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ABSTRACT 

The method of estimating effective invariant kinetic characteristics in non-isothermal 
kinetics is developed, its connection with general methods for describing multiparametric 
dependencies and improving the unambiguity of inverse problem solution as well as with the 
main initial non-isothermal equation of kinetics is discussed. The method is applied to 
K3CrO 8 thermolysis whose study is difficult because decomposition tends to develop into 
thermal explosion. 

INTRODUCTION 

It is shown [1] that potassium tetraperoxochromate(V) (KaCrO8) is a 
long-term test subject in topochemistry. Its thermolysis by the equation 
KaCrO 8 ~ K2CrO 4 + KO 2 + 0 2 proceeds without fusing and is char- 
acterized by a typical sigmoid kinetic curve under isothermal conditions. The 
high-sensitive ESR method illustrates the development of thermolysis and 
exposes profound changes in the paramagnetic salt component  (CrO83- ions) 
as early as at the induction period. The kinetics of isothermal decomposition 
of K3CrO 8 is described by autocatalytic equations, the value of the effective 
activation energy being E = 69 + 12 kJ mol-1 and the pre-exponential factor 
being log (A/s  -1) = 7 _+ 2. Joint kinetic and instrumental tests have allowed 
the conclusion that thermolysis follows the nucleation mechanism with the 
most important contribution to defect generation being during the induction 
period throughout the solid. The findings of Part I of this communication [1] 
serve as a basis for studying K3CrO 8 thermolysis under the conditions of a 
linear temperature rise. The knowledge of the main specificities of this 
process gives a basis for testing the validity of the conclusions obtained from 
non-isothermal tests whose interpretation is more difficult than in an isother- 
mal case. 

The accuracy of non-isothermal methods has been widely discussed, but 
this question is still open to discussion [2-4]. For several reasons [2,3], 
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kinetic characteristics are ambiguously estimated from non-isothermal data, 
i.e., the inverse kinetic problem has multiple solutions, and this invalidates 
the scientific, and reduces the practical, importance of the kinetic parameters 
obtained and imparts to them a purely empiric character. As a whole, 
non-isothermal methods are not recommended for solving the inverse kinetic 
problem [5]. However, decomposition under non-isothermal conditions gives 
a better modelling of such practically important processes as solid combus- 
tion, since variations of the heating rate and transition to non-isothermal 
conditions may change the mechanism of the process. The application of 
non-isothermal methods in these cases seems to be inevitable. 

Part III of this series, dealing with K3CrO 8 thermolysis, will consider the 
decomposition of this substance under combustion conditions. The quantita- 
tive physical combustion model requires the knowledge of the parameters E 
and A and the form of the kinetic function f(ct). The above-mentioned 
ambiguity of the solution, poor conditionality of the inverse kinetic problem 
and, hence, false compensation effect (CE), greatly hinder the choice of E, A 
and f(a). Because of the CE, extrapolation of kinetic data to combustion 
temperatures seems to be a dubious procedure even when the process 
kinetics do not change a transition from low temperatures, at which kinetic 
data are obtained, to combustion temperatures. Therefore, the intention is to 
obtain invariant, i.e., uniquely determined and independent of the experi- 
mental conditions (provided changing conditions do not change the process 
mechanism), effective kinetic characteristics,/~, A, f(a), of K3CrO 8 thermol- 
ysis during linear temperature rise and to compare them with the data 
obtained by isothermal methods in order to elucidate the sensitivity of the 
kinetic characteristics of K3CrO 8 thermolysis to changes in heating condi- 
tions. 

During the heating of this substance its strongly exothermal decomposi- 
tion may change into thermal explosion. This complicates the kinetic studies 
with linear heating and specifies stringent requirements to the investigation 
methods. The latter impelled the use of K3CrO 8 for verifying the method of 
estimating invariant kinetic parameters. In ref. 6 it was verified in a more 
simple way. The method of finding f(a) is still to be developed, which 
requires the analysis of its relationship to other most general approaches for 
the description of multiparametric relationships and for inverse problem 
solution. These are the subjects of the present communication. 

