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Abstract

What is really measured in dynamic calorimetric experiments is still an open question. This paper is devoted to this question, which can be
usefully envisaged by means of macroscopic non-equilibrium thermodynamics. From the pioneer work of De Donder on chemical reactions
and with other authors along the 20th century, the question is tackled under an historical point of view. A special attention is paid about the
notions of frequency dependent complex heat capacity and entropy production due to irreversible processes occurring during an experiment. This
phenomenological approach based on thermodynamics, not widely spread in the literature of calorimetry, could open significant perspectives on
the study of macro-systems undergoing physico-chemical transformations probed by dynamic calorimetry.
© 2006 Elsevier B.V. All rights reserved.
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Nomenclature Greek letters
a angular coefficient of De Donder 1 temperature rate
A chemical affinity 3A amplitude of the oscillating affinity
Ag constant affinity 8Ty amplitude of the oscillating temperature
A, B, ... thermodynamic states of a system; initial and Ag departure from equilibrium of the variable & after
final products in a reaction sequence the time interval Az
Cmes  experimentally measured heat capacity A&eq  distance between two equilibrium values of the
Gy heat capacity at constant pressure variable £ after the time interval Az
Crev  experimentally measured heat capacity during a eq contribution to the measured heat capacity at
reversible calorimetric experiment equilibrium of an internal degree of freedom
Co contribution to the heat capacity at equilibrium of K phase lag generated by irreversible effects on the
all the degree of freedom oscillating temperature
Cs  contribution to the heat capacity of the infinitely % chemical potential
fast degree of freedom v stochiometric coefficient
c" complex heat capacity & degree of advance of a reaction or order parameter
c real part of the complex heat capacity of an internal degree of freedom
c’ imaginary part of the complex heat capacity €eq equilibrium value of the degree of advance of a
Ce heat capacity at constant composition or at reaction or equilibrium value of an order
constant order parameter parameter of an internal degree of freedom
deS infinitesimal external entropy exchange oi instantaneous rate of production of entropy
diS infinitesimal internal entropy creation oi time averaged rate of production of entropy
G free energy of Gibbs T kinetic relaxation time constant of an internal
H enthalpy or heat content function degree of freedom
K heat exchange coefficient Text kinetic relaxation time constant of the
L phenomenological coefficient of Onsager temperature towards the heat bath
N number of mole of a constituent Tint kinetic relaxation time constant of the
P heat flow rate or thermal power; pressure temperature inside a medium due to
Pj thermal power of irreversibility or rate of the thermal diffusion
_ uncompensated heat of Clausius 10 phase of the oscillating temperature
P, time averaged thermal power of irreversibility ¢ phase of the oscillating affinity
Py amplitude of the oscillating thermal power 0] angular frequency of the oscillating thermal
0 heat power or oscillating temperature
o uncompensated heat of Clausius
R constant of perfect gas
S entropy 1. Introduction
t time
T temperature; period of the modulation In calorimetric heat capacity measurements, a sample is per-
Tac oscillating temperature turbed by an input thermal power and the resulting temperature
Tyc constant stationary temperature variation is measured. Also, a temperature program can be pre-
v rate of reaction determined and the resulting heat flow can be measured. Under
specific experimental conditions, the heat capacity of the sam-
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ple is defined by the ratio of this thermal power on the measured
temperature rate. Nevertheless, when the heat flow is supplied
on a time scale smaller than the internal reorganization time of
the sample degrees of freedom, the measured heat capacity is
the result of a non-equilibrium experiment. What is then exactly
measured by the experimentalist? The result of the measurement
is sometimes called the apparent heat capacity. The same type
of question can be asked in modulated calorimetric experiments
when the input heat flow frequency is higher than the frequency
of the degrees of freedom constituting the heat capacity of the
sample. This yields the so-called frequency dependent complex
heat capacity with a real and an imaginary component. Nowa-
days, no clear consensus exists on what is really measured during
theses dynamic calorimetric measurements.

This paper aims at demonstrate that the formalism of macro-
scopic non-equilibrium thermodynamics can be very helpful to
envisage these questions. We propose to aboard the problem on a
historical point of view. For example, we will see that the notions
of non-equilibrium heat capacity and frequency dependent com-
plex heat capacity have been already envisaged for a long
time. After the present introduction, in Section 2, the historical
background of the frequency dependent complex heat capacity
in calorimetry is given. The definitions of macroscopic non-
equilibrium thermodynamics and dynamic calorimetry are then
also provided. In Section 3, dynamic calorimetric experiments
are envisaged on a qualitative manner. The working assumptions
of what we consider as an ideal dynamic calorimetric exper-
iment are previously given. Then, the link existing between
calorimetry, non-equilibrium thermodynamics and kinetics is
envisaged qualitatively. In Sections 4 and 5, dynamic calorimet-
ric experiments and complex heat capacity notion are tackled on
a quantitative manner through the works of different authors. All
along the paper, a special attention is paid about the notion of
rate of production of entropy generated during non-equilibrium
physico-chemical transformations. Although we have focused
on modulated calorimetric experiments and complex heat capac-
ity, in Section 6, we treat an example of dynamic calorimet-
ric experiments, the dynamic differential scanning calorimetry
(DSC), for which macroscopic non-equilibrium thermodynam-
ics can be also applied. Then, we show that the formula generally
found in the literature of the averaged entropy production over
one period of temperature oscillation is simply issued from a
peculiar case of irreversible process. Next, before the conclu-
sion, we provide our point of view on the physical meaning of
the imaginary part of the complex heat capacity.

2. Historical background, definitions and assumptions

2.1. Historical background of frequency dependent
complex heat capacity in calorimetry

At the beginning of the 20th century Corbino stated the basis
of modulated calorimetric experiments [1,2]. At the end of the
1960s, Sullivan and Seidel improved the technique with the
so-called steady-state ac-calorimetry method, useful in low tem-
perature specific heat measurements [3]. Heat capacities were
anyway already measured by Kraftmakher and others from mod-

ulated temperature experiments. An interesting review on the
subject has been written by Kraftmakher [4].

Few years later in 1970, Gobrecht et al. had the original idea to
replace the linear temperature ramp of usual differential scan-
ning calorimeters (DSC) by a modulated one [5]. It was the
birth of temperature modulated differential scanning calorime-
try (TMDSC). This article contained all the concepts used today
in modern TMDSC measurements: use of a complex heat capac-
ity; separation of the vibrational and configurational modes of
the heat capacity; application to the glass transition; cole—cole
plot of the complex heat capacity.

At the beginning of the 1990s, Reading and co-workers
refund the principle of the TMDSC [6]. With the use of a decon-
volution, Reading proposed to separate the calorimetric signal
into a reversing and a non-reversing component. Next, Schawe
proposed a new physical interpretation of the two components
measured in TMDSC. Since, a very famous and interesting dis-
pute has opposed the two authors [7-9]. The interpretation of
Schawe results in a new separation of the TMDSC signal into
two heat capacity components. One is called the storage heat
capacity, and the other one the loss heat capacity. From this
point of view, the heat capacity measured in TMDSC experi-
ment is a complex heat capacity with a real and an imaginary
part. This usual equilibrium thermodynamic quantity must thus
be regarded as a generalized dynamic susceptibility such as
non-equilibrium response derived from dielectric or magnetic
susceptibility measurements:

. Co—Cx
c*=C'-ic"=cC _— 1
! oo+ 1+ iwt @)
where
Co—Cx
C=Cop+——= 2
S )
is the storage frequency dependent heat capacity, and
" _ (CO - COO)wT (3)

1+ (wr1)?

is the loss frequency dependent heat capacity. C' and C” sat-
isfy the so-called Kramers—Kronig dispersion relations. w is
the angular frequency of the modulated temperature; Coo the
heat capacity related to the infinitely fast degrees of freedom
of the system as compared to the frequency (generally vibra-
tional modes or phonons bath), and Cj is the total contribution
at equilibrium (the frequency is set to zero) of the degrees of
freedom, fast and slow, of the sample. The time constant 7 is the
kinetic relaxation time constant of the non-equilibrium degree
of freedom.

