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bstract

What is really measured in dynamic calorimetric experiments is still an open question. This paper is devoted to this question, which can be
sefully envisaged by means of macroscopic non-equilibrium thermodynamics. From the pioneer work of De Donder on chemical reactions
nd with other authors along the 20th century, the question is tackled under an historical point of view. A special attention is paid about the
otions of frequency dependent complex heat capacity and entropy production due to irreversible processes occurring during an experiment. This
henomenological approach based on thermodynamics, not widely spread in the literature of calorimetry, could open significant perspectives on

he study of macro-systems undergoing physico-chemical transformations probed by dynamic calorimetry.
2006 Elsevier B.V. All rights reserved.
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Nomenclature

a angular coefficient of De Donder
A chemical affinity
A0 constant affinity
A, B, . . . thermodynamic states of a system; initial and

final products in a reaction sequence
Cmes experimentally measured heat capacity
Cp heat capacity at constant pressure
Crev experimentally measured heat capacity during a

reversible calorimetric experiment
C0 contribution to the heat capacity at equilibrium of

all the degree of freedom
C∞ contribution to the heat capacity of the infinitely

fast degree of freedom
C* complex heat capacity
C′ real part of the complex heat capacity
C′′ imaginary part of the complex heat capacity
Cξ heat capacity at constant composition or at

constant order parameter
deS infinitesimal external entropy exchange
diS infinitesimal internal entropy creation
G free energy of Gibbs
H enthalpy or heat content function
K heat exchange coefficient
L phenomenological coefficient of Onsager
N number of mole of a constituent
P heat flow rate or thermal power; pressure
Pi thermal power of irreversibility or rate of the

uncompensated heat of Clausius
P̄i time averaged thermal power of irreversibility
P0 amplitude of the oscillating thermal power
Q heat
Q′ uncompensated heat of Clausius
R constant of perfect gas
S entropy
t time
T temperature; period of the modulation
Tac oscillating temperature
Tdc constant stationary temperature
v rate of reaction

Greek letters
γ temperature rate
δA amplitude of the oscillating affinity
δTac amplitude of the oscillating temperature
�ξ departure from equilibrium of the variable ξ after

the time interval �t
�ξeq distance between two equilibrium values of the

variable ξ after the time interval �t
ηeq contribution to the measured heat capacity at

equilibrium of an internal degree of freedom
κ phase lag generated by irreversible effects on the

oscillating temperature
μ chemical potential
ν stochiometric coefficient
ξ degree of advance of a reaction or order parameter

of an internal degree of freedom
ξeq equilibrium value of the degree of advance of a

reaction or equilibrium value of an order
parameter of an internal degree of freedom

σi instantaneous rate of production of entropy
σ̄i time averaged rate of production of entropy
τ kinetic relaxation time constant of an internal

degree of freedom
τext kinetic relaxation time constant of the

temperature towards the heat bath
τint kinetic relaxation time constant of the

temperature inside a medium due to
thermal diffusion

ϕ phase of the oscillating temperature
φ phase of the oscillating affinity

1

t
v
d
s

ω angular frequency of the oscillating thermal
power or oscillating temperature

. Introduction

In calorimetric heat capacity measurements, a sample is per-

urbed by an input thermal power and the resulting temperature
ariation is measured. Also, a temperature program can be pre-
etermined and the resulting heat flow can be measured. Under
pecific experimental conditions, the heat capacity of the sam-
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le is defined by the ratio of this thermal power on the measured
emperature rate. Nevertheless, when the heat flow is supplied
n a time scale smaller than the internal reorganization time of
he sample degrees of freedom, the measured heat capacity is
he result of a non-equilibrium experiment. What is then exactly

easured by the experimentalist? The result of the measurement
s sometimes called the apparent heat capacity. The same type
f question can be asked in modulated calorimetric experiments
hen the input heat flow frequency is higher than the frequency
f the degrees of freedom constituting the heat capacity of the
ample. This yields the so-called frequency dependent complex
eat capacity with a real and an imaginary component. Nowa-
ays, no clear consensus exists on what is really measured during
heses dynamic calorimetric measurements.

This paper aims at demonstrate that the formalism of macro-
copic non-equilibrium thermodynamics can be very helpful to
nvisage these questions. We propose to aboard the problem on a
istorical point of view. For example, we will see that the notions
f non-equilibrium heat capacity and frequency dependent com-
lex heat capacity have been already envisaged for a long
ime. After the present introduction, in Section 2, the historical
ackground of the frequency dependent complex heat capacity
n calorimetry is given. The definitions of macroscopic non-
quilibrium thermodynamics and dynamic calorimetry are then
lso provided. In Section 3, dynamic calorimetric experiments
re envisaged on a qualitative manner. The working assumptions
f what we consider as an ideal dynamic calorimetric exper-
ment are previously given. Then, the link existing between
alorimetry, non-equilibrium thermodynamics and kinetics is
nvisaged qualitatively. In Sections 4 and 5, dynamic calorimet-
ic experiments and complex heat capacity notion are tackled on
quantitative manner through the works of different authors. All
long the paper, a special attention is paid about the notion of
ate of production of entropy generated during non-equilibrium
hysico-chemical transformations. Although we have focused
n modulated calorimetric experiments and complex heat capac-
ty, in Section 6, we treat an example of dynamic calorimet-
ic experiments, the dynamic differential scanning calorimetry
DSC), for which macroscopic non-equilibrium thermodynam-
cs can be also applied. Then, we show that the formula generally
ound in the literature of the averaged entropy production over
ne period of temperature oscillation is simply issued from a
eculiar case of irreversible process. Next, before the conclu-
ion, we provide our point of view on the physical meaning of
he imaginary part of the complex heat capacity.

. Historical background, definitions and assumptions

.1. Historical background of frequency dependent
omplex heat capacity in calorimetry

At the beginning of the 20th century Corbino stated the basis
f modulated calorimetric experiments [1,2]. At the end of the

960s, Sullivan and Seidel improved the technique with the
o-called steady-state ac-calorimetry method, useful in low tem-
erature specific heat measurements [3]. Heat capacities were
nyway already measured by Kraftmakher and others from mod-

c
s
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T
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lated temperature experiments. An interesting review on the
ubject has been written by Kraftmakher [4].

Few years later in 1970, Gobrecht et al. had the original idea to
eplace the linear temperature ramp of usual differential scan-
ing calorimeters (DSC) by a modulated one [5]. It was the
irth of temperature modulated differential scanning calorime-
ry (TMDSC). This article contained all the concepts used today
n modern TMDSC measurements: use of a complex heat capac-
ty; separation of the vibrational and configurational modes of
he heat capacity; application to the glass transition; cole–cole
lot of the complex heat capacity.

At the beginning of the 1990s, Reading and co-workers
efund the principle of the TMDSC [6]. With the use of a decon-
olution, Reading proposed to separate the calorimetric signal
nto a reversing and a non-reversing component. Next, Schawe
roposed a new physical interpretation of the two components
easured in TMDSC. Since, a very famous and interesting dis-

ute has opposed the two authors [7–9]. The interpretation of
chawe results in a new separation of the TMDSC signal into

wo heat capacity components. One is called the storage heat
apacity, and the other one the loss heat capacity. From this
oint of view, the heat capacity measured in TMDSC experi-
ent is a complex heat capacity with a real and an imaginary

art. This usual equilibrium thermodynamic quantity must thus
e regarded as a generalized dynamic susceptibility such as
on-equilibrium response derived from dielectric or magnetic
usceptibility measurements:

∗ = C′ − iC′′ = C∞ + C0 − C∞
1 + iωτ

(1)

here

′ = C∞ + C0 − C∞
1 + (ωτ)2 (2)

s the storage frequency dependent heat capacity, and

′′ = (C0 − C∞)ωτ

1 + (ωτ)2 (3)

s the loss frequency dependent heat capacity. C′ and C′′ sat-
sfy the so-called Kramers–Kronig dispersion relations. ω is
he angular frequency of the modulated temperature; C∞ the
eat capacity related to the infinitely fast degrees of freedom
f the system as compared to the frequency (generally vibra-
ional modes or phonons bath), and C0 is the total contribution
t equilibrium (the frequency is set to zero) of the degrees of
reedom, fast and slow, of the sample. The time constant τ is the
inetic relaxation time constant of the non-equilibrium degree
f freedom.

These three last formulas have been already derived a long
ime ago with the formalism of the linear response theory, espe-
ially from the work of Birge and Nagel who measured the fre-
uency dependent heat capacity of liquids with the 3�-method
10–14]. At the same time, frequency dependent complex heat

apacity was also envisaged by Christensen [15]. Specific heat
pectroscopy with the 3�-method was also tackled in the fol-
owing Refs. [16–19]. An other original approach is due to
oda and co-workers, who derived the complex heat capacity
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irectly through a pure kinetic approach during melting of poly-
er crystals [20,21]. Generally, the formula of the complex heat

apacity was always derived from the linear response theory. In
his approach, the heat capacity is seen as the linear response of
small perturbation of the entropy of the system (or enthalpy),
nowing that the measured temperature is the conjugated ther-
odynamic variable of the entropy. Derivations of the complex

eat capacity by the linear response theory can be found for
xample in the following Refs. [22–31]. However, this approach
s outside the scope of this article.

Principally since the birth of the TMDSC method, lot of sci-
ntists have tried to better understand the notion of complex heat
apacity and particularly the meaning of the imaginary part of
* without any clear conclusions. For commenting our asser-

ion, let cite some typical sentences, which can be frequently
ncountered in the literature:

In 1997, Simon and McKenna wrote an interesting review on
frequency dependent complex heat capacity and one of their
conclusions is [32]: “. . .the subsequent discussion demon-
strated that there is no consensus concerning the interpreta-
tion of dynamic heat spectroscopy measurements”.
In 1997, in a special issue of Thermochimica Acta on
TMDSC, Höhne wrote a letter called “Remark on the interpre-
tation of the imaginary part C′′ of the complex heat capacity”
[33]. He proposed to use thermodynamics of irreversible pro-
cesses to envisage the question.
In 1998, in a special issue of Journal of Thermal Analysis
and Calorimetry on TMDSC, Scherrenberg et al. wrote: “The
physical meaning of the imaginary heat capacity in regime
Ib is still subject to debate” [29]. Farther, in the same jour-
nal, Buehler et al. wrote: “Basically, there is no well-founded
physical or thermodynamical interpretation of C′′

p” [34].
In 2000, Buehler and Seferis wrote in the abstract of their
paper: “It also explored the influence of sample thickness on
heat flow phase, without using a complex heat capacity of
doubtful physical meaning”. And farther, after a discussion
about their own interpretation, they gave a detailed table tak-
ing into account different interpretations of the imaginary part
of the heat capacity according to various authors [35].
In 2001, Simon wrote: “The frequency dependence of the
specific heat in an equilibrium (ergodic) system has been var-
iously related to fluctuations in enthalpy, in temperature, and
in entropy, although general agreement has not been reached”
[36].
In 2002, Jiang et al. wrote: “The problem with this approach
is that, at present, there is no universally acknowledged inter-
pretation of the meaning of the out-of-phase component C′′

p”
[37].
Also in 2002, in an interesting published email exchange,
Schick and Saruyama reported that the “Frequency depen-
dence of heat capacity and its interpretation is one of the still
open questions in calorimetry” [38].
good review of these remaining questions is given by Claudy
n his recent book [39]. To our point of view, the real part of
he complex heat capacity with its frequency dependency can

W
p
b
o
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e clearly understood, but the physical meaning of the imagi-
ary part or the loss part of the heat capacity remains confuse. In
sual dynamic susceptibility measurements, imaginary parts of
eneralized susceptibilities are well physically understood and
lways linked to heat dissipation inside the sample. For calori-
etric measurements when the perturbing parameter is already

eat, what does heat dissipation mean? Does it have even a phys-
cal sense? If the imaginary part of the complex heat capacity
s linked to thermal dissipation, where is passed the heat (heat
ost) during one period of the temperature oscillation, knowing
hat the experiment can be realized in an adiabatic manner (no
eat has time to release towards the heat bath over one period)?
n attempt of the response of these last questions is envisaged

n the last section of this present manuscript.