DESCRIPTION, DEVELOPMENT AND ANALYSIS OF THE METHOD 

The method of estimating the invariant (^ above) parameters /~ and 
suggested in refs. 6 and 7 implies the following, when applied to non-isother- 
mal conditions. Some of the approaches are used to estimate E and A with 
discrimination of the function fj(a) through verification of linearity of an 
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appropriate expression for a l l j  functions. Because of the strong temperature 
dependence of the reaction rate, d a / d t ,  the linearization procedure has a 
low sensitivity to functions of the form fj(a). The discrimination of these 
functions is, therefore, ineffective. The set of Ej and Aj values, corresponding 
to the above functions, is formally related by the following compensation 
law whose quantitative form expresses ambiguity in A and E estimation 

log Aj = B + lEj (1) 

where B = log ]¢; l =  1/2.3 Rib; k is the rate constant. However, as the 
invariant .,~ and/~ belong to locus (1), they may be found as an intersection 
of straight lines (1). The essence of the method is to obtain a pencil of lines 
(1) by varying the experimental conditions, to find the coordinates of its 
centre, i.e., .d and E, from the condition of forming the pencil with straight 
lines (1) 

= l o g  d - ( 2 )  

and to use .d and /~ for discriminating fj(a) models. In fact, a common 
prolonged ellipsoidal confidence domain rather than a straight line (1) 
appears in the space of log Aj and Ej factors, but this may be taken into 
account only at the stage of finding an error in A and E. 

Note that the above method o f / i  and /~ estimation corresponds to the 
modification of the basic non-isothermal kinetic equation 

da l d a A  ( ~__~) 
a T - / 3  at  t9 exp - f(a) (3) 

whose disadvantages are exposed rather convincingly in refs. 2 and 3, to 
become a three-exponential equation of the form 

dO exp(  )  )fjio  14) at  ~ o )  exp( E ~  e x p ( -  Ej \RL 

where T O = 1/2.3Rlo; v being the number of the heating rate/3o, in which ib v 
for the substance characterizes the experimental conditions, and Ej char- 
acterizes the kinetic function and the calculation method. With the proper 
choice of fj(a), the terms including ibo are cancelled and eqn. (4) becomes 
eqn. (3). As will be shown later, these terms decrease the ambiguity of the 
inverse problem solution. 

The fj(a) models may be discriminated using the log/[  and/~ values and 
using eqn. (3) to find the predicted values of da/dt. Having n of the i-th 
experimental values of ( da /d t ) i ,  the residual sum of squares for each fj(a) 
can be found 

(n-1)Sj2o=~ ~ - B - ~ e x p -  f j(ai)  
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The most  probable function f(a)  is then chosen by the min imum mean  value 
of the heating rate approximate  error, S, for all o values 

g= E sjo/v 
v 

Careful consideration shows that the method  of /~  and ,4 est imation under  
study is an adaptat ion of a more general approach to the description of 
mult iparametr ic  relations by polynomials  and to the decrease of interdepen- 
dence of the mathemat ic  model  parameters by introducing a t ransformed 
independent  variable resulting in smaller values of non-diagonal  elements of 
the information matrix [8]. The efficiency of the general approach to 
decreasing parameter  inter-dependence relies on the correct choice of trans- 
formation. The method  of /~  and ,4 estimation corresponds to a polynomial  
model  and allows the above t ransformation of the variable to improve 
condit ionali ty of the problem. To show this, we consider the general form of 
the function under  study, f(log k in this case), vs. three variables, xl, x 2 and 
x3, the first one specifically being T-1, i.e., the Arrhenius variable 

log k = log A - E / 2 . 3 R T  (5) 

the second, the variable changing A and E in accordance with (1) and the 
third, changing B and l as in eqn. (2). Following ref. 9, the function of x 1, x 2 
and x 3 arguments  may be represented as 

i = 3  

f ( X I ' X 2 ' X 3 ) = f ( x O ' x O ' x O )  + E a ix i+ ~.,~_,aijx,xj+a123xlx2x3 
i = 1  i < j  

The interdependent  equations of types (1), (2) and (5) being satisfied, the 
polylinear function simplifies to become 

f (x l ,  X2' X3)= f(xO, x02, x°) + alxl + a2x2 + al2xlx2 

"F a23x2X 3 -.[- alE3XlX2X 3 (6) 

where x ° are the values of the variables regarded as standard. The conform- 
ity of polynomial  (6) to the set of equations (1), (2) and (5) may be followed 
f rom geometric interpretat ion eqn. (6) in the plane f(xl, x2, x3) - x~. Similar 
to the set of equations (1), (2) and (5) [7], polynomial  (6) provides a set of 
line pencils of type (5) 

f (x l )  = b o + b , x ,  (7) 

whose centres are located on the straight line of type (2). The Arrhenius 
equation (7) is, however, obtained from eqn. (6) provided x 2 and x 3 are 
fixed, hence 