These three last formulas have been already derived a long
time ago with the formalism of the linear response theory, espe-
cially from the work of Birge and Nagel who measured the fre-
quency dependent heat capacity of liquids with the 3w-method
[10-14]. At the same time, frequency dependent complex heat
capacity was also envisaged by Christensen [15]. Specific heat
spectroscopy with the 3w-method was also tackled in the fol-
lowing Refs. [16-19]. An other original approach is due to
Toda and co-workers, who derived the complex heat capacity
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directly through a pure Kinetic approach during melting of poly-
mer crystals [20,21]. Generally, the formula of the complex heat
capacity was always derived from the linear response theory. In
this approach, the heat capacity is seen as the linear response of
a small perturbation of the entropy of the system (or enthalpy),
knowing that the measured temperature is the conjugated ther-
modynamic variable of the entropy. Derivations of the complex
heat capacity by the linear response theory can be found for
example in the following Refs. [22-31]. However, this approach
is outside the scope of this article.

Principally since the birth of the TMDSC method, lot of sci-
entists have tried to better understand the notion of complex heat
capacity and particularly the meaning of the imaginary part of
C" without any clear conclusions. For commenting our asser-
tion, let cite some typical sentences, which can be frequently
encountered in the literature:

e In 1997, Simon and McKenna wrote an interesting review on
frequency dependent complex heat capacity and one of their
conclusions is [32]: “...the subsequent discussion demon-
strated that there is no consensus concerning the interpreta-
tion of dynamic heat spectroscopy measurements” .

e In 1997, in a special issue of Thermochimica Acta on
TMDSC, Hohne wrote a letter called “Remark on the interpre-
tation of the imaginary part C" of the complex heat capacity”
[33]. He proposed to use thermodynamics of irreversible pro-
cesses to envisage the question.

e In 1998, in a special issue of Journal of Thermal Analysis
and Calorimetry on TMDSC, Scherrenberg et al. wrote: “The
physical meaning of the imaginary heat capacity in regime
Ib is still subject to debate” [29]. Farther, in the same jour-
nal, Buehler et al. wrote: “Basically, there is no well-founded
physical or thermodynamical interpretation of C Z" [34].

e In 2000, Buehler and Seferis wrote in the abstract of their
paper: “It also explored the influence of sample thickness on
heat flow phase, without using a complex heat capacity of
doubtful physical meaning”. And farther, after a discussion
about their own interpretation, they gave a detailed table tak-
ing into account different interpretations of the imaginary part
of the heat capacity according to various authors [35].

e In 2001, Simon wrote: “The frequency dependence of the
specific heat in an equilibrium (ergodic) system has been var-
iously related to fluctuations in enthalpy, in temperature, and
in entropy, although general agreement has not been reached”
[36].

e In 2002, Jiang et al. wrote: “The problem with this approach
is that, at present, there is no universally acknowledged inter-
pretation of the meaning of the out-of-phase component C Z”
[37].

e Also in 2002, in an interesting published email exchange,
Schick and Saruyama reported that the “Frequency depen-
dence of heat capacity and its interpretation is one of the still
open questions in calorimetry” [38].

A good review of these remaining questions is given by Claudy
in his recent book [39]. To our point of view, the real part of
the complex heat capacity with its frequency dependency can

be clearly understood, but the physical meaning of the imagi-
nary part or the loss part of the heat capacity remains confuse. In
usual dynamic susceptibility measurements, imaginary parts of
generalized susceptibilities are well physically understood and
always linked to heat dissipation inside the sample. For calori-
metric measurements when the perturbing parameter is already
heat, what does heat dissipation mean? Does it have even a phys-
ical sense? If the imaginary part of the complex heat capacity
is linked to thermal dissipation, where is passed the heat (heat
lost) during one period of the temperature oscillation, knowing
that the experiment can be realized in an adiabatic manner (no
heat has time to release towards the heat bath over one period)?
An attempt of the response of these last questions is envisaged
in the last section of this present manuscript.

2.2. Definition of dynamic calorimetry

Calorimetry is an experimental technique concerned by mea-
surements of amounts of heat exchanged by a sample with its sur-
rounding. Sometimes, theses quantities of heat are produced (or
absorbed) by the sample itself when a physico-chemical trans-
formation occurs (enthalpy measurements due to the variation
of an external parameter such as the pressure, the temperature,
the magnetic field, the adding of a constituent, etc.). Sometimes,
the experimentalist itself provides (or released) heat to the sam-
ple for probing its structure or its internal degrees of freedom
(heat capacity measurements). In all case, these measurements
are realized with a thermometer. At the scale of the sample,
composed of a very large number of sub-systems, heat and tem-
perature are macroscopic thermodynamic variables. They result
on the average taken over all the sub-systems strongly linked
together, which constitute an entire thermodynamic macro-
scopic system. The temperature T and the quantity of heat Q
are quantities of great importance in the field of thermodynam-
ics. For example, the ratio of the heat exchanged between the
sample and its surroundings to the absolute sample temperature
is the external entropy variation of the system. Also, the ratio of
this quantity of heat to the temperature variation of the system
is the heat capacity of the system. If the temperature, its varia-
tion and the heat capacity are measured, then the enthalpy, the
entropy and the Gibbs free energy variations can be derived. The
only experimental method which permits a direct access to these
thermodynamic quantities is calorimetry. Hence, it is obvious
to state that this experimental method is intimately connected
to the theoretical approach of equilibrium and non-equilibrium
thermodynamics. Dynamic calorimetry can have two different
significations:

e Dynamicinthe sense of a variation of the sample temperature.

e Dynamic in the sense that the measured quantities are not
in thermodynamic equilibrium and consequently cannot be
considered as static quantities.

We will see that these two definitions are dependant. In this
paper, we adopt the last definition. It is the same one adopted
by Birge and Nagel [10-14], and by Jeong (see the review
on dynamic calorimetry [28]). Indeed, macroscopic thermody-



J.-L. Garden / Thermochimica Acta 452 (2007) 85-105 89

namics is concerned by time average of variables, which are
in equilibrium and considered as static. Non-equilibrium ther-
modynamics is concerned by dynamic variables, which are not
in thermodynamic equilibrium. When kinetic relaxation times
of thermal events under study become long compared to the
time scale of the measurement, thermodynamic variables have
no time to reach their equilibrium values. What is then really
measured by the experimentalist? What are the conditions for a
calorimetric experiment to be considered as static or dynamic?
We will see along this paper that these questions are also related
to frequency dependent heat capacity measurements when the
period of the oscillating temperature becomes smaller than the
kinetic relaxation time of thermal events under study.

2.3. Definition of macroscopic non-equilibrium
thermodynamics

We consider only classical finite macroscopic system with
macroscopic thermodynamic variables such as volume, temper-
ature, pressure and others, which are subdued only by the first
and the second laws of thermodynamics. Microscopic thermo-
dynamics and statistical mechanics governed by probabilities
and fluctuations are not used. Thermodynamic systems (in fact
sample under calorimetric study) are uniform regarding to the
intensive variables such as the pressure, the temperature, but are
in a non-equilibrium state regarding to peculiar internal degrees
of freedom. Before entering in the connections existing between
calorimetry and thermodynamic irreversibility, let us give a brief
historical summary of macroscopic non-equilibrium thermody-
namics.

