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In a previous paper [1], dealing with linear heating rate, a general function
was proposed

E|E' E
(1+iRT/E)*

HUELAE

LA
R =g exp(—E/RT){1~

(a)

which gives two exact solutions, F!*), of temperature integral and generates
approximate soluttons of this integral for different i-values.

The best approximate solution for an integer value of i was found to be
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which was previously proposed by Doyle [2] and Gorbachev [3].

In the present paper we aim to establish some similar results for the
temperature integral assuming a non-linear heating rate.

The equation of non-isothermal kinetics, with a non-linear heating rate,
leads to the following form of the temperature integral

I(T):/OTL(T) exp(— E/RT)dT (1)

where E, R and T have the usual meanings, and L(T)= 1/8. Supposing, as
previously [1]

I(T)=q(T) exp(—E/RT) (2)
q(T') being an unknown function which has to be computed. Taking the
derivative of eqn. (1) with temperature and taking into account eqn. (2) leads
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and for
q(T)=bT' ieR (4)
we get
_ L(T)
b= (iT+E/R)T'"? ©)

Equation (5) leads to the following solution of eqn. (1)

L(T)RT? ,
I(T)—m—fexp(—E/RT) (1)
With eqgns. (4) and (5), egn. (3) becomes
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The condition of an exact solution for the temperature integral will then be
given by
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which has two roots
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As the roots have different signs, i, > 0 and i, <0.
It is evident that 1 + T(L' /L) <i, <2+ T(L'/L).
As g(i) is a continuous growing function and TL’/L cannot be estimated

for an unknown non-linear heating rate, the absolute values of g(i) are
compared for i =1, 2 and 3, hence
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Since

l2(2)] < lg(1)]
2(2)] < lg(3)|

we find that 1 <7, <2 and g(2) is the best approximation of eqn. (1) with i
an integer value.
Hence
RT?

1
RS =F42RT B(T)eXp(_E/RT) (7)

is the proposed solution to approximate the temperature integral in the
non-linear heating rate assumption.

From the mathematical viewpoint eqn. (7) is identical to F(‘(f)’ (b) for B(T)
tending to a constant value, which is true for short time intervals. This
conclusion supports our idea that linear heating rate kinetics is a rough
approximation to that described more precisely by non-linear heating rate

[1.4].
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