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ABSTRACT 

Starting from the expression for the reaction rate under non-isothermal conditions, a 
method is defined for the determination of kinetic parameters from data available from DTA 
and TG curves with the application of a computer. The method makes possible the 
determination of kinetic parameters from one non-isothermal curve, with the condition that a 
function characterising the reaction mechanism is successfully determined from isothermal 

data. 

INTRODUCTION 

Several methods have been defined for the determination of reaction 
kinetics under non-isothermal conditions from data available from thermal 
methods. They are often defined in accordance with a thermal analysis 
method, but may be generally applied to all measurement techniques be- 
cause they all interpret the same starting data (the rate or the transformation 
degree). The accuracy of a particular method depends upon the reaction data 
analysed as well as upon the limitations that are introduced during their 
development. From the point of view of mathematical interpretation, these 
methods may be divided differently. Our opinion is that they may be most 
favourably divided into methods that use one heating rate [l-S] and methods 
that use different heating rates [6-81. 
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The largest number of authors [9- 111, in their papers for the analysis of 
kinetics of particular chemical reactions under non-isothermal conditions, 
describe the possibility of applying particular methods with special attention 
being paid to their limitations. Because of this, no special consideration of 
these will be given in this paper. 

In recent literature [9], the combined use of isothermal and non-isother- 
mal methods for kinetic determinations, with the objective of the elimination 
of some of their particular limitations, is described. Although non-isothermal 
methods offer particular advantages [12] for the kinetic determination of 
chemical reactions in the solid phase as compared with isothermal methods, 
we consider that, for the complete analysis of the kinetics of a chemical 
reaction, it is necessary to use both these methods. Isothermal methods are 
more efficient for the identification of the reaction mechanism [ 131, while 
non-isothermal methods, based upon these facts, would be used for all 
kinetic determinations. This is suggested in the practical part of this paper. 
This consideration is suggested because of the fact that, in both cases, in the 
expression for the rate there exists the function f(a) (which characterises the 
reaction mechanism) in the same form, i.e. the consideration is given that a 
non-isothermal process may be treated as a boundary case of the sequences 
of isothermal intervals. 

Based upon the considerations given above, a computer method was 
designed for the determination of reaction kinetics from one TG or DTA 
curve. 

BASIC ASSUMPTIONS OF THE METHOD 

According to the literature data for the majority of chemical reactions 
under non-isothermal conditions, the reaction rate is described by the 
expression 

where da/d7 is the reaction rate and f( (II) and K [ T( r)] are temperature-de- 
pendent functions. Since the function K[ T( T)] is almost always generally 
expressed by the Arrhenius equation, eqn. (1) assumes the form 

da 
z=Aexp - 

E 

[ 1 - fb) 
RT(d 

Our opinion is that the transformation degree, (Y, should be used as a starting 
condition and that is why we have carried out a separation of variables in 
eqn. (2), to give the expression 

dell E 
-=A exp - RT(7) dr 
fb) [ 1 
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Apart from the kinetic parameters, the unknown variables in eqn. (3) are the 
functions f(a) and T( 7). The function f(a) characterises the reaction mecha- 
nism, i.e. the mechanism of the limiting degree and reaction topochemistry. 
Investigations made so far in non-isothermal kinetics show that the majority 
of authors accept or assume the reaction mechanism, i.e. the function f(cy). 
In order to avoid assumptions, we consider that the reaction mechanism may 
be established by closely monitoring reactions under isothermal conditions, 
as also suggested by other authors [9,13], because an accurately determined 
reaction mechanism represents the basis in the investigation of kinetics of all 
reactions. 

Table 1 gives the currently recognised and accepted functions f(a) as well 
as their integrated forms, F(cu), which are used for describing the reaction 
kinetics of the decomposition process of solid components [ 141. By using the 
values given in the table of the functions f(a) which are represented in the 
system a= f( r/~,,~) and experimental curves shown in the same system, the 
right function f may be readily identified. 

In order to avoid possible deviations, which appear in the identification of 
f(a) in the way previously described, we suggest a generalised division of the 
mathematical expressions into groups, depending upon the process that 
limits the total rate, viz. diffusion-controlled (D,, D,, D,, D4), decomposi- 
tion reaction at phases boundary (R,, R3), and reactions forming the centres 
of the new phase (F,, Fz, F3). The correct values of the constants appearing 
in the general expression would be determined by a working model. 

In the function f(a), there appears the transformation degree, the values 
of which should be known. In TG measurements under non-isothermal 
conditions, according to literature data [15] the loss of substances, o, is 
proportional to the height, h, of the deviation from the zero line so that the 
transformation degree, (Y, is given by 

h a=w=- 
urn h, 

where the subscript cc denotes values at the end of the process. 
The calculation of the transformation degree for DTA results is more 

complex and requires certain assumptions for the solution of equations in 
order to avoid complex expressions. In that sense, the theoretical assump- 
tions of Borchardt and Daniels [2] were used, which have shown that the 
number of moles, n, at any time r for a DTA curve may be calculated by the 
expression 

tl=tZ() -&, AT+ CS,) 

where n, and n are the number of moles at the beginning and at time 7, 
respectively, C is a proportionality constant, CP is the specific heat, AT is the 
peak height, S is the total peak area, and S, is the peak area at time 7. 
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Using the definition of the transformation degree, one obtains 

c,AT s 
(y=-+I 

es s (6) 

Values of S and S, may be determined from the DTA curve by graphical 
integration, AT is measured from the curve and the ratio from the cooling 
curve [ 161. However, for the majority of reactions, the product CP AT is much 
lower than the product CS, so that the first term in eqn. (6) may be ignored 
and the transformation degree becomes 

S 
(y=l 

S 

The possibility of the use of eqn. (7) is greater if the experimental conditions 
are close to the theoretical assumptions. 