2.4. Historical survey of macroscopic non-equilibrium
thermodynamics

For a good historical description of non-equilibrium thermo-
dynamics, see Refs. [40-43]. At the end of the 19th century,
Gibbs defined the basis of classical equilibrium thermodynam-
ics [44]. After his work, which is still extensively used nowa-
days, the first approach envisaging the field of non-equilibrium
thermodynamics on a general manner is due to Onsager [45].
From the principle of microscopic reversibility, Onsager estab-
lishes the so-called reciprocal relations. This work gives for
the first time a clear formal explanation of irreversible pro-
cesses such as Fourier’s law, Thomson’s effect and others. From
this approach, scientists have discussed the connection existing
between macroscopic and microscopic thermodynamics. All the
important theorems issued from this period are based on the
fundamentals laws of statistical mechanics. Most of them are
based on an important assumption: at microscopic level, fluc-
tuations occurring near equilibrium have the same decreasing
exponential behavior towards equilibrium that macroscopic ther-
modynamic variables, which have been moved aside equilibrium
by an external force. For agood survey of the subject, see the non-
exhaustive following Refs. [46-56]. In the following, we will see
that the important notions of generalized thermodynamic forces
and associated responses (generalized thermodynamic fluxes)
are of great interest in dynamic calorimetry.

On the other hand, in the 1920s at the Université libre de
Bruxelles, De Donder defined the thermodynamic state function,
A, the affinity, which represents the driving force of a chemical
reaction [57,58]. Chemical reactions are always non-equilibrium
processes. At thermodynamic equilibrium, no reaction occurs
and the affinity is equal to zero. The concept of affinity has
been next generalized by different authors, such as Prigogine,
Defay, De Groot and Mazur [41,59]. Nowadays, generalized
affinities are used on a very general manner to represent driv-
ing forces of any irreversible thermodynamic processes. See, for
an interesting use of De Donder’s thermodynamics and general-
ized affinities applied to internal reorganizations with relaxation
phenomena, the work of Cunat [60]. Even for phase transitions
or phase transformations, the affinity (difference of chemical
potential between the phases) is the thermodynamic force driv-
ing the advancement of the transitions. In Section 4, through
the works of De Donder, Prigogine and Defay, we will envisage
quantitatively how the concept of generalized affinity can play
a key role in dynamic calorimetric experiment. Before that, let
us provide the frame of macroscopic non-equilibrium thermo-
dynamics applied to calorimetry, and envisage qualitatively the
definition of an irreversible calorimetric experiment.

3. Qualitative approach of irreversible thermodynamics
in calorimetric experiments

3.1. Working assumptions for calorimetric experiments

Let be a sample with a heat capacity C at a temperature T
linked by a heat exchange coefficient K to a thermal bath with
a constant temperature Ty (see Fig. 1). The sample (with its
addenda) represents a macroscopic thermodynamic system.

We assume that this thermodynamic system is represented by
three independent state variables (p, T, ). The pressure p and the

~

i

/1777

Fig. 1. A thermodynamic system, in thermal and mechanical equilibrium, with
a heat capacity C, and a well-defined temperature 7, is linked to a thermal bath at
a constant temperature Ty via a heat loss coefficient K. A known quantity of heat
Q is supplied to the system or received from the system by the experimentalist.
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Fig. 2. The temporal evolution of the thermodynamic system is represented by
a curve in the diagram (7, &). After a perturbation generated by the experimen-
talist (via §Q), the system is driven from a thermodynamic state A to another
thermodynamic state B. Along this thermodynamic pathway, the amount of heat
exchanged between the system and the outside world is linked to one contribu-
tion of the entropy variation of the system (deS = 8Q/T). This entropy exchanged
over the boundaries of the system can be positive or negative. At the same time,
a quantity of heat (the uncompensated heat of Clausius) is produced inside the
system. This heat is linked to the other contribution of the entropy variation of
the system (diS=8Q'/T). It is due to irreversible processes occurring within the
system and it is always positive. It is equal to zero along the reversible pathway.

temperature T are the two physical variables and & is the chemical
variable (the definition of this variable is given in Section 4.1.1).
More generally this variable can represent a generalized order
parameter connected to a specific internal degree of freedom of
the sample. If the pressure p is maintained constant during the
entire calorimetric experiment, then the state of the system is
defined by the set (7, &). More precisely, the evolution of the
state of the system is given by the two functions 7(¢) and (7).
The thermodynamic transformation is represented by a curve in
the diagram {7, &} (see Fig. 2).

Let consider that the system is a thermodynamic closed sys-
tem. This is to say that the system can only exchange energy
with the outside world (no exchange of matter).

The system is also considered in thermal equilibrium. This
is to say that there is no temperature gradient inside the system,
or the temperature is homogeneous in all parts of the system at
any time. In general, this condition can be fulfilled because the
function T(r) is known and controlled by the calorimetrist. For a
given temperature variation AT, realized in the time interval Az,
if the internal heat relaxation time is less than A, then the sample
ishomogeneous intemperature. The internal heat relaxation time
of the system is linked to the thermal diffusivity of the sample
and its thickness. Hence, this condition is reached if the volume
of the sample is small for a given value of the thermal diffusivity
of the sample.

Finally, let consider that the system is in mechanical equilib-
rium, which means that the pressure is homogeneous and there
is no fast volume variation inside the sample during the exper-
iment. This assumption is true if the pressure of the system is
kept constant during the experiment.

From these last conditions, £ is the only variable sensitive to
a non-equilibrium situation. This is to say, for a given variation
of the state variable 7, it is possible that & does not reach its equi-
librium value. Hence, in an irreversible calorimetric experiment
the set (7, &) does not represent a state of equilibrium.

3.2. Reversible and irreversible calorimetric experiments

De Donder and the members of his school wrote the second
law of thermodynamics as the following:

§Q'=TdS—580 >0 (4)

where the letter & takes into account that heat is not a state func-
tion and not an exact total differential. Q' is the uncompensated
heat of Clausius. This is the quantity of heat produced within
the system when an irreversible process occurs. T is the absolute
temperature, 8Q the quantity of heat exchanged by the system
with the outside world and dS is the infinitesimal total entropy
variation. First of all, let us consider a thermodynamic system
at an initial equilibrium state A. One assumes that the system
undergoes a physico-chemical transformation. If the transfor-
mation drives the system from an equilibrium state A to another
equilibrium state B, and if it is an equilibrium transformation (a
transformation which proceeds by a succession of equilibrium
states) then the amount of heat exchanged between the system
and its surroundings is:

Q1 =T AS; (reversible transformation) (5)

If the transformation occurs outside equilibrium, then on the
basis of De Donder’s definition of the second law of thermody-
namics:

0> =T AS, — Q' (irreversible transformation) (6)

The entropy S being a state function, if A and B are the same in
the two experiments, then AS; = AS» and consequently:

Q' =01—-02 (7

Therefore, Q' is the difference between the amount of heat
exchanged by the system with its surroundings, for a reversible
and an irreversible transformations, respectively, which drive the
system from the same equilibrium state A to the same equilib-
rium state B.

In calorimetric experiments, the situation is slightly different
because the quantity of heat supplied to (or released from) the
system by the outside world is controlled by the experimentalist.
In this case, (5) and (6) are written:

0 =TAS; ©)
for a reversible experiment, and
Q=TAS; - Q' 9)

Q' >0 for an irreversible experiment. Q is supposed to be the
same in the two experiments. It implies that AS, = ASy. There-
fore, after A¢, if B is in a state of equilibrium in the reversible
experiment, it is not the case in the irreversible experiment,
because Sg2 # Sg1 (S being a state function). This is the reason
why thermodynamics of irreversible processes is called non-
equilibrium thermodynamics. In this “Gedanken experiment”,
since we compare two calorimetric experiments with the same
amount of heat supplied to the same sample, thus inevitably
At must be shorter in the irreversible experiment than in the
reversible experiment. This is to say that the heat flow supplied
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to (or released from) the sample is higher in the irreversible
experiment than in the reversible one. In the irreversible case,
relaxation phenomena inside the sample (kinetics) cannot be
neglected. In this case, temperature rates of the sample are
high. Hence, we see the link between fast temperature ramp and
dynamic calorimetry. Let insist that the irreversibility of a calori-
metric experiment is not an absolute notion. It depends only on
the time interval (time scale of the measurement) over which the
quantity of heat Q is supplied to the sample. In the irreversible
experiment, the uncompensated heat of Clausius is produced ina
time interval that lasts longer than this characteristic time scale,
At, of the measurement. The fact that a process could be con-
sidered reversible or irreversible depending on the time scale of
the observation is well expressed by Chandrasekhar [61]: “Quite
generally, we may conclude with Smoluchowski that a process
appears irreversible (or reversible) according as whether the
initial state is characterized by a long (or short) average time
of recurrence compared to the times during which the system is
under observation”.

