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ABSTRACT

Coefficients of the Rankin—Kirchoff (RK) equation are evaluated for Si, Ge, Sn and Pb
using two procedures. In the temperature range 1700-2500 K the sums of partial pressures of
E, species present in the saturated vapour are used as issued values of vapour pressure. In the
Sn and Pb saturated vapours the clusterization is not pronounced and the coefficients of the
RK equation evaluated by a least-squares optimisation give rise to the successful predictabil-
ity of the RK equation. It is not the case for Si and Ge. In their saturated vapours the
presence of E; molecular species is important. For Si and Ge a new procedure for the
evaluation of the coefficients of the RK equation is proposed. With coefficients optimised by
the proposed procedure the vapour pressure predictability of the RK equation for Si and Ge
is improved. With thus optimised coefficients the RK equation may be applied for the
temperature range of liquid state, i.e., from melting point up to temperatures at which the
volumetric behaviour of saturated vapour cannot be described successfully by a truncated
form of the virial equation.

INTRODUCTION

The Rankin-Kirchoff vapour pressure equation

1nP=a—§T—+yT+D1nT (1)

which represents the temperature dependence of the vapour pressure of a
pure solid or liquid, is based theoretically on the integration of a form of the
Clausius—Clapeyron equation

dln P L
dT ~ RT? (2)

which is accurate when the vapour is perfect and the molar volume of the
condensed phase is negligible compared to that of the vapour, i.e., at not too
high values of the vapour pressures.

The values of the coefficients in eqn. (1) can be evaluated from numerical
(experimental) values of vapour pressure for a set of temperatures, via the
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least-squares method. However, for the fourth group elements, the coeffi-
cients «, B, Y and D obtained by the linear regression method applied to eqn.
(1) show that a least-squares optimisation gives limited accuracy in predic-
ting the vapour pressure of Si and Ge, in the temperature range 1700-2500
K and at relatively low vapour pressures (0.07-530 Pa for Si and 28-5600 Pa
for Ge). In the same temperature range, but at much higher saturation
pressures (19000-16000 Pa for Sn and 13000-780000 Pa for Pb), the
predictability of eqn. (1) with coefficients optimised by the least-squares
method for Sn and Pb is quite satisfactory.

In order to improve the unsatisfactory correlation between vapour pres-
sure and temperature when the coefficients of eqn. (1) optimised via the
least-squares method are used, attention was focussed to the fact that the
saturated vapour of these elements, as a mixture of atoms E, and molecular
species E,, presents the behaviour of a nonideal gas.

The saturated vapour of all the fourth group elements consisis of atoms
and molecular species with a different number of atoms [1-8]. Clusterization
of atoms decreases with increasing atomic number; i.e., from C and Si up to
Pb. Clusterization is highest in C saturated vapour [9]; the contribution to
the vapour pressure by the species under C, is not negligible up to 4000 K.
In the temperature range 1700-2500 K, for the above saturation pressures,
the presence of Si, and Si; species in Si saturated vapour is important [1,2].
At these temperatures, the contribution of Ge, to the total vapour pressure is
negligible [7,8] and in spite of vapour pressures being higher than those of Si
and Ge, dimer content in the saturated vapours of lead and tin is low
[3,5-8]. Taking all this into account, it should be noted that the vapour
pressure in the temperature range 1700-2500 K for silicon is a sum of Si,,
Si, and Si, species’ partial pressures and for germanium, tin and lead the
sum of monomer and dimer partial pressures.

During the thermodynamic characterization of the vaporization of the
fourth group elements [10] the method of evaluation of coefficients in eqn.
(1) was derived. With these coefficients the issued vapour pressure values can
be predicted with much better accuracy than if coefficients obtained by the
least-squares method are used.

The main contribution to the established procedure for the optimization
of coefficients of the temperature dependence of vapour pressure is the
inclusion in the computations of two thermodynamically consistent rela-
tions. Both these expressions are developed from rigorous thermodynamic
expressions (third- and second-law expressions for A H?) on the basis of the
same statements. In developing these expressions, the Woolley approach was
used [11] which implies a description of the volumetric behaviour of a
mixture consisting of atoms £, and molecular species E;, by a virial equation
for a real monatomic gas. For low vapour pressures, the Woolley statements
suggest the use of a virial equation truncated at the second term. Moreover,
the vapour pressure values used, as the sum of the partial pressure of the



169

species present, are theoretically constrained to fulfil in the physical sense
any one of the particular equations in the set of equations included in the
computation.