.2. Definition of dynamic calorimetry

Calorimetry is an experimental technique concerned by mea-
urements of amounts of heat exchanged by a sample with its sur-
ounding. Sometimes, theses quantities of heat are produced (or
bsorbed) by the sample itself when a physico-chemical trans-
ormation occurs (enthalpy measurements due to the variation
f an external parameter such as the pressure, the temperature,
he magnetic field, the adding of a constituent, etc.). Sometimes,
he experimentalist itself provides (or released) heat to the sam-
le for probing its structure or its internal degrees of freedom
heat capacity measurements). In all case, these measurements
re realized with a thermometer. At the scale of the sample,
omposed of a very large number of sub-systems, heat and tem-
erature are macroscopic thermodynamic variables. They result
n the average taken over all the sub-systems strongly linked
ogether, which constitute an entire thermodynamic macro-
copic system. The temperature T and the quantity of heat Q
re quantities of great importance in the field of thermodynam-
cs. For example, the ratio of the heat exchanged between the
ample and its surroundings to the absolute sample temperature
s the external entropy variation of the system. Also, the ratio of
his quantity of heat to the temperature variation of the system
s the heat capacity of the system. If the temperature, its varia-
ion and the heat capacity are measured, then the enthalpy, the
ntropy and the Gibbs free energy variations can be derived. The
nly experimental method which permits a direct access to these
hermodynamic quantities is calorimetry. Hence, it is obvious
o state that this experimental method is intimately connected
o the theoretical approach of equilibrium and non-equilibrium
hermodynamics. Dynamic calorimetry can have two different
ignifications:

Dynamic in the sense of a variation of the sample temperature.
Dynamic in the sense that the measured quantities are not
in thermodynamic equilibrium and consequently cannot be
considered as static quantities.
e will see that these two definitions are dependant. In this
aper, we adopt the last definition. It is the same one adopted
y Birge and Nagel [10–14], and by Jeong (see the review
n dynamic calorimetry [28]). Indeed, macroscopic thermody-
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a constant temperature T0 (see Fig. 1). The sample (with its
addenda) represents a macroscopic thermodynamic system.

We assume that this thermodynamic system is represented by
three independent state variables (p, T, ξ). The pressure p and the
J.-L. Garden / Thermochi

amics is concerned by time average of variables, which are
n equilibrium and considered as static. Non-equilibrium ther-

odynamics is concerned by dynamic variables, which are not
n thermodynamic equilibrium. When kinetic relaxation times
f thermal events under study become long compared to the
ime scale of the measurement, thermodynamic variables have
o time to reach their equilibrium values. What is then really
easured by the experimentalist? What are the conditions for a

alorimetric experiment to be considered as static or dynamic?
e will see along this paper that these questions are also related

o frequency dependent heat capacity measurements when the
eriod of the oscillating temperature becomes smaller than the
inetic relaxation time of thermal events under study.

.3. Definition of macroscopic non-equilibrium
hermodynamics

We consider only classical finite macroscopic system with
acroscopic thermodynamic variables such as volume, temper-

ture, pressure and others, which are subdued only by the first
nd the second laws of thermodynamics. Microscopic thermo-
ynamics and statistical mechanics governed by probabilities
nd fluctuations are not used. Thermodynamic systems (in fact
ample under calorimetric study) are uniform regarding to the
ntensive variables such as the pressure, the temperature, but are
n a non-equilibrium state regarding to peculiar internal degrees
f freedom. Before entering in the connections existing between
alorimetry and thermodynamic irreversibility, let us give a brief
istorical summary of macroscopic non-equilibrium thermody-
amics.

.4. Historical survey of macroscopic non-equilibrium
hermodynamics

For a good historical description of non-equilibrium thermo-
ynamics, see Refs. [40–43]. At the end of the 19th century,
ibbs defined the basis of classical equilibrium thermodynam-

cs [44]. After his work, which is still extensively used nowa-
ays, the first approach envisaging the field of non-equilibrium
hermodynamics on a general manner is due to Onsager [45].
rom the principle of microscopic reversibility, Onsager estab-

ishes the so-called reciprocal relations. This work gives for
he first time a clear formal explanation of irreversible pro-
esses such as Fourier’s law, Thomson’s effect and others. From
his approach, scientists have discussed the connection existing
etween macroscopic and microscopic thermodynamics. All the
mportant theorems issued from this period are based on the
undamentals laws of statistical mechanics. Most of them are
ased on an important assumption: at microscopic level, fluc-
uations occurring near equilibrium have the same decreasing
xponential behavior towards equilibrium that macroscopic ther-
odynamic variables, which have been moved aside equilibrium

y an external force. For a good survey of the subject, see the non-

xhaustive following Refs. [46–56]. In the following, we will see
hat the important notions of generalized thermodynamic forces
nd associated responses (generalized thermodynamic fluxes)
re of great interest in dynamic calorimetry.
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On the other hand, in the 1920s at the Université libre de
ruxelles, De Donder defined the thermodynamic state function,
, the affinity, which represents the driving force of a chemical

eaction [57,58]. Chemical reactions are always non-equilibrium
rocesses. At thermodynamic equilibrium, no reaction occurs
nd the affinity is equal to zero. The concept of affinity has
een next generalized by different authors, such as Prigogine,
efay, De Groot and Mazur [41,59]. Nowadays, generalized

ffinities are used on a very general manner to represent driv-
ng forces of any irreversible thermodynamic processes. See, for
n interesting use of De Donder’s thermodynamics and general-
zed affinities applied to internal reorganizations with relaxation
henomena, the work of Cunat [60]. Even for phase transitions
r phase transformations, the affinity (difference of chemical
otential between the phases) is the thermodynamic force driv-
ng the advancement of the transitions. In Section 4, through
he works of De Donder, Prigogine and Defay, we will envisage
uantitatively how the concept of generalized affinity can play
key role in dynamic calorimetric experiment. Before that, let
s provide the frame of macroscopic non-equilibrium thermo-
ynamics applied to calorimetry, and envisage qualitatively the
efinition of an irreversible calorimetric experiment.

. Qualitative approach of irreversible thermodynamics
n calorimetric experiments

.1. Working assumptions for calorimetric experiments

Let be a sample with a heat capacity C at a temperature T
inked by a heat exchange coefficient K to a thermal bath with
ig. 1. A thermodynamic system, in thermal and mechanical equilibrium, with
heat capacity C, and a well-defined temperature T, is linked to a thermal bath at
constant temperature T0 via a heat loss coefficient K. A known quantity of heat
is supplied to the system or received from the system by the experimentalist.
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Fig. 2. The temporal evolution of the thermodynamic system is represented by
a curve in the diagram (T, ξ). After a perturbation generated by the experimen-
talist (via δQ), the system is driven from a thermodynamic state A to another
thermodynamic state B. Along this thermodynamic pathway, the amount of heat
exchanged between the system and the outside world is linked to one contribu-
tion of the entropy variation of the system (deS = δQ/T). This entropy exchanged
over the boundaries of the system can be positive or negative. At the same time,
a quantity of heat (the uncompensated heat of Clausius) is produced inside the
s
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ystem. This heat is linked to the other contribution of the entropy variation of
he system (diS = δQ′/T). It is due to irreversible processes occurring within the
ystem and it is always positive. It is equal to zero along the reversible pathway.

emperature T are the two physical variables and ξ is the chemical
ariable (the definition of this variable is given in Section 4.1.1).
ore generally this variable can represent a generalized order

arameter connected to a specific internal degree of freedom of
he sample. If the pressure p is maintained constant during the
ntire calorimetric experiment, then the state of the system is
efined by the set (T, ξ). More precisely, the evolution of the
tate of the system is given by the two functions T(t) and ξ(t).
he thermodynamic transformation is represented by a curve in

he diagram {T, ξ} (see Fig. 2).
Let consider that the system is a thermodynamic closed sys-

em. This is to say that the system can only exchange energy
ith the outside world (no exchange of matter).
The system is also considered in thermal equilibrium. This

s to say that there is no temperature gradient inside the system,
r the temperature is homogeneous in all parts of the system at
ny time. In general, this condition can be fulfilled because the
unction T(t) is known and controlled by the calorimetrist. For a
iven temperature variation�T, realized in the time interval�t,
f the internal heat relaxation time is less than�t, then the sample
s homogeneous in temperature. The internal heat relaxation time
f the system is linked to the thermal diffusivity of the sample
nd its thickness. Hence, this condition is reached if the volume
f the sample is small for a given value of the thermal diffusivity
f the sample.

Finally, let consider that the system is in mechanical equilib-
ium, which means that the pressure is homogeneous and there
s no fast volume variation inside the sample during the exper-
ment. This assumption is true if the pressure of the system is
ept constant during the experiment.

From these last conditions, ξ is the only variable sensitive to

non-equilibrium situation. This is to say, for a given variation
f the state variable T, it is possible that ξ does not reach its equi-
ibrium value. Hence, in an irreversible calorimetric experiment
he set (T, ξ) does not represent a state of equilibrium.

s
a
�

r

Acta 452 (2007) 85–105

.2. Reversible and irreversible calorimetric experiments

De Donder and the members of his school wrote the second
aw of thermodynamics as the following:

Q′ = T dS − δQ ≥ 0 (4)

here the letter δ takes into account that heat is not a state func-
ion and not an exact total differential. δQ′ is the uncompensated
eat of Clausius. This is the quantity of heat produced within
he system when an irreversible process occurs. T is the absolute
emperature, δQ the quantity of heat exchanged by the system
ith the outside world and dS is the infinitesimal total entropy
ariation. First of all, let us consider a thermodynamic system
t an initial equilibrium state A. One assumes that the system
ndergoes a physico-chemical transformation. If the transfor-
ation drives the system from an equilibrium state A to another

quilibrium state B, and if it is an equilibrium transformation (a
ransformation which proceeds by a succession of equilibrium
tates) then the amount of heat exchanged between the system
nd its surroundings is:

1 = T �S1 (reversible transformation) (5)

f the transformation occurs outside equilibrium, then on the
asis of De Donder’s definition of the second law of thermody-
amics:

2 = T �S2 −Q′ (irreversible transformation) (6)

he entropy S being a state function, if A and B are the same in
he two experiments, then �S1 =�S2 and consequently:

′ = Q1 −Q2 (7)

herefore, Q′ is the difference between the amount of heat
xchanged by the system with its surroundings, for a reversible
nd an irreversible transformations, respectively, which drive the
ystem from the same equilibrium state A to the same equilib-
ium state B.