3.3. Entropy production

The second law of thermodynamics (4) can be rewritten in a
different way:

dS = deS + ;S (10)

where dS is the infinitesimal entropy variation of the system,
dS the infinitesimal entropy variation exchanged between the
system and the surroundings, diS is the infinitesimal entropy
produced by irreversible processes occurring within the sample.
More explicitly:

)
and
5 /
dis = ? >0 (12)

During a calorimetric experiment, the quantity of heat Q is
exchanged between the experimentalist and the sample during
the finite time interval Az. Thus the instantaneous heat flow
exchanged between the system and its surroundings over the
time interval At is written:
50 _ 0 dsdis
dt dt dt dt
The time derivative term d;S/dr is the so-called rate of the pro-
duction of entropy (or simply entropy production). Knowing
that this term (equal to zero only when the experiment is real-
ized in a reversible manner) is linked to a real positive quantity
of heat produced within the sample, it is legitimate to ask for
the following questions: is this positive quantity of heat per-
turbing the heat capacity measurement? Is it the cause of the
frequency dependent heat capacity in modulated calorimetry
measurements? In the next section, we will see that it is not the
case.

P (13)

4. Quantitative approach of macroscopic
non-equilibrium thermodynamics in calorimetric
experiments

This section is principally based on the work of De Don-
der, Prigogine and Defay. From 1927 to 1934, De Donder has
regrouped his works on chemical irreversible processes in three
books [57,58]. Important formulas of the heat capacity were
derived from the two principles of thermodynamics. The first
formula of non-equilibrium heat capacity measured at constant
affinity was derived by De Donder. Later, in 1946 and 1950,
Prigogine and Defay pushed further the reasoning of De Don-
der, and derived for the first time the general formula of the
measured heat capacity during non-equilibrium transformations
[59,62]. These formulas, not very known, can be of great interest
in dynamic calorimetry, and we propose to provide the details
of their derivations in this section.

4.1. The thermodynamics of Théophile De Donder

4.1.1. Affinity and degree of advance of a reaction

De Donder was the first to generalize the classical Gibbs’s
equilibrium thermodynamics to irreversible processes occurring
during chemical reactions. Among his monumental work, one
of the most important discoveries was to find the quantitative
expression of the driving force of chemical reactions. De Donder
expressed this force by a new thermodynamic state function A,
the affinity. It can be regarded as the cause of the advance of
chemical reactions. Let consider a simple chemical reaction:

VaA + vpB — v.C + vgD (14)

where A, B and C, D, are the reactants and the products, respec-
tively, and vg, vy, v, vq are the stochiometric coefficients. The
affinity is defined by De Donder as follows:

A = (vapta + voub) — (vefbe + vaud) (15)

where w, is the chemical potential of the constituent x. The
genius idea of De Donder was to express the uncompensated
heat of Clausius as a product of a generalized thermodynamic
force (the affinity) with a generalized thermodynamic flux (the
variation of the degree of advance of the reaction):

Q' =Ads>0 (16)

The degree of advance of the reaction is a thermodynamic state
variable, which represents the advancement of a chemical reac-
tion. It is defined by De Donder as follows:

N(t) = N2(0) + sk 17)

or

g — I (18)
Vx

with & =0 at the initial state, and where N, is the number of mole
of the constituent x. The initial mole number of each constituent
being known, the chemical reaction is entirely defined by the
degree of advance of the reaction. This variable of state can
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also characterize a phase transformation. Hence, it represents
the changes between the different constituents during a chemical
reaction or the changes between the different phases of a sys-
tem during a phase transformation. With these definitions, the
irreversible positive entropy produced during physico-chemical
reaction takes a simple expression as the product of the chemical
force with the induced flux (rate of reaction, v):

dis 1do Adse A
= TTa ~Ta 1 =0 (19)
The rate of the uncompensated heat of Clausius, or the thermal
power of irreversibility is simply given by:

Py = To;j (20)

As the affinity is the force driving the system towards equilib-
rium when it is moved aside equilibrium, it is also possible to
derive the following fundamental equation [57,58]:

A:_"’G> :TE)S) _3H> 1)
&), &), ),

where G is the Gibbs’s free energy, representing the chemical
potential in the set variable (7, &) (p being constant). oH/3&)7
is the heat of reaction at constant pressure and temperature, and
aS/0¢)r is the entropy variation due to the reaction at constant
pressure and temperature.

At equilibrium the affinity and the rate of reaction vanish
together and we have:

eq eq
) "
& )r 0§ )1

4.1.2. Total differential of the affinity

It was rigorously demonstrated that the affinity is a state
function [63,64]. Thus, De Donder has differentiated this state
variable with respect to the other independent variables of the
system:

0A d0A
dA= — | dT+ — ) d 23

aT)E + ) (29
which for simplicity is rewritten as the following:
dA = adT — Bd& (24)
With (21) we have:

¥G
-2 25

=), @)

The coefficient 8 (the second derivative of the Gibbs’s free
energy) is always positive around equilibrium because G is
minimum at equilibrium. This results on the stability of the equi-
librium state after a perturbation [65,66]. From Ref. [58], there
is also:

_8A> _as) _ 0H/0E)r + A
ST ), ) T

This equation is called the Berthelot-De Donder’s formula. It
can be derived directly from the definition (21) of the affinity.

o (26)

Physically, it means that, at constant temperature and pressure,
the affinity is a thermodynamic potential for the system under-
going a physico-chemical transformation, a driving force, which
vanishes when the system is at equilibrium.

4.1.3. Heat capacity at constant affinity

The first law of thermodynamics states that, at constant pres-
sure, the amount of heat exchanged between the system and the
outside world is equal to the variation of the enthalpy of the
system:

80 =dH (27)

In this case, an important formula of the heat capacity of the sys-
tem in the set of thermodynamic variables (7, &) can be derived
[58,59]:

Cmes =

50 8H> de

ar =" % ) ar

where Cg = 0H/9T)¢ is the heat capacity at constant composition
of the system, often called the true heat capacity of the system.
This basic thermodynamic formula was written by De Donder
in another way in order to make more evident the role of the
affinity. With (24) and (28) making dA =0, and with (25) and
(26), he derived the heat capacity at constant affinity (see Ref.
[58], page 58):

(28)

oH
Cmes = Cay = Ct + 8%)
which is in fact the first time that a quantitative expression of
the heat capacity during non-equilibrium event is derived. At
equilibrium, the affinity vanishes and the expression of the heat
capacity is:

[0H/0€) + Ao]

r T#G/0E)y #9)

[0H/0£)71?
Ches = Ce + —————5 30
mes & T azc/aé_z)e}q ( )
In this paper we consider:
_ [0H/5)77 (31)

T TG /)]

Hence, the heat capacity measured during a reversible calori-
metric experiment can be simply written as the following:

Cmes = Crev = Ct + g (32)

In accordance with the stability condition of the state of equilib-
rium (Beq > 0), Cmes is always greater than the true heat capacity
C¢ of the sample during a reversible experiment. Let us note that
this conclusion is true even if the physico-chemical transforma-
tion is exothermic or endothermic during the experiment.