The procedure is reliable as CODATA-recommended values for standard
vaporization enthalpy, spectroscopic values for the standard enthalpy of the
molecular species E, dissociation, as well as table values for the thermody-
namic functions (® =[—(G%— H?)/T); Hf — HY) of the condensed and
ideal gas state of E; atoms and the molecular species E, are used. For vapour
pressure values the sums of the partial pressures of the species present in the
saturated vapours of these elements were taken

P-%» ®)

with n = 3 for silicon and n = 2 for other elements. p, was calculated using
the expression
TA@(E,) — A Hy(E,)

RT (4)
deduced from the third-law expression (eqn. 12) and p,(i # 1) through the
expression

p,=P%exp

r=% (5)
where Kp, represents the constant of equilibrium

E, 2 iE, (6)
Kp, was calculated with values for thermodynamic functions of the E; species
through the expression

AE‘I’(E,-) — AdH(?(Ei)

Kp, = P° eXp RT (7)

EVALUATION ON THE COEFFICIENTS OF EQUATION (1)

First, the coefficients of eqn. (1) were evaluated for Si, Ge, Sn and Pb, by
applying the linear regression method directly to eqn. (1), with P (eqn. 3)
values as issued vapour pressure values, at temperatures 1700, 1800,...,2500
K. Optimised values of a, 8, y and D coefficients, for all the elements
studied are given in Table 1, together with the values for the corresponding
correlation coefficient of the eqn. (1) linear regression that was calculated
using the expression

,30(— l) +y0(T )+ Do(In T)

T
1) =
r(1) o(In P)
where 6%(x) represents the variance of x[—1/7, T, In T, In P]. In Table 1
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TABLE 1

Values of coefficients in the equation® InP=a—B8/T+yT+ DInT optimised by the
least-squares method

Element «a Bx10* v x 103 D 1—]1—r(1)|
(K) (K™

Si 59.2150 5.3834 14.0 —5.9218 0.996

Ge 27443 3.9051 -30 1.3874 0.995

Sn 6.4572 3.4756 -1.0 0.7529 0.998

Pb 26.9946 2.3778 5.0 —2.1363 0.998

2 Pisin Paand T in K.

r(1) values are given through the degree of correlation defined as 1 —|1 —
r(1)|.

The same coefficients from the same issued, P (eqn. 3) values were derived
using the following procedure.

The saturated vapour of any of the elements analysed, as a mixture of
atoms E, and molecular species E,, is treated as a monatomic-particle real
gas, whose volumetric behaviour is described by a truncated form of virial
equation

v="1+ 8 (8)

From Woolley’s statements for this case [11] it follows that the tempera-
ture dependence of B has to be represented by equation

B= —aT exp% (9)

where the parameter b is defined by the relation
bR = A H(E,) (10)

where Ay HP(E,) is the standard enthalpy of dimer dissociation.

On the basis of eqn. (7), the fugacity coefficient of the saturated vapour is
given by
f_BP

lnP =RT (11)

so the developed third-law expression for A HJ( E,) has the following form
P

A HY(III) = TAvd)—RTlnF—BP (12)

The developed A, HJ( E,) second-law expression

AVH(?(II)=—AV(HTO—H@)+(?+YT+D)(RT+BP)—[’%P (13)

is obtained with the aid of eqns. (1), (10), (11) and (13).
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On the basis of eqns. (1), (9), (12) and (13) the numerical procedure for
the evaluation of the coefficients in eqn. (1) was established. The procedure
has included following steps:

(1) calculation of issued vapour pressure values, P (eqn. 3) values, by
means of eqns. (3)-(7);

(2) calculation, for a set of temperatures, with P (eqn. 3) values, the
absolute values of the second virial coefficient, through the following expres-
sion

AHO—TA® + RTln%

|Bl = (14)

P

(3) evaluation of the values of the parameters a and b, by applying the
linear regression method to the logarithmic form of eqn. (9)

18] _ b
lnT—lna+T (15)
(4) calculation, for all the temperatures, of the values of the function M
aHY+ A (HY - ) - 222
M= (16)

RT + BP

that is related, through eqn. (13), to the coefficients 8, y and D by the linear
equation

_B +yT+D (17)
T
(5) evaluation of the parameters 8, y and D, by applying the linear
regression method to eqn. (17), M (eqn. 16) values being used;
(6) calculation of the a parameter mean value from thus obtained 8, y and
D values and P (eqn. 3) values, via eqn. (1).
The described procedure was applied to Si, Ge, Sn and Pb, for five

temperatures in the range 1700-2500 K. For this purpose thermodynamic

TABLE 2

Values of coefficients in the equation® InP=a—8/T+ yT + DIn T optimised in the new
procedure

Element a Bx10¢ vy x 108 D 1—1—r(1))
(K) (K™

Si 25.93735 4.75569 7.8 —0.0857 0.9982

Ge 24.55975 4.03523 6.0 0.0263 0.9998

Sn 21.63072 3.52430 0.2 0.2746 0.9999

Pb 22.98408 2.17124 17.8 —0.0986 0.9990

# Pisin Pa and T in K.
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function data from ref. 12, that include CODATA recommended values for
A H{ [13], were used. Obtained values for eqn. (1) coefficients, as well as
corresponding degrees of correlations for all the treated elements are sum-
marised in Table 2.