In calorimetric experiments, the situation is slightly different
ecause the quantity of heat supplied to (or released from) the
ystem by the outside world is controlled by the experimentalist.
n this case, (5) and (6) are written:

= T �S1 (8)

or a reversible experiment, and

= T �S2 −Q′ (9)

′ > 0 for an irreversible experiment. Q is supposed to be the
ame in the two experiments. It implies that�S2 �=�S1. There-
ore, after �t, if B is in a state of equilibrium in the reversible
xperiment, it is not the case in the irreversible experiment,
ecause SB2 �= SB1 (S being a state function). This is the reason
hy thermodynamics of irreversible processes is called non-

quilibrium thermodynamics. In this “Gedanken experiment”,

ince we compare two calorimetric experiments with the same
mount of heat supplied to the same sample, thus inevitably
t must be shorter in the irreversible experiment than in the

eversible experiment. This is to say that the heat flow supplied
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o (or released from) the sample is higher in the irreversible
xperiment than in the reversible one. In the irreversible case,
elaxation phenomena inside the sample (kinetics) cannot be
eglected. In this case, temperature rates of the sample are
igh. Hence, we see the link between fast temperature ramp and
ynamic calorimetry. Let insist that the irreversibility of a calori-
etric experiment is not an absolute notion. It depends only on

he time interval (time scale of the measurement) over which the
uantity of heat Q is supplied to the sample. In the irreversible
xperiment, the uncompensated heat of Clausius is produced in a
ime interval that lasts longer than this characteristic time scale,

t, of the measurement. The fact that a process could be con-
idered reversible or irreversible depending on the time scale of
he observation is well expressed by Chandrasekhar [61]: “Quite
enerally, we may conclude with Smoluchowski that a process
ppears irreversible (or reversible) according as whether the
nitial state is characterized by a long (or short) average time
f recurrence compared to the times during which the system is
nder observation”.

.3. Entropy production

The second law of thermodynamics (4) can be rewritten in a
ifferent way:

S = deS + diS (10)

here dS is the infinitesimal entropy variation of the system,
eS the infinitesimal entropy variation exchanged between the
ystem and the surroundings, diS is the infinitesimal entropy
roduced by irreversible processes occurring within the sample.
ore explicitly:

eS = δQ

T
(11)

nd

iS = δQ′

T
≥ 0 (12)

uring a calorimetric experiment, the quantity of heat Q is
xchanged between the experimentalist and the sample during
he finite time interval �t. Thus the instantaneous heat flow
xchanged between the system and its surroundings over the
ime interval �t is written:

= δQ

dt
= T

deS

dt
= T

dS

dt
− T

diS

dt
(13)

he time derivative term diS/dt is the so-called rate of the pro-
uction of entropy (or simply entropy production). Knowing
hat this term (equal to zero only when the experiment is real-
zed in a reversible manner) is linked to a real positive quantity

f heat produced within the sample, it is legitimate to ask for
he following questions: is this positive quantity of heat per-
urbing the heat capacity measurement? Is it the cause of the
requency dependent heat capacity in modulated calorimetry
easurements? In the next section, we will see that it is not the

ase.

d

w
o
b
d
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. Quantitative approach of macroscopic
on-equilibrium thermodynamics in calorimetric
xperiments

This section is principally based on the work of De Don-
er, Prigogine and Defay. From 1927 to 1934, De Donder has
egrouped his works on chemical irreversible processes in three
ooks [57,58]. Important formulas of the heat capacity were
erived from the two principles of thermodynamics. The first
ormula of non-equilibrium heat capacity measured at constant
ffinity was derived by De Donder. Later, in 1946 and 1950,
rigogine and Defay pushed further the reasoning of De Don-
er, and derived for the first time the general formula of the
easured heat capacity during non-equilibrium transformations

59,62]. These formulas, not very known, can be of great interest
n dynamic calorimetry, and we propose to provide the details
f their derivations in this section.

.1. The thermodynamics of Théophile De Donder

.1.1. Affinity and degree of advance of a reaction
De Donder was the first to generalize the classical Gibbs’s

quilibrium thermodynamics to irreversible processes occurring
uring chemical reactions. Among his monumental work, one
f the most important discoveries was to find the quantitative
xpression of the driving force of chemical reactions. De Donder
xpressed this force by a new thermodynamic state function A,
he affinity. It can be regarded as the cause of the advance of
hemical reactions. Let consider a simple chemical reaction:

aA + νbB → νcC + νdD (14)

here A, B and C, D, are the reactants and the products, respec-
ively, and νa, νb, νc, νd are the stochiometric coefficients. The
ffinity is defined by De Donder as follows:

= (νaμa + νbμb) − (νcμc + νdμd) (15)

here μx is the chemical potential of the constituent x. The
enius idea of De Donder was to express the uncompensated
eat of Clausius as a product of a generalized thermodynamic
orce (the affinity) with a generalized thermodynamic flux (the
ariation of the degree of advance of the reaction):

Q′ = A dξ ≥ 0 (16)

he degree of advance of the reaction is a thermodynamic state
ariable, which represents the advancement of a chemical reac-
ion. It is defined by De Donder as follows:

x(t) = Nx(0) + νxξ (17)

r

ξ = dNx
νx

(18)
ith ξ = 0 at the initial state, and where Nx is the number of mole
f the constituent x. The initial mole number of each constituent
eing known, the chemical reaction is entirely defined by the
egree of advance of the reaction. This variable of state can
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lso characterize a phase transformation. Hence, it represents
he changes between the different constituents during a chemical
eaction or the changes between the different phases of a sys-
em during a phase transformation. With these definitions, the
rreversible positive entropy produced during physico-chemical
eaction takes a simple expression as the product of the chemical
orce with the induced flux (rate of reaction, v):

i = diS

dt
= 1

T

dQ′

dt
= A

T

dξ

dt
= A

T
v ≥ 0 (19)

he rate of the uncompensated heat of Clausius, or the thermal
ower of irreversibility is simply given by:

i = Tσi (20)

s the affinity is the force driving the system towards equilib-
ium when it is moved aside equilibrium, it is also possible to
erive the following fundamental equation [57,58]:

= − ∂G

∂ξ

)
T

= T
∂S

∂ξ

)
T

− ∂H

∂ξ

)
T

(21)

here G is the Gibbs’s free energy, representing the chemical
otential in the set variable (T, ξ) (p being constant). ∂H/∂ξ)T

s the heat of reaction at constant pressure and temperature, and
S/∂ξ)T is the entropy variation due to the reaction at constant
ressure and temperature.

At equilibrium the affinity and the rate of reaction vanish
ogether and we have:

∂H

∂ξ

)eq

T

= T
∂S

∂ξ

)eq

T

(22)

.1.2. Total differential of the affinity
It was rigorously demonstrated that the affinity is a state

unction [63,64]. Thus, De Donder has differentiated this state
ariable with respect to the other independent variables of the
ystem:

A = ∂A

∂T

)
ξ

dT + ∂A

∂ξ

)
T

dξ (23)

hich for simplicity is rewritten as the following:

A = α dT − β dξ (24)

ith (21) we have:

= ∂2G

∂ξ2

)
T

(25)

he coefficient β (the second derivative of the Gibbs’s free
nergy) is always positive around equilibrium because G is
inimum at equilibrium. This results on the stability of the equi-

ibrium state after a perturbation [65,66]. From Ref. [58], there
s also:

∂A
)

∂S
)

∂H/∂ξ) + A
=
∂T ξ

=
∂ξ T

= T

T
(26)

his equation is called the Berthelot–De Donder’s formula. It
an be derived directly from the definition (21) of the affinity.

t
I
h
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hysically, it means that, at constant temperature and pressure,
he affinity is a thermodynamic potential for the system under-
oing a physico-chemical transformation, a driving force, which
anishes when the system is at equilibrium.

.1.3. Heat capacity at constant affinity
The first law of thermodynamics states that, at constant pres-

ure, the amount of heat exchanged between the system and the
utside world is equal to the variation of the enthalpy of the
ystem:

Q = dH (27)

n this case, an important formula of the heat capacity of the sys-
em in the set of thermodynamic variables (T, ξ) can be derived
58,59]:

mes = δQ

dT
= Cξ + ∂H

∂ξ

)
T

dξ

dT
(28)

here Cξ = ∂H/∂T)ξ is the heat capacity at constant composition
f the system, often called the true heat capacity of the system.
his basic thermodynamic formula was written by De Donder

n another way in order to make more evident the role of the
ffinity. With (24) and (28) making dA = 0, and with (25) and
26), he derived the heat capacity at constant affinity (see Ref.
58], page 58):

mes = CA0 = Cξ + ∂H

∂ξ

)
T

[∂H/∂ξ)T + A0]

T ∂2G/∂ξ2)T
(29)

hich is in fact the first time that a quantitative expression of
he heat capacity during non-equilibrium event is derived. At
quilibrium, the affinity vanishes and the expression of the heat
apacity is:

mes = Cξ + [∂H/∂ξ)eq
T ]2

T ∂2G/∂ξ2)eq
T

(30)

n this paper we consider:

eq = [∂H/∂ξ)eq
T ]2

T ∂2G/∂ξ2)eq
T

(31)

ence, the heat capacity measured during a reversible calori-
etric experiment can be simply written as the following:

mes = Crev = Cξ + ηeq (32)

n accordance with the stability condition of the state of equilib-
ium (βeq > 0), Cmes is always greater than the true heat capacity
ξ of the sample during a reversible experiment. Let us note that

his conclusion is true even if the physico-chemical transforma-
ion is exothermic or endothermic during the experiment.

.1.4. Entropy production

At this level, we would like to insist on an important point

hat is never mentioned in lots of publications on the subject.
t should be pointed out that the term of entropy production is
idden in the general formula (28) of the heat capacity, which
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an be easily rewritten:

mes = Cξ + T
∂S

∂ξ

)
T

dξ

dT
− T

diS

dT
= Cξ + T

∂S

∂ξ

)
T

dξ

dT
− δQ′

dT
(33)

simple and naı̈ve interpretation of Eq. (33) could be as fol-
ows: the term of uncompensated heat of Clausius by unit of
emperature (or “uncompensated heat capacity of Clausius”)

ay be subtracted to the equilibrium heat capacity and may be
onsequently responsible of the decrease of the measured heat
apacity in non-equilibrium calorimetric experiments. Know-
ng that generally the non-equilibrium measured heat capacity
s smaller than the heat capacity measured at equilibrium, this
erm, equal to zero only at equilibrium, could be responsible
f the frequency dependent heat capacity effects during tem-
erature modulated calorimetric experiment. Unfortunately, the
ituation is not so simple, and we will see later that this term is
eglected in the derivation of the frequency dependent complex
eat capacity by means of the De Donder’s formalism.

.2. Generalized affinities

Nowadays, it is well known that any thermodynamic irre-
ersible processes can be described in term of generalized
ffinities (forces) and generalized fluxes. The product of these
eneralized thermodynamic forces and fluxes gives the entropy
roduction. For example, the driving force of matter diffusion
s �(μ/T), when there is a gradient of the chemical potential.
s a consequence, a flux of matter appears inside the system

Fick’s law). In the same way, the driving force of heat diffusion
s �(1/T). As a consequence a heat flow appears in the system
Fourier’s law). The driving force of chemical reactions is A/T
ather than A. As a consequence, a reaction appears. The sys-
em always tends to bring back the system towards equilibrium
hen there is a displacement from equilibrium. This is the conse-
uence of the principle of Le Chatelier–Braun. Generally, ξ can
e regarded as the advancement of an internal parameter (inter-
al degree of freedom) of the system [41], and it can characterize,
or instance, the equilibrium or the non-equilibrium of the matter
epartition in the system. From De Donder’s developments on
hemical affinity, a generalization was made by different authors
ho applied this thermodynamic approach to any internal degree
f freedom of a sample. This was particularly used in the study
f glass transition, when relaxation time of processes becomes
low as compared to the time scale of the measurement.