0 
bo = f (x° ,  x2, x°)  + a2X2c + a23X2cX3c b l  = a l  + a12x2c + al2aX2cX3c (8) 

where subscript c means a fixed variable. If x 3 alone is fixed, then linear 
interdependence of b o and b 1 is seen from eqn. (8), since each of these 
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quantities is a linear function of x 2. Eliminating x 2 from eqn. (8), the 
interdependence of b 0 and b I is obtained 

b o = f ( x O ,  x ° x °) a2+a23x3c ( a l - b l )  (9) 
' a12 -t- a123X3c 

On the other hand, linearity of the b 0 and b I interdependence means that 
lines (7) form a pencil. The formation of a pencil by lines (7) may be written 
in the form corresponding to the CE 

b 0 = B -  21b 1 (10) 

where (B, 2 a) are the coordinates of the pencil centre in the f(x 1 ) - x  l plane. 
From eqns. (9) and (10) we have 

21 = - a2 + az3X3c (11) 
a12 --I-- a123X3c 

B = f (x  °, x °, x °) + ax21 (12) 

Following the terminology of ref. 9 021 may be defined as an isoparametric 
value of x 1. Substituting 21 into eqn. (6) immediately gives eqn. (12), which is 
completely consistent with the meaning of B as the ordinate of the pencil 
centre. 

Finally, cancelling the conditions of fixed x 3 variable gives eqn. (11) 
without subscripts c and eqn. (12) with the meaning of the function linear 
relative to 21, i.e., of the x 3 function. Line (12) includes the centres of line 
pencils (7). Thus, we have obtained the consistency of the set of particular 
equations (1), (2) and (5) to the set of eqns. (7), (10) and (12) obtained for 
the general case governed by polynomial (6). 

Now consider how the validity of eqns. (7), (10) and (12) affects the 
conditionality of the problem of reconstructing parameters (of E and A type) 
from experimental data. For brevity, the above equalities are written as 

f = fo + alXl f o =  f - 5qal f = fo + 3121 (13) 

The successive substitution of relations (13), which corresponds to the 
algorithm of /~  and ~4 estimation in an inverse order, results in 

f =  fo + cq21 - a12a + alXl or f = / 0  + a121 x l  -- 21 2----~--- + h121 

i.e., allows transformation of the x 1 variable by introducing the dimension- 
less variable x• = (x  1 - 21)/21. The use of x~ leads the.first of eqns. (13) to 
become 

f = a'~ + a?x? (14) 

where a~' =f0  + a~'; a~' = ax2 P If the information matrix of a transformed 
model (14) is denoted as M*,  while the matrix of the nontransformed model, 
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i.e., f = f o  + a l x !  is denoted as M, comparing the determinants of these 
matrices 

det M = n Y'~ x~i - x l i  
! 

det M* = n ~ x~ 2 - x~ 
i 

where n is the number  of the experimental points, easily shows that in the 
above range of xli the matrix M becomes degenerated (det M is close to 
zero). In det M*,  the second term alone is close to zero as x~ may attain 
both positive and negative values; therefore, det M *  >> 0 and matrix M* 
will not degenerate and the worst estimates of the model parameters will be 
less shifted. Moreover, as 21, in the final analysis, is a variable (eqn. 12) 
dependent  on x 3 (eqn. 11), we may state that a transformation to x~, 
compared to suggested transformations [8], has specific features indicating 
the dependence of x~ on x 3 

x l ( a l 2  q- a123x3) 
x~' = - 1 (15) 

a 2 + a23x 3 

Substitution of eqn. (15) into det M* shows that due to x 3 variation 
(x  3 = x3~, x32... ,  x3j ), the first term in det M *  increases (as a set of x3j 
corresponds to each x~), the second one vanishing more rapidly (as x 3 
variation may add both positive and negative values to Xl* ,), i.e., conditional- 
ity of the problem improves, as was set out to be proved. 

EXPERIMENTAL 

K3CrO 8 was synthesized in accordance with ref. 10 and crushed to 
particles less than 50 ~m. Thermolysis was studied using an OD-103 deriva- 
tograph in the air atmosphere at v = 1 , . . . ,  6; temperature rise rates, fl, of 0.6, 
1.25, 2.5, 5, 10 and 20 K min -1 were used as well as under isothermal 
conditions ( +  3 K) identical to those in the derivatograph in other respects. 
In all of the runs, the K3CrO 8 sample (50 mg) was diluted with a 20-fold 
amount  of calcinated aluminium oxide. 