4.1.4. Entropy production

At this level, we would like to insist on an important point
that is never mentioned in lots of publications on the subject.
It should be pointed out that the term of entropy production is
hidden in the general formula (28) of the heat capacity, which
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can be easily rewritten:

Cres = Ce 4 705) 96 _ 7S _ oy 735) &30
mes =T N e ) dr T Tdr 5T % ) AT dT
(33)

A simple and naive interpretation of Eq. (33) could be as fol-
lows: the term of uncompensated heat of Clausius by unit of
temperature (or “uncompensated heat capacity of Clausius”)
may be subtracted to the equilibrium heat capacity and may be
consequently responsible of the decrease of the measured heat
capacity in non-equilibrium calorimetric experiments. Know-
ing that generally the non-equilibrium measured heat capacity
is smaller than the heat capacity measured at equilibrium, this
term, equal to zero only at equilibrium, could be responsible
of the frequency dependent heat capacity effects during tem-
perature modulated calorimetric experiment. Unfortunately, the
situation is not so simple, and we will see later that this term is
neglected in the derivation of the frequency dependent complex
heat capacity by means of the De Donder’s formalism.

4.2. Generalized affinities

Nowadays, it is well known that any thermodynamic irre-
versible processes can be described in term of generalized
affinities (forces) and generalized fluxes. The product of these
generalized thermodynamic forces and fluxes gives the entropy
production. For example, the driving force of matter diffusion
is v(u/T), when there is a gradient of the chemical potential.
As a consequence, a flux of matter appears inside the system
(Fick’s law). In the same way, the driving force of heat diffusion
is V(1/T). As a consequence a heat flow appears in the system
(Fourier’s law). The driving force of chemical reactions is A/T
rather than A. As a consequence, a reaction appears. The sys-
tem always tends to bring back the system towards equilibrium
when there is a displacement from equilibrium. This is the conse-
quence of the principle of Le Chatelier—Braun. Generally, & can
be regarded as the advancement of an internal parameter (inter-
nal degree of freedom) of the system [41], and it can characterize,
for instance, the equilibrium or the non-equilibrium of the matter
repartition in the system. From De Donder’s developments on
chemical affinity, a generalization was made by different authors
who applied this thermodynamic approach to any internal degree
of freedom of a sample. This was particularly used in the study
of glass transition, when relaxation time of processes becomes
slow as compared to the time scale of the measurement.

4.3. Configurational heat capacity

To the best of our knowledge, the notion of non-equilibrium
thermodynamic state due to the freezing of internal degree of
freedom (the chemical equilibrium being not reached) during the
glass transition was first due to Simon [67,68]. For a good repre-
sentation of the configurational heat capacity, let us paraphrase
Bernal [69], page 35: “The idea of a configurational specific heat
for liquids, i.e., of absorption of energy not in activating further
degrees of freedom but in changing potential energy, is necessary

to explain the observed greater specific heat of all simple (and
most other) liquids compared with that of the crystals and the
occurrence in certain cases, e.g. water, of specific heats greater
than 6k, which cannot be explained by any hypotheses depend-
ing on degrees of freedom only”. Also, close to the De Donder’s
approach, let us cite Davies and Jones presenting the ideas of
Simon in Ref. [70], page 375: “Simon pointed out that as a glass
is cooled through its transformation temperature the molecular
diffusion which is necessary to effect the appropriate change
in configuration is increasingly inhibited and finally becomes
practically impossible. Thus, the value of z will become fixed
somewhere near the transformation temperature and that part
of the specific heat corresponding to changes in potential energy
will be eliminated below this temperature. The ‘configurational’
contribution to any other property will similarly disappear. At
the same time the system ceases to be in true internal thermo-
dynamic equilibrium”. In this reference, z is equivalent to the
order parameter & in the present paper. This notion of config-
urational heat capacity was very well explained by Kauzmann
[71] (section B called “Equilibrium and dynamic mechanisms
in the glass transformation™). For a general approach of non-
equilibrium thermodynamic coefficients and particularly heat
capacity by means of the affinity of De Donder, see also the
book of Frenkel [72], and Prigogine and Defay [59,62]. Now, we
envision the notion of non-equilibrium heat capacity in details
with Prigogine and Defay.

4.4. Configurational heat capacity of Prigogine and Defay

4.4.1. Non-equilibrium heat capacity

Prigogine and Defay pushed further the reasoning of De Don-
der. It is indeed possible to derive a general formula of the
heat capacity during a non-equilibrium calorimetric experiment.
Indeed, for an irreversible calorimetric experiment, & has no time
to reach its equilibrium value &¢q, because of the non-zero value
of the kinetic relaxation time constant z, of the transformation.
In this case, the variation of the affinity is different from zero
(Eq. (24)) and

d¢ « dA

o _Z_ 34
dr — g BdT (34)
Replacing this expression in the fundamental Eq. (28) yields:
oH o dA
comcie ) [1- 20
which can be more explicitly written as the following:
C o,y LOH/®)®  AOH/O)r  9H[3)y dA
mes = 8T T9G0Ed), | T 02G/EY),  92GJ0E2), AT
(36)

The formula (36), derived in 1946 by Prigogine and Defay (Eq.
(26.84) page 121 of Ref. [62]) is the general formula of the mea-
sured apparent heat capacity during an irreversible calorimetric
experiment. It is a fundamental equation in the field of dynamic
calorimetry. It may be applied near and far from equilibrium.
The three last terms of the right hand-side of Eq. (36) constitute
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the configurational heat capacity of Prigogine and Defay. These
three terms take into account the equilibrium or non-equilibrium
behavior of the degree of advance of any internal degree of free-
dom inside the sample.

If the heat rate supplied to the sample is very large, then
it is possible that the degree of advance of the transformation
does not change during the time interval Az It is, for a given
value of the step AT, the largest irreversible experiment. The
internal degree of freedom represented by the degree of advance
&, is completely frozen. In this case, the total differential of the
affinity (24) becomes:

dA

— = 37
a7 = “ @37
and with (36) the measured heat capacity becomes:

Cmes = Cé (38)

Hence, for the largest irreversible experiment, the measured
apparent heat capacity is equal to the true heat capacity of the
system. With this approach, Ck is the heat capacity composed by
the infinitely fast degrees of freedom of the sample as compared
to the time scale Ar of the measurement. It is experimentally
observed in glass transitions because of the large value of the
kinetic relaxation times. To our point of view, it is for the same
reason that sometimes this effect is observed in ac-calorimetry
experiments when the frequency becomes large compared to the
kinetic relaxation time of the process under study [73].

For an intermediate irreversible calorimetric experiment, &
has an intermediate value between 0 and &eq. Hence, the mea-
sured apparent heat capacity has an intermediate value between
Ce (true heat capacity) and Crey (true heat capacity plus the
total contribution of the heat of reaction at equilibrium). In
ac-calorimetry measurements, this intermediary regime is fre-
quently observed [22,74,75].

4.4.2. Non-equilibrium thermodynamics close to

equilibrium

4.4.2.1. Assumptions of the linear response in thermodynamics.
There are three different regimes in thermodynamics. The first
is the regime of classical equilibrium thermodynamics, princi-
pally developed by Gibbs (see Ref. [44]) and largely spread in the
literature. The second is the regime of non-equilibrium thermo-
dynamics near equilibrium (linear regime). The thermodynamic
variables never move far from equilibrium, and they can be lin-
earized around their equilibrium values. Relaxations towards
equilibrium are simple exponential relaxations. The third is the
regime far from equilibrium governed by non-linear behaviors of
the variables. This regime was well described by Glansdorff and
Prigogine [66]. In this paper, we deal with the first and the second
regime. It is difficult to find precise criteria defining the linear
regime for irreversible calorimetric experiments. In TMDSC the
subject was well treated by lots of authors [29,76-81]. The qual-
itative criterion that we used here is, that during the finite time
interval Ar, the temperature increment AT is not so high that
even in the extreme irreversible case (A&=0 during Af), the
degree of advance will never be far from its equilibrium value.
In fact, the determination of the linearity range around the state

of equilibrium depends on the physico-chemical event under
study.