The vapour pressure predictability of eqn. (1) with coefficients optimised

TABLE 3

Deviations between P (eqn. 1) and P (eqn. 3) values for silicon

Temperature  Vapour Si0, 8Py +5(8Py) SPL° 1 s(8Pp)
(K) pressure content ordPy or 6Pp,

(Pa) (%) (%) (%)
1690 5.91x1072 2.69 0.11 6.95
1700-2500 6.98x1072-5.25x10%2  2.75-9.01 0.11+0.09 9.72+1.57
3000 1.23x10* 12.94 0.17 17.90
3500 1.17x10° 16.26 0.50 30.06
4000 6.32x10° 18.88 2.47 50.70

? 8P =[P (eqn. 1)— P (eqn. 3)]/P (eqn. 3)X100 the index M denotes P (eqn. 1) values
calculated with coefficients optimised by the new procedure, and the index D denotes P
(eqn. 1) values calculated with coefficients optimised by the least-squares method.

TABLE 4

Deviations between P (eqn. 1) and P (eqn. 3) values for germanium

Temperature ~ Vapour Ge, 8Py +s(8Py) 8Pp+s(8Pp)
(K) pressure content or 6Py or 8Py

(Pa) (%) (%) (%)
1210 1.8x10™4 0.52 1.57 9.76
1700-2500 2.80x10°-5.64 x10° 3.01-9.80 0.0740.06 1042+1.42
3000 8.31x10* 13.75 1.04 14.35
3500 5.63x10° 17.78 2.50 15.41
4000 2.35x10° 19.25 4.57 15.67
TABLE 5

Deviations between P (egn. 1) and P (eqn. 3) values for tin

Temperature ~ Vapour Sn, SPy+s(8Py)  8PL+s(8Pp)
(K) pressure content or 8Py or 8Py

(Pa) (%) (%) (%)
1000 8.48x107°¢ 0.004 3.68 0.60
1700-2500 18.97-1.60x10* 0.46-3.11 0.06 +£0.04 3.29+0.44
3000 1.76 X 10° 5.60 0.55 5.05
3500 9.69x10° 8.12 1.90 6.51

4000 3.46 X 10° 10.33 419 8.46
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TABLE 6

Deviation between P (eqn. 1) and P (eqn. 3) values for lead

Temperature  Vapour Pb, 8Py + s(8Py) 8Pp+s(8Pp)
(K) pressure content or 8Py, or8Pp

(Pa) (%) (%) (%)
1200 64.32 0.04 4.96 0.47
1700-2500 1.35%104-7.83 x 10° 0.56-3.86 0.15+0.06 2124027
3000 3.34x%10° 7.02 1.26 3.16
3500 9.60 % 10°¢ 10.23 3.92 3.35

by the two methods described was estimated through calculated (relative)
deviations between P (eqn. 1) and P (eqn. 3) values (Tables 3-6).

DISCUSSION

In the optimisation temperature range (1700-2500 K) the average estab-
lished deviations between calculated vapour pressure values P (eqn. 1) and
original values P (eqn. 3) for lead and tin are 2 and 3%, respectively (Tables
5 and 6), while 8 P values for silicon and germanium are about 10% (Tables 3
and 4), provided the parameters of eqn. (1) are optimised by the least-squares
method. From these results it follows that the predictability of eqn. (1), with
coefficients optimised by the linear regression method for Sn and Pb can be
accepted as satisfactory. This is not the case for Ge and Si.

When in computations of P (eqn. 1) values the coefficients obtained in
our procedure are used, deviations in vapour pressure values in the optimisa-
tion temperature range are lower than 1% (Table 3 and 4). It was noted that
the values of the degree of correlation (1 —|1 — r(1)|) for our procedure
(Table 2) were higher than corresponding values obtained using coefficients
of eqn. (1) optimised by the least-squares method (Table 1).

Improvement of vapour pressure predictability, in the optimisation tem-
perature range, obtained by our procedure in relation to that of linear
regression optimisation, is evident, in spite of the fact that in our procedure
the number of points used (five temperatures) was lower than in the case of
the linear regression (nine temperatures). However, the practical meaning of
this improvement is important only for silicon and germanium.