.3. Configurational heat capacity

To the best of our knowledge, the notion of non-equilibrium
hermodynamic state due to the freezing of internal degree of
reedom (the chemical equilibrium being not reached) during the
lass transition was first due to Simon [67,68]. For a good repre-

entation of the configurational heat capacity, let us paraphrase
ernal [69], page 35: “The idea of a configurational specific heat

or liquids, i.e., of absorption of energy not in activating further
egrees of freedom but in changing potential energy, is necessary

s
e
c
T
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o explain the observed greater specific heat of all simple (and
ost other) liquids compared with that of the crystals and the
ccurrence in certain cases, e.g. water, of specific heats greater
han 6k, which cannot be explained by any hypotheses depend-
ng on degrees of freedom only”. Also, close to the De Donder’s
pproach, let us cite Davies and Jones presenting the ideas of
imon in Ref. [70], page 375: “Simon pointed out that as a glass

s cooled through its transformation temperature the molecular
iffusion which is necessary to effect the appropriate change
n configuration is increasingly inhibited and finally becomes
ractically impossible. Thus, the value of z will become fixed
omewhere near the transformation temperature and that part
f the specific heat corresponding to changes in potential energy
ill be eliminated below this temperature. The ‘configurational’
ontribution to any other property will similarly disappear. At
he same time the system ceases to be in true internal thermo-
ynamic equilibrium”. In this reference, z is equivalent to the
rder parameter ξ in the present paper. This notion of config-
rational heat capacity was very well explained by Kauzmann
71] (section B called “Equilibrium and dynamic mechanisms
n the glass transformation”). For a general approach of non-
quilibrium thermodynamic coefficients and particularly heat
apacity by means of the affinity of De Donder, see also the
ook of Frenkel [72], and Prigogine and Defay [59,62]. Now, we
nvision the notion of non-equilibrium heat capacity in details
ith Prigogine and Defay.

.4. Configurational heat capacity of Prigogine and Defay

.4.1. Non-equilibrium heat capacity
Prigogine and Defay pushed further the reasoning of De Don-

er. It is indeed possible to derive a general formula of the
eat capacity during a non-equilibrium calorimetric experiment.
ndeed, for an irreversible calorimetric experiment, ξ has no time
o reach its equilibrium value ξeq, because of the non-zero value
f the kinetic relaxation time constant τ, of the transformation.
n this case, the variation of the affinity is different from zero
Eq. (24)) and

dξ

dT
= α

β
− dA

β dT
(34)

eplacing this expression in the fundamental Eq. (28) yields:

mes = Cξ + ∂H

∂ξ

)
T

[
α

β
− dA

β dT

]
(35)

hich can be more explicitly written as the following:

mes = Cξ + [∂H/∂ξ)T ]2

T ∂2G/∂ξ2)T
+ A∂H/∂ξ)T
T ∂2G/∂ξ2)T

− ∂H/∂ξ)T
∂2G/∂ξ2)T

dA

dT
(36)

he formula (36), derived in 1946 by Prigogine and Defay (Eq.
26.84) page 121 of Ref. [62]) is the general formula of the mea-

ured apparent heat capacity during an irreversible calorimetric
xperiment. It is a fundamental equation in the field of dynamic
alorimetry. It may be applied near and far from equilibrium.
he three last terms of the right hand-side of Eq. (36) constitute
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ture the measurement of the heat of reaction (with calorimetry
for example) gives directly the affinity with a good approx-
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he configurational heat capacity of Prigogine and Defay. These
hree terms take into account the equilibrium or non-equilibrium
ehavior of the degree of advance of any internal degree of free-
om inside the sample.

If the heat rate supplied to the sample is very large, then
t is possible that the degree of advance of the transformation
oes not change during the time interval �t. It is, for a given
alue of the step �T, the largest irreversible experiment. The
nternal degree of freedom represented by the degree of advance
, is completely frozen. In this case, the total differential of the
ffinity (24) becomes:

dA

dT
= α (37)

nd with (36) the measured heat capacity becomes:

mes = Cξ (38)

ence, for the largest irreversible experiment, the measured
pparent heat capacity is equal to the true heat capacity of the
ystem. With this approach, Cξ is the heat capacity composed by
he infinitely fast degrees of freedom of the sample as compared
o the time scale �t of the measurement. It is experimentally
bserved in glass transitions because of the large value of the
inetic relaxation times. To our point of view, it is for the same
eason that sometimes this effect is observed in ac-calorimetry
xperiments when the frequency becomes large compared to the
inetic relaxation time of the process under study [73].

For an intermediate irreversible calorimetric experiment, ξ
as an intermediate value between 0 and ξeq. Hence, the mea-
ured apparent heat capacity has an intermediate value between
ξ (true heat capacity) and Crev (true heat capacity plus the

otal contribution of the heat of reaction at equilibrium). In
c-calorimetry measurements, this intermediary regime is fre-
uently observed [22,74,75].

.4.2. Non-equilibrium thermodynamics close to
quilibrium
.4.2.1. Assumptions of the linear response in thermodynamics.
here are three different regimes in thermodynamics. The first

s the regime of classical equilibrium thermodynamics, princi-
ally developed by Gibbs (see Ref. [44]) and largely spread in the
iterature. The second is the regime of non-equilibrium thermo-
ynamics near equilibrium (linear regime). The thermodynamic
ariables never move far from equilibrium, and they can be lin-
arized around their equilibrium values. Relaxations towards
quilibrium are simple exponential relaxations. The third is the
egime far from equilibrium governed by non-linear behaviors of
he variables. This regime was well described by Glansdorff and
rigogine [66]. In this paper, we deal with the first and the second
egime. It is difficult to find precise criteria defining the linear
egime for irreversible calorimetric experiments. In TMDSC the
ubject was well treated by lots of authors [29,76–81]. The qual-
tative criterion that we used here is, that during the finite time

nterval �t, the temperature increment �T is not so high that
ven in the extreme irreversible case (�ξ = 0 during �t), the
egree of advance will never be far from its equilibrium value.
n fact, the determination of the linearity range around the state
Acta 452 (2007) 85–105

f equilibrium depends on the physico-chemical event under
tudy.

In this linear regime, three important assumptions can be
ointed out:

De Donder and others have demonstrated that near equi-
librium there is a simple proportional relation between the
affinity and the rate of reaction [82–84]:

v = aA (39)

where a is a positive coefficient (the angular coefficient
defined by De Donder) which depends only on the physical
variables of the system. In our case a = a(T). The formula (39)
can be understood intuitively because close to the reversible
transformation the affinity and the reaction rate tend together
towards zero. More generally, in non-equilibrium thermody-
namics close to equilibrium, there is always a proportional
link between forces and fluxes present in the system (Onsager
relations). Let remark that in certain case, the proportional
relation holds even for high variations of the thermodynamic
forces. For example, the Fourier’s law remains valid even for
large �T. Anyway, Prigogine et al. showed experimentally
that this assumption is exact for a certain number of chemical
reactions [83].
The second assumption is that, near equilibrium, the heat of
reaction and the second derivative of the free Gibbs energy
are close to their values at equilibrium:

∂H

∂ξ

)
T

= ∂H

∂ξ

)eq

T

(40)

∂2G

∂ξ2

)
T

= ∂2G

∂ξ2

)eq

T

(orβ = βeq) (41)

which is equivalent to neglect the second derivative of the
enthalpy and the third derivative of the free Gibbs’s energy
with respect to the degree of advance of the transformation.
This assumption is equivalent to average the variables under
interest (∂H/∂ξ)T and ∂2G/∂ξ2)T) on the small considered tem-
perature interval �T around the equilibrium state defined by
Tdc and ξeq. This is much easier to fulfill if these variables do
not vary a lot over the considered temperature interval.
The third is certainly the hardest to justify. It is assumed that
the affinity is negligible as compared to the heat of reaction:

A � ∂H

∂ξ

)
T

(orα = αeq) (42)

with the Berthelot–De Donder’s formula (26), we see that, for
a given heat of reaction, this inequality is easier to fulfil if the
absolute temperature is increased. Inversely, at low tempera-
imation. This assumption is the same that the well-known
approximation, A � RT, in chemistry. However, from a pure
theoretical aspect, it is always possible to find an area close
to equilibrium where these three assumptions are fulfilled.
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.4.2.2. Non-equilibrium heat capacity close to equilibrium.
rom Eq. (28), if the heat of reaction is replaced by its equi-

ibrium value and if the rate of reaction takes its value from
39), then the formula of the heat capacity measured during an
rreversible calorimetric experiment near equilibrium is written
s follows:

mes = Cξ + ∂H/∂ξ)eq
T aA

dT/dt
(43)

his equation was first derived by Prigogine and Defay [59] (Eq.
19.19) page 307).

.4.2.3. Entropy production close to equilibrium. At this level,
e emphasize that in Eq. (43), the term of entropy production
as already neglected. Indeed, from the Berthelot–De Donder’s

ormula the assumption, which consists to take the equilibrium
alue of the heat of reaction near equilibrium, is equivalent to the
hird assumption. Consequently, the third term of the right hand-
ide of Eq. (33) (“uncompensated heat capacity of Clausius”)
as neglected as compared to the second term. In other words,

he entropy production is neglected near equilibrium. This can
e also demonstrated in an other way: near equilibrium, the rate
f reaction is proportional to the affinity (first order in A). Hence,
rom (19) the entropy production is written as follows:

i = a

T
A2 (44)

hich is of second order in A and negligible.

.4.2.4. Total differential of the affinity close to equilibrium.
aking into account the three last assumptions, the differential
quation governing the affinity when the thermodynamic trans-
ormation occurs near equilibrium is obtained from Eq. (24):

dA

dt
+ βeq aA = αeq

dT

dt
(45)

We define the relaxation time constant of the affinity by:

= 1

βeq a
(46)

t represents the kinetic time constant of the irreversible process
ccurring during a non-equilibrium thermodynamic transforma-
ion. This relaxation time is positive (βeq > 0 and a > 0). Near
quilibrium, the linear relation of Onsager gives:

= L
A

T
(47)

here L is the Onsager’s phenomenological coefficient. With
his linear relation, the relaxation time constant of the affinity
an be written (see Refs. [85,86]):

T
=
∂2G/∂ξ2)eq

T L
(48)

hus, near equilibrium the fundamental differential equation
overning the affinity is of first order with a forcing term con-

i
(

A
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aining the temperature rate:

dA

dt
+ A = ταeq

dT

dt
(49)

ence, knowing the temperature rate it is possible to derive
he time dependent law of the affinity just by means of a sim-
le first order differential equation. This fact is interesting for
alorimetrists who know and control in general the temperature
rogram and temperature rate.