In this linear regime, three important assumptions can be
pointed out:

e De Donder and others have demonstrated that near equi-
librium there is a simple proportional relation between the
affinity and the rate of reaction [82-84]:

v=aA (39)

where a is a positive coefficient (the angular coefficient
defined by De Donder) which depends only on the physical
variables of the system. In our case a = a(T). The formula (39)
can be understood intuitively because close to the reversible
transformation the affinity and the reaction rate tend together
towards zero. More generally, in non-equilibrium thermody-
namics close to equilibrium, there is always a proportional
link between forces and fluxes present in the system (Onsager
relations). Let remark that in certain case, the proportional
relation holds even for high variations of the thermodynamic
forces. For example, the Fourier’s law remains valid even for
large AT. Anyway, Prigogine et al. showed experimentally
that this assumption is exact for a certain number of chemical
reactions [83].

e The second assumption is that, near equilibrium, the heat of
reaction and the second derivative of the free Gibbs energy
are close to their values at equilibrium;

0H\  9H\™ (40)

%)~ %),

?2G #2G\ %

8&2> = 8§2> (or B = Beq) (41)
T T

which is equivalent to neglect the second derivative of the
enthalpy and the third derivative of the free Gibbs’s energy
with respect to the degree of advance of the transformation.
This assumption is equivalent to average the variables under
interest (9H/9&)7 and 92 G/9£2)7) on the small considered tem-
perature interval AT around the equilibrium state defined by
Tqc and &gq. This is much easier to fulfill if these variables do
not vary a lot over the considered temperature interval.

e The third is certainly the hardest to justify. It is assumed that
the affinity is negligible as compared to the heat of reaction:

A< 3H> (Orr = g) 42)
€ )r

with the Berthelot—De Donder’s formula (26), we see that, for
a given heat of reaction, this inequality is easier to fulfil if the
absolute temperature is increased. Inversely, at low tempera-
ture the measurement of the heat of reaction (with calorimetry
for example) gives directly the affinity with a good approx-
imation. This assumption is the same that the well-known
approximation, A <« RT, in chemistry. However, from a pure
theoretical aspect, it is always possible to find an area close
to equilibrium where these three assumptions are fulfilled.
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4.4.2.2. Non-equilibrium heat capacity close to equilibrium.
From Eq. (28), if the heat of reaction is replaced by its equi-
librium value and if the rate of reaction takes its value from
(39), then the formula of the heat capacity measured during an
irreversible calorimetric experiment near equilibrium is written
as follows:

OH/3E) 7 aA

Crnes = C
mes = C& + 4 dr

(43)
This equation was first derived by Prigogine and Defay [59] (Eq.
(19.19) page 307).

4.4.2.3. Entropy production close to equilibrium. At this level,
we emphasize that in Eq. (43), the term of entropy production
was already neglected. Indeed, from the Berthelot-De Donder’s
formula the assumption, which consists to take the equilibrium
value of the heat of reaction near equilibrium, is equivalent to the
third assumption. Consequently, the third term of the right hand-
side of Eq. (33) (“uncompensated heat capacity of Clausius”)
was neglected as compared to the second term. In other words,
the entropy production is neglected near equilibrium. This can
be also demonstrated in an other way: near equilibrium, the rate
of reaction is proportional to the affinity (first order in A). Hence,
from (19) the entropy production is written as follows:
a

o = ?AZ (44)

which is of second order in A and negligible.

4.4.2.4. Total differential of the affinity close to equilibrium.
Taking into account the three last assumptions, the differential
equation governing the affinity when the thermodynamic trans-
formation occurs near equilibrium is obtained from Eq. (24):

dA dr
E =+ ,Beq aA = aeqa (45)
We define the relaxation time constant of the affinity by:
1
T = (46)
,Beq a

It represents the kinetic time constant of the irreversible process
occurring during a non-equilibrium thermodynamic transforma-
tion. This relaxation time is positive (Beq >0 and a>0). Near
equilibrium, the linear relation of Onsager gives:
A

=L— 47
v=L (47)
where L is the Onsager’s phenomenological coefficient. With
this linear relation, the relaxation time constant of the affinity
can be written (see Refs. [85,86]):

T

"= wopaL (“8)

Thus, near equilibrium the fundamental differential equation
governing the affinity is of first order with a forcing term con-

taining the temperature rate:

A
T(:Tt + A = Toeq (:T]; (49)
Hence, knowing the temperature rate it is possible to derive
the time dependent law of the affinity just by means of a sim-
ple first order differential equation. This fact is interesting for
calorimetrists who know and control in general the temperature
program and temperature rate.

This differential equation was also derived by Prigogine and
Defay [59]. The two authors have seen very well that, know-
ing the time dependant affinity, it is possible to derive the time
dependant heat capacity from Eq. (43). In 1998, Baur and Wun-
derlich used nearly the same approach for directly derived the
so-called formula of the complex heat capacity during TMDSC
experiments [87,88]. Before entering in the details of this origi-
nal approach, let make an interesting remark. If we integrate the
total differential of the affinity (24) on the time interval A, then
we obtain (assuming that the initial state at =0 is an equilibrium
state):

A(A1) = aeq AT — Beq A& (50)
with
A& = E(Ar) — eq(0) (51)

If the transformation is an equilibrium transformation then
A(Ar)=0and

AT = P A&eq (52)
Qeq

with

Afeq = Eeq(Ar) — £eq(0) (53)

Assuming that AT'is constant in the different types of experiment
(only At is changed), then (50) becomes:

A(At) = BeqAeq — PeqAE = Peq(eq(At) — E(A(2)) (54)

Closeto equilibrium, the affinity is proportional to the distance of
the degree of advance of the transformation from its equilibrium
value. If & <&gq, then the affinity is positive, and if &£ > &g, then
the affinity is negative. If the affinity is positive then the rate of
reaction is positive because of the fundamental inequality of De
Donder (16). Thus, the degree of advance of the transformation
increases. If the affinity is negative then the rate of reaction is
negative. Thus, the degree of advance of the reaction decreases.
After a perturbation, the transformation always drives the system
towards equilibrium. This is the consequence of the principle of
Le Chatelier—Braun. Eq. (54) was directly used by Claudy and
Vignon who have derived the distance of the degree of advance
of the transformation from the equilibrium, A& =& — &qq, in the
time interval Arin order to explain the complex heat capacity in
TMDSC [89]. In their article, the coefficient k(7) is equal to the
inverse of the kinetic relaxation time 7 used in this paper. Eq.
(54) can be rewritten in the following form:

Seq — &

at

A= (55)
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and with Eq. (39), the rate of reaction becomes simply:

N k. (56)

T
5. Generalized calorimetric susceptibility

In two recent publications dating from 1998, Baur and
Wunderlich used the previous thermodynamic approach of De
Donder—Prigogine-Defay in order to directly derive the for-
mula of the complex heat capacity [87,88]. In their article, they
used this thermodynamic approach with the purpose of seeing
whether the notion of complex heat capacity is meaningful in
TMDSC measurements. On our point of view, we think that
this approach is original and however can be a complemen-
tary manner in order to have access to the physical meaning of
the frequency dependent complex heat capacity as compared to
the usual linear response theory approach. Other scientists have
already used macroscopic non-equilibrium thermodynamics in
calorimetry, generally but not necessarily in the calorimetric
study of glass transitions [24,89-93]. Before enter in the details
of the derivation of Baur and Wunderlich, we would like to show
with the help of few references that the notion of frequency
dependent complex heat capacity has been already used a long
time ago, although it was not particularly connected to the field
of calorimetry.

