for any values of T > 0 K. In 
view of the above considerations. the soundness of Doyle’s assumption 
appears to be fully justifiable since the lower integration limit of integral 
appearing in eqn. (17) should represent the situation when the rate of 
reaction is equal to 0. 

The possibihty of the applicatton of non-isothermal techniques on riarious 
temperature programs to the inr!e.rtigation of reactton kinetics 

So far, the examination of kinetics of non-isothermal reactions is limited 
mainly to the experiments carried out under linear temperature increase 
conditions. This technique requires that the temperature of the system 
investigated changes linearly with time, i.e., dT/dt = @. Then the actual 
temperature of the sample is given by the equation 
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In the above expression the lower integration limits are chosen in accordance 
with the beginning of the process. Thus, T o should correspond to the 
temperature at which the given process does not occur. From the viewpoint 
of conclusions drawn in the preceding chapter the initial temperature (T0) 
should be equal to absolute zero. This is not an arbitrary choice of T o [25], 
rather it results from the fundamental  behaviour of the nature of reaction. 

Holba and Sestak [25] extending the conception of Bradley [27] proposed 
the use of the temperature of equilibrium of conversion (T¢) instead of T o in 
eqn. (30). T e has been introduced based on the relationship derived by 
Bradley [27] 

d a  _ f(1 - a )k (T) [1  - e x p ( - - A G / R T ) I  (31) 
dt  

where AG = - R T  In X / K ,  K is the equilibrium constant, and X is the 
product of the activities of all components. The authors assumed that the 
change of free energy for the reaction (AG) approaches zero at the equi- 
librium temperature (Te) [14]. In our opinion the temperature of equilibrium 
does not actually exist. The system under investigation reaches equilibrium 
when AG is equal to 0. It may be attained in two ways. Firstly, if at a given 
temperature T > 0 K, X becomes equal to K. Secondly, at a temperature of 
absolute zero, at this temperature any system investigated remains un- 
changed for an infinite time. Thus, the system is in the equilibrium state. If 
AG approaches 0 the last term of the right-hand side of eqn. (31) is equal to 1 
and the rate of reaction becomes equal to 0. This statement is in accord with 
the conclusions of the previous chapter. For most processes investigated AG 
reaches high positive values (the process takes place "very  far" from 
equilibrium) and, hence, the last term in eqn. (31) can be neglected. Such 
processes are usually the subject of interest. 

The above considerations maintain the choice of T o = 0 K for the lower 
integration limit in eqn. (30). 

It is worthwhile noting that the choice of T O for the lower integration limit 
in eqn. (30) has been analysed in a previous communication (table 1 of ref. 
8). Indeed, the best fit of the integral equation, analogous to eqn. (21) if 
various T o values have been taken for the lower integration limit, to the 
experimental data is obtained when the initial temperature is assumed to be 
absolute 0. 

Time is the physical quantity for which only intervals are measurable. 
Since an absolute value of this quantity does not exist, the moment  when 
timing commences for the experiment may be chosen arbitrarily. It is most 
convenient to assume t o to be equal to 0. 

The form of eqns. (19) and (20) is adequate for use in the description of 
kinetics of any non-isothermal process. The application of these expressions 
is, however, subject to some limitations. First, the mathematical form of 
expressions describing changes in temperature of the system with time, i.e., 
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h(T) and h’(T) functions, has to be known exactly. Secondly, from the 
foregoing considerations, these functions should satisfy the equation 

J rh’( r)dT= h(T) 
0 

Finally, expression (32) requires that both h(T) and h’(T) functions are 
determined for T>, 0. 

In Table 1 some chosen functions of temperature changes in non-isother- 
mal thermoanalytical experiments are listed. For h’(T) functions of general 
formulae l/( cTm) the appropriate integral forms do not exist. However, any 
integral given by eqn. (32) may be solved if the temperature of the beginning 
of heating (e.g., the ambient temperature) is taken for the lower integration 
limit [28-301. 

The approach presented in this work states that a given heating program 
occurs from T = 0 K. Any linear temperature program meets the above 
requirements. Thus, the kinetic constants derived based on the latter method 
may be compared with those evaluated from the isothermal experiments. 
Instead, if the temperature program occurs from the arbitrarily chosen 
temperature (T,) then the acquired kinetic information is probably not 
representative for a given process. Also the question is whether there is any 
reason to use the more complex, rather than the linear. temperature pro- 
grams in investigations of reaction kinetics. A detailed review of the litera- 
ture indicates that unresolved problems regarding the mathematical dcscrip- 
tion of the kinetics of non-isothermal processes, resolved only for the 
simplest. linear. heating program, still exist. It is. therefore. expected that the 
use of more complex temperature programs will create additional difficulties. 