This differential equation was also derived by Prigogine and
efay [59]. The two authors have seen very well that, know-

ng the time dependant affinity, it is possible to derive the time
ependant heat capacity from Eq. (43). In 1998, Baur and Wun-
erlich used nearly the same approach for directly derived the
o-called formula of the complex heat capacity during TMDSC
xperiments [87,88]. Before entering in the details of this origi-
al approach, let make an interesting remark. If we integrate the
otal differential of the affinity (24) on the time interval�t, then
e obtain (assuming that the initial state at t = 0 is an equilibrium

tate):

(�t) = αeq�T − βeq�ξ (50)

ith

ξ = ξ(�t) − ξeq(0) (51)

f the transformation is an equilibrium transformation then
(�t) = 0 and

T = βeq

αeq
�ξeq (52)

ith

ξeq = ξeq(�t) − ξeq(0) (53)

ssuming that�T is constant in the different types of experiment
only �t is changed), then (50) becomes:

(�t) = βeq�ξeq − βeq�ξ = βeq(ξeq(�t) − ξ(�(t)) (54)

lose to equilibrium, the affinity is proportional to the distance of
he degree of advance of the transformation from its equilibrium
alue. If ξ < ξeq, then the affinity is positive, and if ξ > ξeq, then
he affinity is negative. If the affinity is positive then the rate of
eaction is positive because of the fundamental inequality of De
onder (16). Thus, the degree of advance of the transformation

ncreases. If the affinity is negative then the rate of reaction is
egative. Thus, the degree of advance of the reaction decreases.
fter a perturbation, the transformation always drives the system

owards equilibrium. This is the consequence of the principle of
e Chatelier–Braun. Eq. (54) was directly used by Claudy and
ignon who have derived the distance of the degree of advance
f the transformation from the equilibrium, �ξ = ξ− ξeq, in the
ime interval�t in order to explain the complex heat capacity in
MDSC [89]. In their article, the coefficient k(T) is equal to the
nverse of the kinetic relaxation time τ used in this paper. Eq.
54) can be rewritten in the following form:

= ξeq − ξ

aτ
(55)



9 mica

a

v

5

W
D
m
u
w
T
t
t
t
t
a
c
s
o
w
d
t
o

5

d
a
c
d
t
i
a
a
t
n
t
a
R
i
f
i
0
i
(
t
f
J
c
e
(
d
i

w
F

5

fi
m
f
[
d
o
e
a
v
s
e
t
u
D
o
g
c
e
c
n
c
c
t
l
c
o
t
c
i
x
Q
v
c
o
a
t
s

5
D

C
R
t
a
b

6 J.-L. Garden / Thermochi

nd with Eq. (39), the rate of reaction becomes simply:

= ξeq − ξ

τ
(56)

. Generalized calorimetric susceptibility

In two recent publications dating from 1998, Baur and
underlich used the previous thermodynamic approach of De
onder–Prigogine–Defay in order to directly derive the for-
ula of the complex heat capacity [87,88]. In their article, they

sed this thermodynamic approach with the purpose of seeing
hether the notion of complex heat capacity is meaningful in
MDSC measurements. On our point of view, we think that

his approach is original and however can be a complemen-
ary manner in order to have access to the physical meaning of
he frequency dependent complex heat capacity as compared to
he usual linear response theory approach. Other scientists have
lready used macroscopic non-equilibrium thermodynamics in
alorimetry, generally but not necessarily in the calorimetric
tudy of glass transitions [24,89–93]. Before enter in the details
f the derivation of Baur and Wunderlich, we would like to show
ith the help of few references that the notion of frequency
ependent complex heat capacity has been already used a long
ime ago, although it was not particularly connected to the field
f calorimetry.

.1. Ultrasonic absorption

To our knowledge, the first time that the notion of frequency
ependent complex heat capacity appeared in the literature, was
t the beginning of the 20th century in scientific works con-
erning the propagation of sound in different mediums. A very
etailed review on the subject has been written by Alig [94]. In
he propagation of sound, the oscillation of acoustic pressure
s coupled with an adiabatic temperature oscillation. Relax-
tion phenomena inside the material provide a dispersion and
n absorption of the sound wave. This effect is explained by
he existence of a complex heat capacity for which the imagi-
ary part, linked to the absorption, reflects a problem of energy
ransfer between internal and external degrees of freedom. In
n interesting review on “Supersonic Phenomena” written by
ichards in 1939, the notion of frequency dependent heat capac-

ty is also treated [95]. In this article, the distinction between low
requency heat capacity, C0, and high frequencies heat capac-
ty, C∞ is already made. Considering only a single transition
↔ 1 between two degrees of freedom, Richards used a reason-

ng taking into account a principle of microscopic reversibility
or a principle of detailed balance), considering the probabili-
ies of transition between the two states, in order to derive the
ormula (1) of the frequency dependent complex heat capacity.
eong used the same type of reasoning in his review in dynamic
alorimetry to derive the formula (1) with the help of two differ-

nt temperatures (one is fictive) for characterizing the internal
slow) degrees of freedom and the external (fast) degrees of free-
om (phonon bath) [28]. In his review, Richards said that the first
ndication that dispersion due to heat capacity could be expected

m
s
t
s

Acta 452 (2007) 85–105

as due to Jeans [96] (although we have not found that in the
rench edition book dating from 1925).

.2. Generalized calorimetric susceptibility of Davies

It was in 1956 in a publication written by Davies, that for the
rst time the notion of complex thermodynamic quantities and
ore specifically complex heat capacity was derived directly

rom the thermodynamics of De Donder, Prigogine and Defay
97]. This interesting paper begins with a clear historical intro-
uction of non-equilibrium thermodynamics. Lots of references
n the subject can be inferred from this paper. The tight link
xisting between regression in time of microscopic fluctuations
nd non-equilibrium relaxations of macroscopic thermodynamic
ariables are well discussed. From this point of view, we can
ay that perturbing a system by modulating its temperature is
quivalent to provoke macroscopic temperature fluctuations of
he system. The part II of this paper entitled “Incomplete system
nder uniform conditions: relaxation” is a presentation of the De
onder’s approach of chemical reactions. Then, with the help
f an order parameter z (equivalent to ξ in our manuscript), the
eneral approach of static and dynamic thermodynamic coeffi-
ients such as Cp (heat capacity at constant pressure), α (thermal
xpansion coefficient at constant pressure) and κ (modulus of
ompressibility at constant temperature) was considered. The
ames of Frenkel, Prigogine, Defay and Meixner were often
ited. Davies also made the distinction between frozen coeffi-
ients (such as ∂V/∂T)p,z) in which the reaction is not allowed
o proceed with a fixed value of the order parameter, and equi-
ibrium coefficients (such as ∂V/∂T)p,A)) which are evaluated at
onstant affinity. Next, Davies used a very general formalism
f this approach with undefined order parameters and matrix
reatments. In this part, Davies defined dynamic thermodynamic
oefficient as follows: “It is usually specified by means of an
mpedance function connecting the Fourier transforms of X and
” (X and x being thermodynamic conjugate variables). When

(or better S) and T are taken as thermodynamic conjugate
ariables, this dynamic coefficient is the so-called complex heat
apacity. He also envisaged the case of a continuous distribution
f order variables and relaxation times. After, Davies applied this
pproach to the treatment of glass transition where he assumed
hat a single ordering parameter is sufficient to define the tran-
ition.

.3. Generalized calorimetric susceptibility of Eigen and
e Mayer

In the volume VIII, part II, of the Technique of Organic
hemistry, called “Investigation of Rates and Mechanisms of
eactions”, Eigen and De Mayer wrote a very detailed paper on

heoretical and experimental techniques about chemical relax-
tion [98]. This paper could be of interest for calorimetrists
ecause the two authors envisaged with a lot of details the

ethods consisting in perturbing the chemical equilibrium of a

ystem by means of temperature variations. Although calorime-
ry was not explicitly mentioned in this paper, they reviewed the
o-called “temperature jump method” very used in chemistry
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nd biology, which consists to perturb rapidly the temperature
f a system and to record a physical parameter (such as optical
bsorption) without necessary measuring the heat resulting of
his perturbation. After giving the theoretical basis of relaxation
ethods, Eigen and De Mayer investigated relations between

hermodynamics and relaxation times. Again the names of De
onder, Meixner or Davies were extensively cited. Then, an

nteresting development of relaxation based on stationary meth-
ds, but treated on a thermodynamic point of view, was given.
n the section called “entropy–temperature” they fund again
he De Donder’s formula of heat capacity measured at constant
ffinity (see Eq. (29)). Next, in a section called “dynamic equa-
ions of state” taking into account a stationary perturbation of
he system around its equilibrium state, they derived explicitly
ll the dynamic complex frequency dependent thermodynamic
ariables, such as the coefficients of isothermal and adiabatic
ompressibility and the complex specific heat at constant vol-
me or pressure. These derivations were particularly applied to
hemical equilibrium, but as we have already mentioned, they
ere more largely applied to any order parameter concerning
eculiar degrees of freedom within a sample having their own
hermodynamic relaxation times.

.4. Generalized calorimetric susceptibility of Baur and
underlich

In 1998, using macroscopic non-equilibrium thermodynam-
cs of De Donder, Prigogine and Defay, Baur and Wunderlich
erived for the first time in calorimetry (TMDSC) the well-
nown formula of the complex heat capacity [87,88]. This treat-
ent is also described in the recent book of Wunderlich [99].
efore enter in the detail of this derivation, it is important to give

wo precisions. Firstly, in the literature dealing with thermody-
amics applied to calorimetry, it is rather usual to encounter an
rroneous basic definition of the heat capacity. The mistake was
lso made in the article of Eigen and De Mayer. The measured
eat capacity is generally wrongly defined as follows:

p = T
dS

dT

)
p

(57)

ndeed, the exact definition is slightly different and given by the
ollowing equation:

p = δQ

dT
= dH

dT

)
p

(28′)

q. (57) is equivalent to (28′) only at thermodynamic equilib-
ium or near thermodynamic equilibrium (A is neglected com-
ared to the value of the heat of reaction). This mistake has
o consequence for the derivation of the complex heat capac-
ty measured near equilibrium, because the entropy production
negligible near equilibrium) is forgotten in this definition (see
iscussion in Section 4.4.2.3). Indeed, the measured heat capac-

ty is only linked to the entropy exchanged (heat exchanged)
etween the system and the surroundings:

p = T
deS

dT
= T

dS

dT
− T

diS

dT
(58)

t
I
T
i
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econdly, the conclusion given by Baur and Wunderlich in their
aper seems to us very pessimistic. They concluded that the
otion of complex heat capacity is not very useful in TMDSC
easurements. Perhaps complex heat capacity is indeed not

dapted for TMDSC experiments because of parasitic effects,
hich has to be taken into account, such as non-adiabaticity and

hermal contact between samples and sensors. These unwanted
ffects can indeed induce other relaxation times and parasitic
requency and imaginary components. On the other hand, this
otion can be very useful in ac-calorimetry measurements where
hermal equilibrium conditions (adiabaticity and homogeneity
f the temperature) are generally respected (with the use of adi-
batic plateau) and in other dynamic methods as fast speed DSC
f the two last conditions are fulfilled [100–102]. To our point of
iew, we think at contrary that the derivation made by Baur and
underlich of the complex heat capacity is unusual and original

s compared to the linear response theory. Also, this approach
an provide a new regard in dynamic calorimetry field and can
ive a better physical understanding of frequency dependent
omplex heat capacity. To our point of view, the only restric-
ion concerning usefulness of the complex heat capacity is the
espect of linearity and stationarity criteria. In ac-calorimetry
hese two conditions are easier to fulfill if the amplitude of the
emperature oscillation is small and the rate of the mean tem-
erature is low. In the next, we assume that thermal equilibrium
onditions, linearity and stationarity conditions are respected.

