Note

ON THE TEMPERATURE INTEGRAL IN NON-ISOTHERMAL KINETICS WITH NON-LINEAR TEMPERATURE PROGRAMME

C. POPESCU

Central de Cercetări Pentru Materii Prime, Auxiliare și Ape Reziduale, Str. Siret 95, Bucharest (Romania)

E. SEGAL

Polytechnical Institute of Bucharest, Institute of Chemistry, Department of Physical Chemistry and Electrochemical Technology, Bd. Republicii nr. 13, Bucharest (Romania)

(Received 12 December 1983)

In a previous paper [1], dealing with linear heating rate, a general function was proposed

$$F_{(\alpha)}^{(i)} = \frac{A}{\beta} \exp(-E/RT) \left\{ 1 - \frac{\frac{RT}{E} \left[\frac{RT}{E} i^2 - i \left(\frac{RT}{E} - 1 \right) - 2 \right]}{\left(1 + iRT/E \right)^2} \right\}$$
(a)

which gives two exact solutions, $F_{(\alpha)}^{(i_{1,2})}$, of temperature integral and generates approximate solutions of this integral for different *i*-values.

The best approximate solution for an integer value of *i* was found to be

$$F_{(\alpha)}^{(2)} = \frac{A}{\beta} \frac{RT^2}{E + 2RT} \exp(-E/RT)$$
(b)

which was previously proposed by Doyle [2] and Gorbachev [3].

In the present paper we aim to establish some similar results for the temperature integral assuming a non-linear heating rate.

The equation of non-isothermal kinetics, with a non-linear heating rate, leads to the following form of the temperature integral

$$I(T) = \int_0^T L(T) \exp(-E/RT) dT$$
(1)

where E, R and T have the usual meanings, and $L(T) = 1/\beta$. Supposing, as previously [1]

$$I(T) = q(T) \exp(-E/RT)$$
⁽²⁾

q(T) being an unknown function which has to be computed. Taking the derivative of eqn. (1) with temperature and taking into account eqn. (2) leads

$$\frac{\mathrm{d}q}{\mathrm{d}T} + \frac{E}{RT^2}q = \mathrm{L}(T) \tag{3}$$

and for

$$q(T) = bT^{i} \qquad i \in R \tag{4}$$

we get

$$b = \frac{\mathcal{L}(T)}{(iT + E/R)T^{i-2}}$$
(5)

Equation (5) leads to the following solution of eqn. (1)

$$I(T) = \frac{L(T)RT^2}{E + iRT} \exp(-E/RT)$$
(1')

With eqns. (4) and (5), eqn. (3) becomes

$$L(T)\left\{1 - \frac{RT}{E} \frac{i^{2}\frac{RT}{E} - i\left(\frac{RT}{E} + \frac{RT}{E}T\frac{L'}{L} - 1\right) - T\frac{L'}{L} - 2}{\left[1 + i(RT/E)\right]^{2}}\right\} = L(T)$$

The condition of an exact solution for the temperature integral will then be given by

$$g(i) = \frac{i^2 \frac{RT}{E} - i\left(\frac{RT}{E} + \frac{RT}{E}T\frac{L'}{L} - 1\right) - T\frac{L'}{L} - 2}{\left(1 + iRT/E\right)^2} = 0$$
(6)

which has two roots

$$i_{1,2} = \frac{\frac{RT}{E} \left(1 + T\frac{L'}{L} \right) - 1 \pm \left\{ \left[\frac{RT}{E} \left(1 + T\frac{L'}{L} \right) + 1 \right]^2 + 4\frac{RT}{E} \right\}^{1/2}}{2RT/E}$$

As the roots have different signs, $i_1 > 0$ and $i_2 < 0$.

It is evident that $1 + T(L'/L) < i_1 < 2 + T(L'/L)$.

As g(i) is a continuous growing function and TL'/L cannot be estimated for an unknown non-linear heating rate, the absolute values of g(i) are compared for i = 1, 2 and 3, hence

$$|g(1)| = \frac{L(RT/E)}{\left(1 + \frac{RT}{E}\right)^{2}} \left[1 + T\frac{L'}{L}\left(\frac{RT}{E} + 1\right)\right]$$

$$|g(2)| = \frac{L(RT/E)}{\left(1 + 2\frac{RT}{E}\right)^{2}} \left[2\frac{RT}{E} - \frac{L'}{L}T\left(2\frac{RT}{E} + 1\right)\right]$$

$$|g(3)| = \frac{L(RT/E)}{\left(1 + 3\frac{RT}{E}\right)^{2}} \left[6\frac{RT}{E} + 1 - T\frac{L'}{L}\left(1 + 3\frac{RT}{E}\right)\right]$$

to

Since

 $\begin{cases} |g(2)| < |g(1)| \\ |g(2)| < |g(3)| \end{cases}$

we find that $1 < i_1 < 2$ and g(2) is the best approximation of eqn. (1) with *i* an integer value.

Hence

$$F_{(\alpha)}^{(2)} = \frac{RT^2}{E + 2RT} \frac{1}{\beta(T)} \exp(-E/RT)$$
(7)

is the proposed solution to approximate the temperature integral in the non-linear heating rate assumption.

From the mathematical viewpoint eqn. (7) is identical to $F_{(\alpha)}^{(2)}$ (b) for $\beta(T)$ tending to a constant value, which is true for short time intervals. This conclusion supports our idea that linear heating rate kinetics is a rough approximation to that described more precisely by non-linear heating rate [1,4].

REFERENCES

- 1 C. Popescu and E. Segal, Thermochim. Acta, 70 (1983) 359.
- 2 C.D. Doyle, Nature (London), 207 (1965) 290.
- 3 V.M. Gorbachev, J. Therm. Anal., 8 (1975) 349.
- 4 C. Popescu and E. Segal, J. Therm. Anal., 24 (1982) 309.