Also the vapour pressure predictability of eqn. (1) was considered with
coefficients optimised by both methods outside the optimisation temperature
range, by calculating the deviations between P (eqn. 1) and P (eqn. 3) values
(Tables 3-6). From results obtained the same could be concluded as for the
optimisation temperature range. The predictability of eqn. (1) with coeffi-
cients optimised by our procedure is higher than with coefficients optimised
by the least-squares method. Even when the departure from the optimisation



174

temperature range is higher, the reliability of P (eqn. 1) values with coeffi-
cients optimised by the linear regression method decreases progressively,
especially for Si and Ge. On the other hand, the range of applicability of
eqn. (1) with our coefficients can be extended up to 1210 and 4000 K for Ge
(the range of liquid Ge from its melting point to 4000 K) and to 4000 K for
Si. Since the melting point of Si lies at 1690 K, the extension of applicability
of eqn. (1) toward lower temperatures is not possible.

From the calculated deviations in vapour pressure values it is possible to
evaluate the essential difference concerning the extension of the temperature
range of applicability of eqn. (1) depending on the method of coefficients’
optimisation. When the least-squares-optimisation coefficients are used, de-
viations between P (eqn. 1) and P (eqn. 3) values gradually increase
especially at higher temperatures, with a departure from the optimisation
temperature range. This is not the case with coefficients evaluated in our
procedure. Deviations §P,, are slightly worse outside the optimisation tem-
perature range than inside it; this rise is not connected with the departure
from the optimisation temperature range, but with the conditions under
which the truncated form of the virial equation (eqn. 8) and the Woolley
model [1] are no longer appropriate for saturated vapour.

Relating the parameters of saturated vapour ( E, content, vapour pressure)
and vapour pressure predictability of eqn. (1) with parameters optimised by
our procedure or by the linear regression method, we can conclude that for a
higher dimer content, predictability with coefficients optimised by the least-
squares method is low (Tables 3 and 4). If, under these conditions, coeffi-
cients optimised in our new procedure are used, deviations in vapour
pressure values are remarkably lower. Improvement in the predictability of
eqn. (1) with our coefficients for high E, content diminishes only at high
vapour pressures. Therefore, the new procedure was proposed for the evalua-
tion of coefficients of vapour-pressure temperature dependence for liquid
silicon and germanium.

When clusterization is insignificant in a saturated vapour, as in the
saturated vapour of tin and lead at low vapour pressures (lower than 0.5
MPa), the application of the proposed procedure for the improvement of the
predictability of eqn. (1) is unjustifiable and inefficient.

CONCLUSION

With vapour pressure values given as sums of partial pressures of E,
species present in a saturated vapour in the temperature range 1700-2500 K,
the coefficients of Rankin-Kirchoff equations for Si, Ge, Sn and Pb are
derived using the least-squares method.

On the basis of deviations in vapour pressure values, the optimised
coefficients for Sn and Pb can be accepted as reliable while the predictability
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of the Rankin-Kirchoff equation for Si and Ge with coefficients optimised
through the linear regression method is not satisfactory.

A new, efficient, procedure for optimisation of coefficients in the
Rankin—Kirchoff equation, representing vapour-pressure temperature de-
pendencies, is developed by introducing into the computation two thermody-
namically consistent equations. Both of these equations are developed from
rigorous thermodynamic expressions (third- and second-law expressions for
A HQ) on the basis of the approach in which the volumetric behaviour of a
gas mixture, consisting of atoms E; and molecular species E;, has to be
described by a virial equation of a real monatomic gas.

With the coefficients optimised during this procedure the equations of
Rankin—Kirchoff type for silicon

47556 X 9

In P =25.9374 — — T + 0.0000078T — 0.0857 In P

and for germanium

40352 X
In P =24.5598 — LST———BS + 0.000006T + 0.0263 In P
where P is in Pa and T in K, possess very good vapour pressure predictabil-
ity for the whole temperature range of the liquid state, from the melting
point up to temperatures at which the vapour pressure reaches values of 0.5
MPa.

LIST OF SYMBOLS

pressure

partial pressure

fugacity

molar volume
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second virial coefficient
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latent enthalpy of vaporization

free energy function, — G — Hy /T

mathematical function

vapour pressure temperature dependence coefficients
parameters of virial coefficient temperature dependence
equilibrium constant
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o%(x) variance
r correlation coefficient of linear regression
Superscript
0 standard state
Subscripts
d dissociation
i molecular species
0 reference temperature
v vaporization
m melting point
M results obtained with coefficients optimised in new procedure
D results obtained with coefficients optimised by the least-squares
method
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