Let take the case of ac-calorimetry experiments. In the range
f working frequency defined by the two following inequalities:

int � 1

ω
� τext (59)

hich define the strict conditions of thermal equilibrium for the
eat capacity measurement, the temperature oscillation of the
ample is written:

ac = δTac cos
(
ωt − π

2

)
(60)

ith

Tac = P0

ωCmes
(61)

nd

= π

2
(62)

is the phase lag of the modulated temperature as compared
o the input oscillating thermal ac-power P0 cos(ωt). τint is the
nternal relaxation time of the temperature which takes into
ccount the thermal diffusivity within the sample and the thermal
nterface conductance between the thermometer, the heater and
he sample. τext is the external relaxation time of the temperature
owards the thermal bath of temperature T0. Let insist that tem-
erature oscillations occur around a mean temperature assumed

o be constant Tdc, which defines the equilibrium sate (Tdc, ξeq).
t is the stationary condition of the measurement. It occurs when
dc is maintained constant (measurement step by step wait-

ng for the equilibrium) or when it varies very slowly (slow
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components in the Fresnel’s diagram of Fig. 3.

Now, as Baur and Wunderlich did, by means of Eq. (70)
for example, the formula of the frequency dependent complex
heat capacity can be easily derived from Eq. (43) of the non-

Fig. 3. This figure is a Fresnel’s diagram in which three time dependent oscil-
lating vectors are represented. The x-axis is given by the phase of the oscillating
input thermal power taken by convention as the phase reference (ϕ = 0). The
y-axis is given by the phase ϕ =π/2. ϕ is the phase of the oscillating temper-
ature. The first vector is the oscillating temperature with its two components
8 J.-L. Garden / Thermochi

amp). Now, what happens when a physico-chemical transfor-
ation with a finite kinetic time constant arises? By means of

he linearity assumption, we assume that in the presence of a
hysico-chemical transformation in the sample, the temperature
scillates with the same frequency that when there is no transfor-
ation. Hence, the transformation modifies only the amplitude

nd the phase of the oscillating temperature, which can be writ-
en:

ac = δTac cos
(
ωt − π

2
− κ

)
(63)

here κ is the phase lag generated by this non-equilibrium effect.
he temperature rate is:

dT

dt
= dTac

dt
= iωTac (64)

he dc temperature or the mean temperature, Tdc, is obviously
ot involved in the time derivative, dT/dt.

At this level, the original idea of Baur and Wunderlich was to
xactly derive the differential equation driving ξ from the total
ifferential of A (24) using the linear relation (39) between v = ξ̇

nd A (the dot on the variable represents the time derivative).
his yields a non-linear second order differential equation in

he variable ξ, where the forcing term contains the temperature
ate (Eq. (19) of Ref. [88]). After a rather complex calculus, they
inearized the solution of this differential equation and with (64),
hey found the expression of ξ̇ in function of the affinity and the
ther parameters of the equation (Eq. (23) of Ref. [88]).

More simply, starting with the help of the assumptions of
he linear regime, Eq. (49) driving A is simply written in the
scillatory regime as the following:

dA

dt
+ A = iωταeq Tac (65)

t is simply resolved taking into account all the assumptions
ade close to equilibrium (all the temperature dependant vari-

bles are assumed to be constant around the equilibrium state
ver the amplitude δTac):

= iωταeq Tac

1 + iωτ
(66)

hich is equivalent to the sus-cited Eq. (23) of the article of
aur and Wunderlich. Consequently, in the case of modulated

emperature experiments, the affinity, which is the response of
n oscillating temperature, is also an oscillating function with
wo components, one being in-phase and the other being out-of-
hase. The amplitude of each component depends on the value
f the ratio, ωτ, as compared to the unity.

Let more explicitly rewrite the affinity as follows:

= ∂H

∂ξ

)eq

T

Tac

Tdc

(ωτ)2

1 + (ωτ)2 + i
∂H

∂ξ

)eq

T

Tac

Tdc

ωτ

1 + (ωτ)2 (67)

hen the irreversibility is very low, that is to say when ωτ� 1,

hen:

= i
∂H

∂ξ

)eq

T

ωτ
Tac

Tdc
(68)

(
t
o
v
v
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hich tends to zero at the limit of the reversible experiment
ωτ = 0). When the irreversibility is maximum (arrested equilib-
ium), this is to say ωτ
 1 (at the limit ωτ→ +∞) then:

= ∂H

∂ξ

)eq

T

Tac

Tdc
(69)

he affinity can also be written in another way:

= δA exp(iφ)Tac (70)

here

A = ωταeq√
1 + (ωτ)2

= αeq√
1 + 1/(ωτ)2

(71)

nd

= arctg

(
1

ωτ

)
(72)

f ωτ = 0 then φ =π/2 and if ωτ = +∞ then φ = 0. Finally:

= ∂H

∂ξ

)eq

T

Tac

Tdc

√
1 + 1/(ωτ)2

exp(iφ) (73)

he phase difference between the affinity and the oscillating
emperature is φ, which is equal to π/2 for the reversible experi-

ent and 0 for the maximal irreversible experiment. The oscillat-
ng affinity and temperature are represented with their respective
their values are provided) projected on the x- and y-axis. The second vector is
he vector time derivative of the oscillating temperature with a phase advance
f π/2. The firth vector is the oscillating affinity with its two components (their
alues are provided) projected on the new axis represented by the two preceding
ectors.
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quilibrium heat capacity near equilibrium:

mes = Cξ + ηeq exp(−iψ)√
1 + (ωτ)2

(74)

ith

= π

2
− φ = arctg(ωτ) (75)

his formula can be more explicitly rewritten:

mes = Cξ + ηeq

1 + iωτ
(76)

nowing that Cξ = Cmes (ω = +∞) and Crev = Cmes (ω = 0), (76)
s exactly the formula (1) of the complex heat capacity.

Therefore, by means of the affinity, from the formalism of De
onder–Prigogine–Defay on irreversible thermodynamics, the
ell-known formula of the complex heat capacity was directly
erived from the two principles of thermodynamics. The fre-
uency dependent complex heat capacity is thus the consequence
f irreversible thermodynamics near equilibrium in the linear
egime. C′ and C′′ are due to the generation of an oscillating
ffinity with in-phase and out-of phase components during non-
quilibrium physico-chemical transformations. This is due to
he non-zero value of the ratio, ωτ.

Let now point out one important remark. As we have already
entioned in the foregoing, the entropy production (to be pre-

ise the thermal power of irreversibility Pi) was neglected near
quilibrium. Consequently, the generalized calorimetric suscep-
ibility is not directly the consequence of the thermal power due
o the internal entropy production within the sample when it
s perturbed near equilibrium. In other words, surprisingly, the
ncompensated heat of Clausius does not disturb the measured
eat capacity during dynamic calorimetric experiments, which
as not obvious beforehand. It is certainly not the case when the

alorimetric experiment goes outside the linear regime far from
quilibrium.

Then, Baur and Wunderlich discuss the influence of the two
ollowing extreme cases on C′ and C′′. Firstly, at the limit of the
eversible experiment (internal equilibrium, ωτ→ 0):

′ = Crev and C′′ = 0 (77)

t the limit of the maximum irreversible experiment (arrested
quilibrium, ωτ→ +∞):

′ = Cξ and C′′ = 0 (78)

hen ωτ is of the order of the unity, C′′ is a maximum and
′ is contained between the two previous extreme cases (inter-
ediary regime). Hence, thermodynamic irreversibility of a

eculiar degree of freedom inside the sample is the explana-
ion of the frequency dependent heat capacity effect measured
n ac-calorimetry experiments close to equilibrium [22,73–75].

Finally, Baur and Wunderlich derived for the first time, in

he general case, the so-called formula of the entropy produced
y an irreversible process during non-equilibrium calorimetric
easurements. We remember that the affinity oscillates with a

hase advance of φ compared to the oscillating temperature.

I
p
t
c
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ence, the affinity is a real number, which is explicitly written
ithout complex notations:

= δAδTac cos
(
ωt − π

2
− κ + φ

)
(79)

ith (20), (44) and (71) the power of irreversibility is written as
he following:

i = ηeq
δT 2

ac

Tdcτ[1 + 1/(ωτ)2]
cos2

(
ωt − π

2
− κ + φ

)
(80)

ntegrating this expression over one period of the oscillating
emperature, the time-averaged irreversibility power is:

¯ i = πηeq
δT 2

acωτ

Tdc[1 + (ωτ)2]
= π

δT 2
ac

Tdc
C′′ (81)

he instantaneous irreversible entropy production is:

i = ηeq
δT 2

ac

T 2
dcτ[1 + 1/(ωτ)2]

cos2
(
ωt − π

2
− κ + φ

)
(82)

ver one period of the oscillating temperature, the time-
veraged irreversible entropy production (or simply mean
ntropy production) is given by:

¯i = π
δT 2

ac

T 2
dc

C′′ (83)

hich is the formula found by Baur and Wunderlich, but in their
aper the mean entropy production is taken over half-period
f the oscillation. This expression was approximately already
erived in the literature, but only in a peculiar case, as we shall
ee in a next section. Knowing that the modulus of the oscillating
emperature is written:

Tac = P0

ω|Cmes| (84)

83) is written as follows:

¯i = π
P2

0

ω2T 2
dc

C′′

|Cmes|2 (85)

he amount of energy involved per half-period of the oscillation
s:

Q0 =
∫ T/4

−T/4
P0 cos(ωt) dt = 2

P0

ω
, (P0/ω per quart-period)

(86)

hus, the mean entropy production, per half-period of the oscil-
ation, of the irreversible processes occurring within the sample
uring non-equilibrium calorimetric experiments is:

¯i = π

4

δQ2
0

T 2
dc

C′′

|Cmes|2 = π

4

δQ2
0

T 2
dc

Im

(
1

Cmes

)
(87)
n other words, this time averaged entropy production is directly
roportional to the imaginary part of the complex impedance of
he measurement (see also Ref. [30]). For instance, we can con-
lude that if there is a dissipation of heat, or heat loss, in dynamic
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scillating calorimetric experiments, it should be more physi-
ally linked to the imaginary part of the dynamic calorimetric
mpedance of the measurement and not simply to the imaginary
art of the complex heat capacity. However, both the imaginary
art of the complex heat capacity and the complex impedance
anish at equilibrium and at completely frozen equilibrium. Our
oint of view of the question will be given in the next section.