Based on the data of non-isothermal experiments, E and log A were found 
for a ~< 0.6 (as in the general case for large a the process mechanism changes, 
they are not recommended [11]) by the Coa t s -Redfe rn  method [12] using 

j = 1 . . . . .  20 of different kinetic functions including ones differing in their 
order as presented in ref. 13. Treating data by the above method is rather 
tedious. We have, therefore, developed a complex including the OD-103 
derivatograph operating on-line with a microcomputer.  In this complex, a 
thermocouple and thermobalance signal is applied via a commutator  to the 
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15-bit analog-to-digital converter and then introduced into the microcom- 
puter through the interface. The analog-to-digital converter and the commu- 
tator are controlled by a timer. Data may be fed to the microcomputer  at 5-s 
intervals. The thermocouple EMF is converted into temperature following 
the calibration chart stored in the computer, while the thermobalance signal 
is used for o~ computation. If a solvent is used as in our experiments, its phon 
has been loaded in the microcomputer  memory and subtracted automati- 
cally. As the process terminates, which is signalled by the DTG curve, the 
computer  starts to compute kinetic parameters by the Coats -Redfern  method 
us ingj  = 20 functions fj(a).  The procedure is repeated with different heating 
rates. 

RESULTS AND DISCUSSION 

As K3CrO 8 was diluted with 20-fold A1203 for a derivatographic study, 
even an insignificant generation of adsorbed gases per unit solvent surface 
may have affected the kinetic results. In all the tests, therefore, the phon TG 
curve was subtracted. The check of the A1203 effects on the kinetics of 
isothermal K3CrO 8 decomposition shows that this is described by the 
first-order autocatalysis (Prout-Thompkins)  equation just as in the case of 
K3CrO 8 without A1203. The Arrhenius parameters of thermolysis (Fig. 1) 
l og (A/s  -1) = 5.5 + 0.8; E (kJ mo1-1) = 58.6 + 6.7 agree with the data for 
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Fig. l. Arrhenius dependence of rate constants of isothermal decomposition of K3CrO 8 
diluted with 20-fold A1203. 
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pure K3CrO 8 [1]. Hence, the A1203 admixture does not change the kinetics 
of K3CrO 8 decomposit ion.  Following our data, this conclusion is also valid 
for ZnO diluant. 

The Coa t s -Redfe rn  discrimination of kinetic functions is usually realized 
by verifying the linearity of the expression 

log g j ( a  ) AiR Ej 
T2 = log flEj 2.3RT (16) 

for different g j(0t) = f0 ~ d a / f ( a ) .  Close linear correlation coefficients ( + 0.02) 
for all the 20 functions did not allow the choice of the kinetic model  f rom 
eqn. (16). This resulted in the uncertainty of the Arrhenius parameters 
corresponding to eqn. (1), the max imum and min imum E values being more 
than an order of magni tude different. To eliminate this uncertainty,  as 
ment ioned  above, pencil (1) must  be obtained. The latter is achieved by 
changing the heating rate: each fly has its own line (1) as the variation of fl 
causes the thermoanalytical  curve to shift, and the coefficient l in eqn. (2) 
correlates with the position of this peak [14]. As elementary analysis shows, 
correlation of parameters B and 1 of eqn. (2) consists with line pencil (1). 
This correlation can be conveniently used for checking the pencil formed by 
lines (1) and for computa t ion  of log `4 and /~, as well as for simplified 
est imation of the error of log .4 and /~ values, whose correct calculation 
requires a special analysis. The values of log .4 and E found from eqn. (2) 
were 6 + 2 and 60.7 + 12.5, respectively (Fig. 2). A max imum error was 

B T -1,7 
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-2.3 

- 2 . 5  
0.47 

0 

0.48 0.49 0.50 0.51 052 

[ .10 3 

Fig. 2. Dependence of B on l, determined by treating with data of the non-isothermal 
decomposition of K3CrO 8. 
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estimated through simple regression analysis eqn. (2) exposing the occur- 
rence of the point for ]3 = 20 K min-I  beyond the confidence domain of the 
function. An absolute error in the estimation of E is within an ordinary 
value but due to the smallness of E values its relative value amounts to 20%. 
Note,  for more typical E values of the order of 120 kJ mol -~ and 
l o g ( A / s  -a) = 10, it does not exceed 10% for both values [6]. Accuracy also 
increases for the substances and conditions with the greatest shift of the 
thermoanalytical curve with changing heating rates. A minimum mean 
approximation error S corresponds to the first-order autocatalysis equation 
((c~) = c~(1 - a). The results indicate that the kinetics of K3CrO 8 thermolysis 
is the same under isothermal and non-isothermal conditions. 

The agreement between the results of isothermal and non-isothermal 
studies evidences the reliability of .d and E values obtained by the suggested 
technique. It is also significant that d and/~ values allow the most probable 
function f(a) to be found. Thus, adhering to the framework of the non-iso- 
thermal kinetics approaches to the analysis of the results and using the 
practically simple algorithm considered above and suggested in refs. 6 and 7, 
the inverse kinetic problem may be solved unambiguously and kinetic 
characteristics may be obtained with satisfactory, following pessimistic 
estimates, accuracy. 
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