The function T(T), which appears in the expression K 1 T(T)), is chosen by 
the investigator. Our investigations were based upon a linear program which 
is given by the expression 

T=To+h (8) 

where To is the starting temperature and 0 is the heating rate. 
By using the knowledge of the functions f(a) and T(7), we have tried to 

determine kinetic parameters from one non-isothermal DTA curve as well as 
one non-isothermal TG curve. 

If eqn. (8) is introduced into eqn. (3), one obtains 

1 dT 

By integrating eqn. (9) over a [which appears in a particular form of the 
function f(a)] from zero to one, and over 7 from zero to 7, and by using the 
starting condition that 7 = 0 and a = 0, one obtains 

Integration of the right-hand side of eqn. (9) was carried out in the following 
way. 

E 

- R(T,+&) d7 1 
replacement 

R(T,+W Ey 
Y= E ; T=T- To; dT=$ dy 

RT,_ 
7=o=>y=-_-_, 

E 

7=7=>y= 
R(T, + h) 

E =Y2 
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By replacement into the previous equation, one obtains 

The kinetic parameters appearing in eqn. (10) are the process activation 
energy, E, the pre-exponential factor, A and quantities appearing in the 
function F(cr), i.e. the reaction mechanism and, most frequently, “the 
apparent reaction order”, n. For the determination of these kinetic parame- 
ters, which, compared with the parameters in homogenous reactions, are not 
unique, we introduce the idea of the “least square method”. 

Equation (9) and its equivalent eqn. (10) are valid for any time r so that 
the condition 

is satisfied. Based upon the criterion of the “least square method”, we form 
the function G, which is the function of kinetic parameters, obtained by the 
equation 

G= 2 F( J EA I R(T,+@7) jzl[ a’ .,i [ E ]-I[?]}] (11) 

The integrals in eqn. (I l), denoted by I( a), are not elementary functions so 
that it is necessary to approximate them, giving a new function 

* 
& F( ,)-g p R(T,+@7) i=l[ a~ R@{ [ E ] -p(9)}] (12) 

The solution for the kinetic parameters are those values of the function G at 
which it attains a minimum. 

Approximation of the integral I( a) in eqn. (11) was carried out according 
to 

-‘/xdx; a= 
E 

R( To + Gh) 

Approximation is possible if “u ” is less than one, which is most often the 
case, i.e. the lower the value of “a “, the more accurate is the approximation. 

By replacement 

1 - = r’ 
x ’ 

dx=_dz 
Z2 
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x=0=> z= +ccl 

x=a=> z= l/a 

By partial integration, one obtains 

I(a) = - 5 ri +$+m e-’ d(l/z*) = a* e-l/” - 2/tws dz 
I/a ‘/a 

By the same procedure, one obtains in the end 

I(a)=e-‘/“(a2-2!a3+3!a4-4!a5+ . ..)=e-‘/“a*y(-l)*(k+ l)ak 
k=O 

TABLE 2 

Block diagram for solution of the model proposed 

c<=O.005 

4 

K= 1.200 

c ’ 

;j<= grad (X,, F,6)* 

4 

;<+,*g1 I;;] .2 g 

4 

I = 1.12 
“0 

f>l “’ P Yes 

*grad$,F.b)- statistical gradient of the function F ot point ,?with 

the relative logg. 
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Quite sufficient accuracy is obtained up to the fourth member so that I(a) 
may be written by the function P(a) in the form 

P(u) = a* e- “O( 1 - 2!u + 3!u2 - 4!u3) 

We would like to point out that the minimisation of the function G, [eqn. 
(12)] was carried out by the method of “statistical gradient” [ 171 using the 
computer. 

The block diagram for the solution of the given model is presented in 
Table2. It is general from the point of view of the possibility of usage of any 
form of the function F(cu), which characterises the reaction mechanism. For 
the solution of the model, the modifications (a) that the step is different for 
each variable and (b) that the change of the length of step is regulated during 
iterations were introduced. Bearing in mind that the input data are ap- 
proximate numbers, the estimate of the operation error was established, i.e. 
the accuracy was established by which the computer carries out mathemati- 
cal operations and it was shown that the error may be ignored (less than 
0.1%). 

The suggested method enables determination of the reaction kinetics by 
one curve under isothermal conditions for identification of the reaction 
mechanism and one curve under non-isothermal conditions for determina- 
tion of kinetic parameters on condition that the time when the reaction 
mechanism change takes place is known. 

The discussion of concrete applications of the method for the analysis of 
the kinetics of particular chemical reactions will be given in Part II [ 181. 
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