. Generality of the non-equilibrium thermodynamics
pproach in dynamic calorimetry

In this section we would like to show that the previous
pproach can be regarded on a very general manner in dynamic
alorimetry. Of course, the previous model is simplified. Firstly,
t can be used only near thermodynamic equilibrium. Certainly,
ven with low temperature rates, lots of transitions should occur
n the non-linear regime far from equilibrium. In this case, the
ffinity and the entropy production cannot be neglected in the
odel. Also, what happens in real first-order transition when

eat capacity curves become very sharp? Secondly, to con-
ider the freezing of one peculiar degree of freedom with one
elaxation time constant can just be applied to simple chemical
eaction. Nevertheless, in this case the model can be complicated
onsidering, as Davies did, a distribution of relaxation time con-
tant or multiple time constants [97]. In this section, firstly we
ill show that under the conditions previously mentioned, this

pproach can be usefully applied to all dynamic calorimetric
xperiments. The case of simplified classical DSC is treated.
ome comments will be given for the study of the glass transi-

ion via this model. Secondly, we would like to show that the
erivation of the so-called formula of the entropy production
Eq. (83)), generally derived in the literature, is only a pecu-
iar case of the derivation made by Baur and Wunderlich in the
eneral case of irreversible processes. Indeed, this is simply the
rreversible process due to thermal relaxation towards the heat
ath. It can be also obtained from the irreversible process due
o diffusion of heat inside the sample as we will see. In the last
art, we will give our point of view on imaginary part of complex
eat capacity and heat dissipation in heat capacity measurements
uring non-equilibrium physico-chemical transformations.

.1. Macroscopic non-equilibrium thermodynamics applied
o dynamic DSC

Let be a DSC experiment with a constant temperature rate:

dT

dt
= constant = γ (88)

s already mentioned, the case of a pure isothermal first-order
hase transition (γ = 0) is not envisaged here. We consider at
rst that the experiment is realized close to equilibrium, which
eans that the temperature ramp is not too fast, but rather fast

o unbalance the system. Let assume that in the time interval

t, the temperature step is�T. Then we consider that this tem-

erature variation occurs around a constant mean temperature
dc. Thus, for 0 < t <�t, we have Tdc −�T/2 < T < Tdc +�T/2.
e also assume that τ and αeq are constant around Tdc and also

a
e
a
T
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hat they have very small and smooth variations during the entire
alorimetric experiment.

For 0 < t <�t, the general solution of the differential equation
overning the affinity (49) is:

= A0 exp

(−t
τ

)
+ ταeqγ

[
1 − exp

(−t
τ

)]
(89)

here A0 is the initial value of the affinity at the time t = 0.
We shall now envisage three different situations:

(i) τ/�t � 1
In this case, for a large majority of times included into

the interval 0 < t <�t, the relaxation time τ is negligible.
Thus:

A = ταeq γ (90)

On this time interval, the measured heat capacity is given
by the formula (43):

Cmes = Crev (91)

This is the reversible case.
(ii) τ/�t 
 1

For every time in the interval 0 < t <�t, the affinity is
with (49):

A = A0 (92)

Hence, with (43):

Cmes = Cξ + ηeq
A0

ταeq γ
(93)

It is the maximum possible irreversible experiment. We see
that Cmes = Cξ only if the initial state is a state of equilibrium
(A0 = 0).

iii) τ/�t ≈ 1
In this case, τ and �t are of the same order. Including

the general expression of the affinity (89) in the formula
(43), it gives on the time interval 0 < t <�t:

Cmes = Cξ + ηeq

[
1 +

(
A0

ταeq γ
− 1

)
exp

(−t
τ

)]

= Crev − ηeq

[(
1 − A0

ταeq γ

)
exp

(−t
τ

)]
(94)

This is the general formula of the measured heat capacity
in a DSC experiment realized near equilibrium during non-
equilibrium thermal events. The two extreme cases (i) and
(ii) can be obtained from this equation.

For the following time intervals, the temperature ramp has
rought the system to another mean temperature Tdc. Now, τ
nd αeq have new values (τ(Tdc) and αeq(Tdc)), but with the
ssumption made before, we consider that they have not varied

lot. We can thus envisaged the resolution of the differential

quation of the affinity in a same time interval 0 < t <�t but
round a new temperature interval Tdc −�T/2 < T < Tdc +�T/2.
he three previous cases are also envisaged but with a new initial
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alue of the affinity. This new initial affinity value depends on
he following variables:

′
0 = A′

0(A0, τ(Tdc −�T ), αeq(Tdc −�T ), γ) (95)

We may remark that in the extreme case (i), the affinity
epends only on the temperature dependent values of τ and αeq.
t is anyway always equal to ταeq γ . Therefore, in the transition
rea (or thermal event area) during the DSC experiment, the heat
apacity has always its equilibrium value (reversible case). On
he other hand, if we consider an experiment taken in the inter-

ediate case (iii), or in the maximum irreversible case (ii), the
ffinity depends on the value of A0 which changes at each new
ime interval �t. As A0 changes in time (it follows simply Eq.
89)), it is thus possible that before the end of the experiment it
ill reach the value ταeq γ (if ταeq has not varied a lot). If it is the

ase, we find again the reversible case and Cmes = Crev. This sit-
ation can happen when the time interval of the transformation
rea is larger than τ:

ttrans = �Ttrans

γ

 τ (96)

here�ttrans is the time duration of the thermal event area, and
Ttrans is the temperature interval of this transformation area.
In DSC experiment it seems paradoxical that the reversible

ase may be reached when the affinity becomes constant. Indeed,
he system is nevertheless in a non-equilibrium state. In fact, in
his case a stationary non-equilibrium state is reached and the
ffinity is constant along the time. Indeed, when the affinity
ecomes constant, there is no new affinity variation (dA = 0) and
ith (24), (34) or (35), we find again the reversible case.
Let now consider a DSC experiment with a decreasing tem-

erature ramp, not too fast to preserve internal thermal equilib-
ium but fast enough to unbalance the system. If the temperature
f a first order transition (liquid/solid) is crossed, bringing the
ystem in a non-equilibrium state, the measured heat capacity
ill follow Eq. (94). The system tries to reach its thermodynamic

quilibrium state, the liquid is transformed in solid, and the time
aken by the system to do that is few τ. After a certain time
nterval, the system can transform all the liquid into solid. But
et imagine that before the system may reach its state of equilib-
ium, its temperature attains such a value for which the relaxation
ime τ takes a very high value. The affinity cannot reach the value
αeq γ . The system can never reach its thermodynamic equilib-
ium state. It is frozen in a vitreous state defined by Eq. (93).
n this case, the high variation of τ with temperature causes the
reezing-in of the system. The ratio τ/�t becomes so high that the
ystem is arrested in a meta-stable state. This last discussion is
ot very new. Since a long time ago the glass transition has been
een more as a “frozen first-order transition” than a new type
f thermodynamic transition. However, these last developments
n dynamic DSC by means of the macroscopic non-equilibrium
hermodynamic approach of De Donder–Prigogine–Defay can

e an interesting starting point. For more information on a non-
quilibrium thermodynamic approach of the glass transition by
eans of the heat capacity measurements, see the interesting

ollowing Refs. [103–107]. The irreversible thermodynamics

g

A
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pproach is also used for the study of the glass transition by
eans of the hole theory [108–110].

.2. Averaged entropy production over one period of the
emperature cycle

In Refs. [28,30,92] sus-cited, Eq. (83) (or a close expres-
ion) of the entropy production averaged over one period of
he temperature oscillation is always derived from the following
ntegral:

¯ i =
∫ T/2

−T/2
Q̇(t)

T (t)
dt (97)

here T in the integral limits is the period of the modulated
emperature. Indeed, from this equation, taking T(t) = Tdc + Tac,
nowing that Q̇(t) = P0 (1 + cos(ωt)) and keeping only the
erm of the second order in the entropy, Eq. (83) can be easily
erived (see Ref. [30]). In these three different publications, the
uthors explain the existence of the imaginary part of the com-
lex heat capacity as the consequence of the entropy exchanged
y the system with the heat bath for one period of the oscil-
ation. Höhne has emitted strong doubts about the validity of
his reasoning [33]. He proposed to use rather irreversible ther-

odynamics to resolve the problem. In fact the formula (83) is
alid, but we agree with Höhne that in this case the derivation
f this formula have nothing to do with generalized calorimet-
ic susceptibility given by Eq. (1). In fact, in this case, where
MDSC method is treated, the entropy production is simply
ue to the non-equilibrium behavior of the oscillating temper-
ture of the sample as compared to the temperature of the heat
ath and indeed, it may have an entropy exchange over one
eriod of the cycle between the sample and the bath. This entropy
esults on the non-adiabatic behavior of the TMDSC method. In
MDSC, the measurement being non-adiabatic, the system can-
ot be considered as isolated, and the heat bath has to be taken
nto account in the balance of the entropy produced. In other
ords, the calculated averaged entropy production is only due

o the irreversible effect of the external non-equilibrium behav-
or of the temperature of the system as compared to the bath. In
c-calorimetry, the situation is different because the condition
f adiabaticity is generally respected. Thus, the only possible
ntropy exchanged between the system and the heat bath is the
onstant heat flow, which maintains constant the mean temper-
ture of the sample (first order term of the entropy in (97)).
here is no entropy exchange due to the oscillating tempera-

ure between the sample and the heat bath. The sample alone
as to be taking into account in the balance of the entropy pro-
uced. But, let imagine that the second condition of validity of
c-calorimetry measurements (internal thermal equilibrium) is
ot fulfilled. In this case, a heat diffusion effect occurs due to the
scillating temperature of the sample. The generalized De Don-
er’s approach is then applied as follows. The thermodynamic
riving force (generalized affinity) in presence of a temperature

radient is:

= �

(
1

T

)
(98)
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he generated flux is simply the heat flow propagating through
he sample:

= Q̇(t) = dQ

dt
(99)

or a temperature oscillation of amplitude δTac around Tdc, the
riving force is written:(

1

T

)
= 1

Tdc
− 1

Tdc + Tac
≈ Tac

T 2
dc

(100)

here the amplitude of the temperature modulation Tac is
eglected as compared to Tdc (linear regime). Hence, the aver-
ged entropy production over one period of the temperature
odulation due to the irreversible heat diffusion effect, which

s directly given by the integral of the product of the force with
he induced flux, is given by:

¯i =
∫ T/2

−T/2
Q̇(t)

Tac

T 2
dc

dt (101)

hich is equivalent to the second order term of (97) with the same
onsequence as above. Nevertheless, the two last examples of
rreversible thermal effects are peculiar cases of irreversible pro-
esses and have nothing to do with frequency dependent complex
eat capacity. As Höhne well saw and Baur and Wunderlich did,
he exact way to obtain (83), in the case of generalized calori-

etric susceptibility, is the developments made in Ref. [88] or
n a closed way in the present paper.

.3. Physical meaning of the imaginary part of the
eneralized calorimetric susceptibility

The time-averaged entropy production over one period of
he temperature oscillation in modulated non-equilibrium ac-
alorimetry experiments is directly proportional to the imaginary
art of the generalized calorimetric impedance of the measure-
ent. Only this imaginary part and not the imaginary part of

he frequency dependent complex heat capacity could have the
hysical meaning of heat dissipation. Heat dissipation is gen-
rally linked to a lost of work. In dynamic calorimetry, under
he assumptions made before, since no work is involved in the
xperiment, where is passed the “bad heat”, knowing that the
ystem returns exactly in the same state and that heat cannot
ave time to relax towards the heat bath (adiabaticity condition)
fter one period of the temperature oscillation. Once again, we
ry to give a beginning of explanation referring us to the work of
rigogine. In an article published in 1953, Prigogine and Mazur
nvisaged a general extension of thermodynamics of irreversible
rocesses applied to systems with internal degrees of freedom
111]. They defined an internal space of configuration of the
ystem, where each degree of freedom is represented by a con-
inuing variable representing a coordinate of the internal space.
pplying the non-equilibrium thermodynamics of continuous
ystems, they envisaged diffusion along the internal coordinate,
hich participates to the entropy production. Hence, by analogy
ith heat diffusion where heat is lost along the spatial direction
efined by the hot and the cold points, in this representation, heat

s
w
n
o
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s lost by diffusion along the coordinate defined by the degree of
reedom inside the internal space of configurations. Hence, for
xample in this model, chemical reactions can be regarded as
iffusion along an internal coordinate (degree of advance of the
eaction) between two stable constituents separated by a poten-
ial gap. During this diffusion effect, heat is lost (dissipated or
bsorbed), entropy is produced, and the mean entropy produc-
ion per cycle of the oscillation is proportional to the imaginary
art of the inverse of the complex heat capacity.