The very interesting question is how the kinetic constants evaluated from 

TABLE 1 

Non-isothermal temperature functions 

Type of The form of functions 
temperature 
programming 

h(T) h’(T) 

Constants 

Linear T/Q 
Exponential 1281 does nor extst 
Hyperbolic 128.291 does not extst 
General [30] does not ex,st 
Parabohc l/2 rr’T’ 

Parabolic [31] h’T+l/2c’TL 

General l,‘(n + l)k’T”+’ 

General [32] l/T’ 1 h,T’ 
I - 0 

l/Q 
l/Co7 
l,‘(hT’) 

I,‘( CT”‘) 

U’T 

h’+ c’T 
k ‘Tt, 

l/T’ 1 ih,T’-’ -2/T 
/ - 0 
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eqns. (16) and (17) compare with those estimated by eqns. (21) and (22). 
Analyzing the literature data [8,11-13] brings to notice several regularities: 
(1) values of E resulting from the application of eqns. (21) or (22) are always 
higher by about 5 × 103 J mo1-1 than those derived from eqns. (16) or (17). 
These relatively small differences probably result from the fact that the 
sensitivity of kinetic expressions to temperature changes is caused mainly by 
the exponential term. This term, however, remains unchanged in all the 
kinetic equations examined: (2) values of Z are constant from eqns. (21) or 
(22) and are about an order of magnitude lower than those evaluated from 
eqns. (16) or (17). This dependence results from the fact that Z(1 + h + 
E/RT) (in eqn. 22)-- Z (in eqn. 16): (3) generally, eqns. (21) and (22) give a 
better fit to the experimental data than do eqns. (16) and (17): and (4) it 
should be noted that differences in the values of kinetic constants resulting 
from the application of different types of mathematical approaches are 
usually lower in comparison to those caused by experimental and computa- 
tional uncertainties. As shown recently by Varhegyi [33.34] only imperfect 
temperature programming may cause differences in the values of kinetic 
constants by about 20%. Also other experimental parameters may affect 
thermoanalytical curves and, thus, derived values of E and Z [35-38]. 

Most chemical reactions can be considered as a sequence of consecutive, 
or a set of competitive, processes. To each reaction step an adequate 
pathway may be ascribed and, consequently, appropriate values of kinetic 
constants E and Z. Usually, the rates of individual steps differ one from 
another. If the rate of one distinct step is much lower in comparison to the 
rates of other steps then the former controls the kinetics of the overall 
process and is named the rate determining step. Most kinetic considerations 
are based on the assumption that one distinct step determines the kinetics of 
the reaction under investigation. The description of the kinetics of consecu- 
tive [39] and competitive [40] processes presents a rather cumbersome 
problem. 

Most considerations regard the search for an adequate reaction pathway 
describing the kinetics of the process. As mentioned earlier, values of kinetic 
constants E and Z are characteristic of a given reaction model and can be 
evaluated only when the latter has been established. The investigation of the 
reaction model however, presents a difficult problem. The currently used 
procedure is based on the fitting of an appropriate kinetic equation (i.e., rate 
equations with various g(1 -c~) or f(1 - ~ )  functions) to the experimental 
data. To examine the accuracy of the fit various statistical methods have 
been proposed (see for example, refs. 2, 4, 5, 8, 9, 11, 41-57). None of these 
methods, however, have been accepted as a standard correct procedure. 
There are still a lot of doubts regarding the applicability of certain methods. 

The derived values of E (expressing apparent activation energy) [58], 
should be higher than the values of the enthalpy change corresponding to the 
rate determining step. If AH r for the overall reaction is known one might 
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expect these functions [g(1 - ~ )  or f(1 -c~)] to describe adequately the rate 
of the processes where E values are higher or, eventually, somewhat lower, 
than AH r values. If E << AH r the reaction is assumed to have a complex 
nature, e.g., it may result from a sequence of consecutive processes. This 
regularity may be helpful in the search for a suitable reaction mechanism. 

Unfortunately, AHr values are not always available. Stepin et al. [59] 
proposed an approximate method for the evaluation of AHr from thermo- 
gravimetric traces. This method is based on the assumption that the process 
proceeds at equilibrium conditions. This is not always the case, however, if 
this did occur, then eqn. (31) should be used. 

A number of questions remain regarding the real physical meaning of 
kinetic constants E and Z [60,61]. Some authors consider them just as 
empirical quantities for use in the formal mathematical description of a 
reaction without much true physicochemical significance [60]. It seems to be 
generally accepted that Z cannot be identified as a frequency factor appear- 
ing in equations describing kinetics in gases and homogeneous liquid solu- 
tions. On the other hand, values of E may be comprehended as energy 
barriers to the processes occurring. However, the physical interpretation of E 
should be handled extremely carefully. 

The last point concerns the applicability of the Arrhenius model in 
thermal analysis. This model is widely used in the description of the 
solid-state reaction kinetics, although its validity has been recently ques- 
tioned by several authors [6,7]. Also, the first signs of new approaches to the 
problem have appeared in the literature [62-64]. Doubtless, the present 
approach to the description of the solid-state reaction kinetics is far from 
perfect. Nevertheless, with the lack of a better, equally simple, general 
model, it will probably exist for a long time yet. 

CONCLUSIONS 

In this article some problems regarding the description of non-isothermal 
reaction kinetics of solids were analyzed. The considerations were concerned 
with the form of the k(T) function in non-isothermal kinetics. It was shown 
that previously proposed forms of basic kinetic relationships [8] are correct 
from the mathematical and physical viewpoint. Both differential and integral 
equations are also accurate from a mathematical viewpoint. Furthermore, the 
proposed approach may be applied to the description of any non-isothermal 
data resulting from the application of various heating programs. Finally, 
these equations have very simple mathematical forms and are easy to work 
with. 

The intention of this work was not to criticize the accepted solid-state 
reaction kinetics equations, rather to show the accuracy and advantages of 
the method proposed by the author. 
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