5.1. Ultrasonic absorption

To our knowledge, the first time that the notion of frequency
dependent complex heat capacity appeared in the literature, was
at the beginning of the 20th century in scientific works con-
cerning the propagation of sound in different mediums. A very
detailed review on the subject has been written by Alig [94]. In
the propagation of sound, the oscillation of acoustic pressure
is coupled with an adiabatic temperature oscillation. Relax-
ation phenomena inside the material provide a dispersion and
an absorption of the sound wave. This effect is explained by
the existence of a complex heat capacity for which the imagi-
nary part, linked to the absorption, reflects a problem of energy
transfer between internal and external degrees of freedom. In
an interesting review on “Supersonic Phenomena” written by
Richards in 1939, the notion of frequency dependent heat capac-
ity isalso treated [95]. In this article, the distinction between low
frequency heat capacity, Co, and high frequencies heat capac-
ity, C is already made. Considering only a single transition
0 <> 1 between two degrees of freedom, Richards used a reason-
ing taking into account a principle of microscopic reversibility
(or a principle of detailed balance), considering the probabili-
ties of transition between the two states, in order to derive the
formula (1) of the frequency dependent complex heat capacity.
Jeong used the same type of reasoning in his review in dynamic
calorimetry to derive the formula (1) with the help of two differ-
ent temperatures (one is fictive) for characterizing the internal
(slow) degrees of freedom and the external (fast) degrees of free-
dom (phonon bath) [28]. In his review, Richards said that the first
indication that dispersion due to heat capacity could be expected

was due to Jeans [96] (although we have not found that in the
French edition book dating from 1925).

5.2. Generalized calorimetric susceptibility of Davies

It was in 1956 in a publication written by Davies, that for the
first time the notion of complex thermodynamic quantities and
more specifically complex heat capacity was derived directly
from the thermodynamics of De Donder, Prigogine and Defay
[97]. This interesting paper begins with a clear historical intro-
duction of non-equilibrium thermodynamics. Lots of references
on the subject can be inferred from this paper. The tight link
existing between regression in time of microscopic fluctuations
and non-equilibrium relaxations of macroscopic thermodynamic
variables are well discussed. From this point of view, we can
say that perturbing a system by modulating its temperature is
equivalent to provoke macroscopic temperature fluctuations of
the system. The part Il of this paper entitled “Incomplete system
under uniform conditions: relaxation” is a presentation of the De
Donder’s approach of chemical reactions. Then, with the help
of an order parameter z (equivalent to & in our manuscript), the
general approach of static and dynamic thermodynamic coeffi-
cients such as C,, (heat capacity at constant pressure), « (thermal
expansion coefficient at constant pressure) and « (modulus of
compressibility at constant temperature) was considered. The
names of Frenkel, Prigogine, Defay and Meixner were often
cited. Davies also made the distinction between frozen coeffi-
cients (such as aV/aT)p, ;) in which the reaction is not allowed
to proceed with a fixed value of the order parameter, and equi-
librium coefficients (such as aV/oT),, 4)) which are evaluated at
constant affinity. Next, Davies used a very general formalism
of this approach with undefined order parameters and matrix
treatments. In this part, Davies defined dynamic thermodynamic
coefficient as follows: “It is usually specified by means of an
impedance function connecting the Fourier transforms of X and
x” (X and x being thermodynamic conjugate variables). When
O (or better S) and T are taken as thermodynamic conjugate
variables, this dynamic coefficient is the so-called complex heat
capacity. He also envisaged the case of a continuous distribution
of order variables and relaxation times. After, Davies applied this
approach to the treatment of glass transition where he assumed
that a single ordering parameter is sufficient to define the tran-
sition.

5.3. Generalized calorimetric susceptibility of Eigen and
De Mayer

In the volume VIII, part I, of the Technique of Organic
Chemistry, called “Investigation of Rates and Mechanisms of
Reactions”, Eigen and De Mayer wrote a very detailed paper on
theoretical and experimental techniques about chemical relax-
ation [98]. This paper could be of interest for calorimetrists
because the two authors envisaged with a lot of details the
methods consisting in perturbing the chemical equilibrium of a
system by means of temperature variations. Although calorime-
try was not explicitly mentioned in this paper, they reviewed the
so-called “temperature jump method” very used in chemistry
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and biology, which consists to perturb rapidly the temperature
of a system and to record a physical parameter (such as optical
absorption) without necessary measuring the heat resulting of
this perturbation. After giving the theoretical basis of relaxation
methods, Eigen and De Mayer investigated relations between
thermodynamics and relaxation times. Again the names of De
Donder, Meixner or Davies were extensively cited. Then, an
interesting development of relaxation based on stationary meth-
ods, but treated on a thermodynamic point of view, was given.
In the section called “entropy—temperature” they fund again
the De Donder’s formula of heat capacity measured at constant
affinity (see Eq. (29)). Next, in a section called “dynamic equa-
tions of state” taking into account a stationary perturbation of
the system around its equilibrium state, they derived explicitly
all the dynamic complex frequency dependent thermodynamic
variables, such as the coefficients of isothermal and adiabatic
compressibility and the complex specific heat at constant vol-
ume or pressure. These derivations were particularly applied to
chemical equilibrium, but as we have already mentioned, they
were more largely applied to any order parameter concerning
peculiar degrees of freedom within a sample having their own
thermodynamic relaxation times.

5.4. Generalized calorimetric susceptibility of Baur and
Wunderlich

In 1998, using macroscopic non-equilibrium thermodynam-
ics of De Donder, Prigogine and Defay, Baur and Wunderlich
derived for the first time in calorimetry (TMDSC) the well-
known formula of the complex heat capacity [87,88]. This treat-
ment is also described in the recent book of Wunderlich [99].
Before enter in the detail of this derivation, it is important to give
two precisions. Firstly, in the literature dealing with thermody-
namics applied to calorimetry, it is rather usual to encounter an
erroneous basic definition of the heat capacity. The mistake was
also made in the article of Eigen and De Mayer. The measured
heat capacity is generally wrongly defined as follows:

ds
Cp=T dT) ) (57)
Indeed, the exact definition is slightly different and given by the
following equation:

80 dH)
p

C, — (28))

S dT  dT
Eq. (57) is equivalent to (28") only at thermodynamic equilib-
rium or near thermodynamic equilibrium (A is neglected com-
pared to the value of the heat of reaction). This mistake has
no consequence for the derivation of the complex heat capac-
ity measured near equilibrium, because the entropy production
(negligible near equilibrium) is forgotten in this definition (see
discussion in Section 4.4.2.3). Indeed, the measured heat capac-
ity is only linked to the entropy exchanged (heat exchanged)
between the system and the surroundings:

deS ds diS

Cp=T— =T

ar ~ Tar Tar (58)

Secondly, the conclusion given by Baur and Wunderlich in their
paper seems to us very pessimistic. They concluded that the
notion of complex heat capacity is not very useful in TMDSC
measurements. Perhaps complex heat capacity is indeed not
adapted for TMDSC experiments because of parasitic effects,
which has to be taken into account, such as non-adiabaticity and
thermal contact between samples and sensors. These unwanted
effects can indeed induce other relaxation times and parasitic
frequency and imaginary components. On the other hand, this
notion can be very useful in ac-calorimetry measurements where
thermal equilibrium conditions (adiabaticity and homogeneity
of the temperature) are generally respected (with the use of adi-
abatic plateau) and in other dynamic methods as fast speed DSC
if the two last conditions are fulfilled [100-102]. To our point of
view, we think at contrary that the derivation made by Baur and
Wunderlich of the complex heat capacity is unusual and original
as compared to the linear response theory. Also, this approach
can provide a new regard in dynamic calorimetry field and can
give a better physical understanding of frequency dependent
complex heat capacity. To our point of view, the only restric-
tion concerning usefulness of the complex heat capacity is the
respect of linearity and stationarity criteria. In ac-calorimetry
these two conditions are easier to fulfill if the amplitude of the
temperature oscillation is small and the rate of the mean tem-
perature is low. In the next, we assume that thermal equilibrium
conditions, linearity and stationarity conditions are respected.
Let take the case of ac-calorimetry experiments. In the range
of working frequency defined by the two following inequalities:

1
Tint K — < Text (59)

which define the strict conditions of thermal equilibrium for the
heat capacity measurement, the temperature oscillation of the
sample is written;

with
Py

8T = 61

©= oo (61)
and

T

_r 62

0= (62)

@ is the phase lag of the modulated temperature as compared
to the input oscillating thermal ac-power Py cos(w?). tint is the
internal relaxation time of the temperature which takes into
account the thermal diffusivity within the sample and the thermal
interface conductance between the thermometer, the heater and
the sample. ey is the external relaxation time of the temperature
towards the thermal bath of temperature 7y. Let insist that tem-
perature oscillations occur around a mean temperature assumed
to be constant Tqc, which defines the equilibrium sate (Tyc, £eq)-
It is the stationary condition of the measurement. It occurs when
Tyc is maintained constant (measurement step by step wait-
ing for the equilibrium) or when it varies very slowly (slow
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ramp). Now, what happens when a physico-chemical transfor-
mation with a finite kinetic time constant arises? By means of
the linearity assumption, we assume that in the presence of a
physico-chemical transformation in the sample, the temperature
oscillates with the same frequency that when there is no transfor-
mation. Hence, the transformation modifies only the amplitude
and the phase of the oscillating temperature, which can be writ-
ten:

b/
Tac = (STaC COosS (a)t — E — K) (63)

where « isthe phase lag generated by this non-equilibrium effect.
The temperature rate is:

dT  dTx
dr — dr
The dc temperature or the mean temperature, Tqc, is obviously
not involved in the time derivative, d7/d.