. Conclusions

In this paper, dynamic calorimetric experiments have been
nvisaged by means of thermodynamics of irreversible pro-
esses initiated by De Donder in the 1920s of the 20th century.
n an historical basis, we have shown that macroscopic non-

quilibrium thermodynamics can be helpful for the interpreta-
ion of dynamic calorimetric measurements. After having pro-
ided definitions of dynamic calorimetry and macroscopic non-
quilibrium thermodynamics, the notion of irreversible calori-
etric experiments has been envisaged on a qualitative way. A

ocus has been made on the fact that irreversibility in calori-
etric experiments is not an absolute notion, but it depends on

he time scale of the measurements. More precisely, the ratio
f the characteristic relaxation time of the event under study
ith the time scale of the measurement defines the strength of

he thermodynamic irreversibility. The link between kinetic and
on-equilibrium thermodynamics becomes clear. The time scale
f the measurement is the time interval over which the perturb-
ng parameter brings the system in a state of non-equilibrium
round the stationary equilibrium state.

Next, quantitative macroscopic non-equilibrium thermody-
amics of De Donder and the members of his school have been
nvisaged on a calorimetric point of view. Derivations of the
ell-known and less-known formulas of heat capacities mea-

ured during equilibrium and non-equilibrium physico-chemical
ransformations have been given. Some assumptions such as
hermal equilibrium, constancy of the pressure, mechanical equi-
ibrium, which can be with attention verified in lots of calorimet-
ic experiments, have been considered. Assumptions of station-
rity and linearity have been implicitly made when the thermal
ower provided to (or released from) the sample by the experi-
entalist is low enough to provide a sufficiently low temperature

ate. In this case, the rate of the thermodynamic transformation
s proportional to the generalized affinity. Near equilibrium, in
he linear regime, the affinity can be considered to be negligible
n relation to the heat of the transformation. Therefore, it follows
simple first order differential equation where the forcing term
ontains the temperature rate. This state function characterizes
he force of an irreversible process, which tends to bring back the
ystem to a state of equilibrium. Because of the intrinsic physical
inetics of the sample, this operation takes a certain amount of
ime. This kinetic time constant is just the relaxation time con-

tant of the affinity. During this step, thermal power is produced
ithin the sample, which is proportional to the affinity. The
on-equilibrium measured heat capacity depends then directly
n the ratio of the affinity with the temperature rate. Knowing
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he time dependant affinity, the time dependant heat capacity is
ound. At this level, the thermal power due to the positive entropy
roduced by irreversible processes occurring inside the sample
as been neglected. Indeed, this thermal power is of the second
rder in the affinity. As a consequence, the apparent heat capac-
ty measured by the experimentalist, which is the ratio of the
eat exchanged between the sample and the surroundings to the
emperature rate, is the sum of the true heat capacity of the sam-
le plus a term related to the heat of the transformation whose
alue depends on the force of the irreversibility. This added
erm decreases when the force of the irreversibility increases.
his is the well-known decrease effect in apparent heat capac-

ty measured during dynamic calorimetric experiments. With
his last approach, perturbing now the system with an harmonic
emperature oscillation, from the work of different authors dur-
ng the last century, particularly from the recent work of Baur
nd Wunderlich, the generalized calorimetric susceptibility or
requency dependent complex heat capacity has been directly
erived. Hence, for the first time a direct connection has been
stablished between the two fundamental principles of thermo-
ynamic and the frequency dependent complex heat capacity.
his approach, slightly different than the linear response theory
pproach (obviously equivalent in its foundations), can give a
etter physical meaning of the frequency dependent complex
eat capacity and its imaginary part. To our point of view, we
an now affirm the following assertions:

Frequency dependent complex heat capacity is the con-
sequence of irreversible physico-chemical transformations
occurring in the linear regime when the temperature of a sam-
ple follows a harmonic oscillation. During this irreversible
process, a thermal power proportional to the affinity is pro-
duced within the sample. It is the cause of the complex heat
capacity and thus, the cause of C′ and C′′. The thermal power
due to the entropy produced during this irreversible process
(“uncompensated heat capacity of Clausius”) is negligible
near equilibrium and does not perturb the heat capacity mea-
surement. In other words, frequency dependent complex heat
capacity is due to the slow kinetic of an order parameter char-
acterizing a peculiar internal degree of freedom of the sample
when the temperature is harmonically varied.
Real part of the frequency dependent complex heat capacity is
related to the freezing-in of an order parameter characterizing
a peculiar internal degree of freedom of the sample. This effect
depends on the ratio of the kinetic relaxation time constant of
the degree of freedom as compared to the time scale of the
perturbation.
Imaginary part of the frequency dependent complex heat
capacity has no particular physical meaning. Nevertheless, the
entropy produced during the irreversible process, averaged
over the time scale of the measurement, is directly propor-
tional to the imaginary part of the complex impedance of the
measurement, which is the imaginary part of the inverse of

the complex measured heat capacity. Also, the imaginary part
of the complex impedance is equal to zero at zero-frequency
(reversible experiment) and equal to zero at infinite frequency
(irreversibility maximum). The imaginary part of the complex
Acta 452 (2007) 85–105 103

heat capacity has the same behavior, and we can conclude that
it may also be a representation of heat dissipation or heat lost
during the experiment.

By analogy with heat dissipation during thermal diffusion
rocesses, where heat is absorbed along a spatial axis, we
laim that during irreversible calorimetric experiments, a certain
mount of heat is lost along the path over a peculiar virtual axis
epresented by the internal order parameter (degree of advance
f the reaction in the peculiar case of chemical reactions) repre-
enting a certain internal degree of freedom (the advance of the
eaction in the peculiar case of chemical reactions). This view
an be applied to any irreversible experiments. For example in
ielectric relaxations, the internal parameter may be the angle
etween the electric field and the polarization vector response.

The generality of this previous approach has been demon-
trated. Although thermodynamics of irreversible processes due
o chemical reactions has been first considered by De Don-
er, it can concern all physico-chemical transformations or
elaxation phenomena occurring out-of-equilibrium (first order
hase transition, glass transition, relaxation phenomena, etc.)
hat are induced by temperature and characterized by a state
ariable (internal order parameter) characterizing a certain inter-
al degree of freedom of a sample. On a general manner, this
pproach has also been applied to dynamic DSC experiments,
ssuming that thermodynamic internal thermal equilibrium is
eached. In this case, a beginning of explanation of the exper-
mentally measured heat capacity during glass transitions has
een envisaged. A special focus has been done on the link
xisting between imaginary part of the inverse of the complex
eat capacity and the finite amount of entropy produced during
on-equilibrium temperature modulated heat capacity measure-
ents. The notion of entropy produced during one period of the

scillation in temperature modulated calorimetric experiments
as been clarified.

In summary, we can conclude that the notion of frequency
ependent complex heat capacity must be very useful in ac-
alorimetry experiments for the study of lots of type of transi-
ions and thermal phenomena.

cknowledgements

This work was realized inside the Groupe de Biothermique et
e Nanocalorimétrie of the CRTBT. The author wants to thank
. Bourgeois, G. Gaudin, J. Richard, H. Guillou, for useful dis-

ussions and many corrections of this paper, Z. Atkinson and
. Garden for English corrections and A. Michetti for biblio-
raphic researches. I am infinitely indebted to J. Chaussy for
aving passed on me his passion and knowledge of theoretical
nd experimental calorimetry.

eferences
[1] O.M. Corbino, Phys. Z. 11 (1910) 413–417.
[2] O.M. Corbino, Phys. Z. 12 (1911) 292–295.
[3] P.F. Sullivan, G. Seidel, Phys. Rev. 173 (1968) 679–685.
[4] Y. Kraftmakher, Phys. Rep. 356 (2002) 1–117.



1 mica
04 J.-L. Garden / Thermochi

[5] H. Gobrecht, K. Hamann, G. Willers, J. Phys. E: Sci. Instrum. 4 (1971)
21–23.

[6] P.S. Gill, S.R. Sauerbrunn, M. Reading, J. Therm. Anal. 40 (1993)
931–939.

[7] J.E.K. Schawe, Thermochim. Acta 260 (1995) 1–16.
[8] M. Reading, Thermochim. Acta 292 (1997) 179–187.
[9] M. Reading, J. Therm. Anal. 54 (1998) 411–418.

[10] N.O. Birge, S.R. Nagel, Phys. Rev. Lett. 54 (1985) 2674–2677.
[11] N.O. Birge, Phys. Rev. B 34 (3) (1986) 1631–1642.
[12] N.O. Birge, S.R. Nagel, Rev. Sci. Instrum. 58 (1987) 1464–1470.
[13] P.K. Dixon, S.R. Nagel, Phys. Rev. Lett. 61 (1988) 341–344.
[14] N.O. Birge, P.K. Dixon, N. Menon, Thermochim. Acta 304/305 (1997)

51–66.
[15] T. Christensen, J. Phys. T.46 (Suppl. 12) (1985) 635–637 (Colloque C8).
[16] D.H. Jung, T.W. Kwon, D.J. Bae, I.K. Moon, Y.H. Jeong, Meas. Sci.

Technol. 3 (1992) 475–484.
[17] Y.H. Jeong, I.K. Moon, Phys. Rev. B 52 (1995) 6381–6385.
[18] I.K. Moon, Y.H. Jeong, Rev. Sci. Instrum. 67 (1996) 29–35.
[19] D.H. Jung, I.K. Moon, Y.H. Jeong, S.H. Lee, Thermochim. Acta 403

(2003) 83–88.
[20] A. Toda, T. Oda, M. Hikosaka, Y. Saruyama, Thermochim. Acta 293

(1997) 47–63.
[21] A. Toda, Y. Saruyama, Polymer 42 (2001) 4727–4730.
[22] Y. Saruyama, J. Therm. Anal. 38 (1992) 1827–1833.
[23] J.E.K. Schawe, Thermochim. Acta 261 (1995) 183–194.
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[33] G.W.H. Höhne, Thermochim. Acta 304/305 (1997) 121–123.
[34] F.U. Buehler, C.J. Martin, J.C. Seferis, J. Therm. Anal. 54 (1998)

501–519.
[35] F.U. Buehler, J.C. Seferis, Thermochim. Acta 348 (2000) 161–168.
[36] S.L. Simon, Thermochim. Acta 374 (2001) 55–71.
[37] Z. Jiang, C.T. Imrie, J.M. Hutchinson, Thermochim. Acta 387 (2002)

75–93.
[38] C. Schick, Y. Saruyama, Netsu Sokutei 29 (2002) 33–37.
[39] P. Claudy, Analyse Calorimétrique Différentielle (in French), Tec et Doc
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