At this level, the original idea of Baur and Wunderlich was to
exactly derive the differential equation driving £ from the total
differential of A (24) using the linear relation (39) betweenv = &
and A (the dot on the variable represents the time derivative).
This yields a non-linear second order differential equation in
the variable &, where the forcing term contains the temperature
rate (Eq. (19) of Ref. [88]). After a rather complex calculus, they
linearized the solution of this differential equation and with (64),
they found the expression of & in function of the affinity and the
other parameters of the equation (Eq. (23) of Ref. [88]).

More simply, starting with the help of the assumptions of

the linear regime, Eq. (49) driving A is simply written in the
oscillatory regime as the following:
T C:TI? + A = iwToeq Txc (65)
It is simply resolved taking into account all the assumptions
made close to equilibrium (all the temperature dependant vari-
ables are assumed to be constant around the equilibrium state
over the amplitude 8T5c):

iwToreq Tac
A= 1+iwt (66)
which is equivalent to the sus-cited Eq. (23) of the article of
Baur and Wunderlich. Consequently, in the case of modulated
temperature experiments, the affinity, which is the response of
an oscillating temperature, is also an oscillating function with
two components, one being in-phase and the other being out-of-
phase. The amplitude of each component depends on the value
of the ratio, wt, as compared to the unity.
Let more explicitly rewrite the affinity as follows:

A= 8H)eq Tac (Cl)T)Z . 8H) € Tac wT
o0& r Tae 1+ (w1)? % ) Tac 1 + (wr)?

When the irreversibility is very low, that is to say when ot « 1,
then:

(67)

OH\® T,
i > = (68)

A=1— T
T T4c

9

which tends to zero at the limit of the reversible experiment
(wt =0). When the irreversibility is maximum (arrested equilib-
rium), this is to say wt > 1 (at the limit wr — +00) then:

H\®T.
A= a) = (69)
35 T Tyc
The affinity can also be written in another way:
A = 8Aexp(ip) Tac (70)
where
(,()Taeq aeq
A = = (72)
Vit (@)? V1t 1/(wr)
and
1
¢ = arctg () (72)
wT
If wt =0 then ¢ =7/2 and if wt =+00 then ¢ =0. Finally:
dH\ Tac .
A= — exp(ig) (73)
3 )T Tyev/1 + 1/(wr)?

The phase difference between the affinity and the oscillating
temperature is ¢, which is equal to 7z/2 for the reversible experi-
mentand O for the maximal irreversible experiment. The oscillat-
ing affinity and temperature are represented with their respective
components in the Fresnel’s diagram of Fig. 3.

Now, as Baur and Wunderlich did, by means of Eq. (70)
for example, the formula of the frequency dependent complex
heat capacity can be easily derived from Eq. (43) of the non-

a1l &)L,

PK T [1+(w7)*] dT:
K* +(@C)’

atr

FoC

K1+(a)C‘)3\
\

(wr)’

T[4+ (w7)"]

HI EY|T

ac

c

A 4 (D=K/2

Fig. 3. This figure is a Fresnel’s diagram in which three time dependent oscil-
lating vectors are represented. The x-axis is given by the phase of the oscillating
input thermal power taken by convention as the phase reference (¢ =0). The
y-axis is given by the phase ¢ =n/2. ¢ is the phase of the oscillating temper-
ature. The first vector is the oscillating temperature with its two components
(their values are provided) projected on the x- and y-axis. The second vector is
the vector time derivative of the oscillating temperature with a phase advance
of /2. The firth vector is the oscillating affinity with its two components (their
values are provided) projected on the new axis represented by the two preceding
vectors.
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equilibrium heat capacity near equilibrium:

exp(—i
Cmes = Ce + M (74)
V1+ (wr)
with
b/
Y= 5 ¢ = arctg(wr) (75)
This formula can be more explicitly rewritten:
Neq

Cmes = C . 76

mes & + 1+ iwt ( )

Knowing that Cz = Cimes (w = +00) and Crey = Cmes (0 =0), (76)
is exactly the formula (1) of the complex heat capacity.

Therefore, by means of the affinity, from the formalism of De
Donder—Prigogine-Defay on irreversible thermodynamics, the
well-known formula of the complex heat capacity was directly
derived from the two principles of thermodynamics. The fre-
quency dependent complex heat capacity is thus the consequence
of irreversible thermodynamics near equilibrium in the linear
regime. C' and C” are due to the generation of an oscillating
affinity with in-phase and out-of phase components during non-
equilibrium physico-chemical transformations. This is due to
the non-zero value of the ratio, wz.

Let now point out one important remark. As we have already
mentioned in the foregoing, the entropy production (to be pre-
cise the thermal power of irreversibility P;) was neglected near
equilibrium. Consequently, the generalized calorimetric suscep-
tibility is not directly the consequence of the thermal power due
to the internal entropy production within the sample when it
is perturbed near equilibrium. In other words, surprisingly, the
uncompensated heat of Clausius does not disturb the measured
heat capacity during dynamic calorimetric experiments, which
was not obvious beforehand. It is certainly not the case when the
calorimetric experiment goes outside the linear regime far from
equilibrium.

Then, Baur and Wunderlich discuss the influence of the two
following extreme cases on C’ and C”. Firstly, at the limit of the
reversible experiment (internal equilibrium, wt — 0):

C/ - Cre\/ and CN == O (77)

At the limit of the maximum irreversible experiment (arrested
equilibrium, wt — +00):

C'=C: and C"=0 (78)
When ot is of the order of the unity, C” is a maximum and
C’ is contained between the two previous extreme cases (inter-
mediary regime). Hence, thermodynamic irreversibility of a
peculiar degree of freedom inside the sample is the explana-
tion of the frequency dependent heat capacity effect measured
in ac-calorimetry experiments close to equilibrium [22,73-75].

Finally, Baur and Wunderlich derived for the first time, in
the general case, the so-called formula of the entropy produced
by an irreversible process during non-equilibrium calorimetric
measurements. We remember that the affinity oscillates with a
phase advance of ¢ compared to the oscillating temperature.

Hence, the affinity is a real number, which is explicitly written
without complex notations:

A = 5ASTyc COS ((ut — g — ¢>) (79)

With (20), (44) and (71) the power of irreversibility is written as
the following:

ST2, ) (

T
Tootl + /(@] &\ m 2 7T 4) @0

P = neq 2

Integrating this expression over one period of the oscillating
temperature, the time-averaged irreversibility power is:

- T2 T2
P = ﬂneq% = g€ (81)
Tac[1 + (w7)7] Te
The instantaneous irreversible entropy production is:
oj = cos’ (ot — - — Kk + ) 82
PRI T 1 ()] 2 ¢ 82)

Over one period of the oscillating temperature, the time-
averaged irreversible entropy production (or simply mean
entropy production) is given by:

—Xcr (83)

which is the formula found by Baur and Wunderlich, but in their
paper the mean entropy production is taken over half-period
of the oscillation. This expression was approximately already
derived in the literature, but only in a peculiar case, as we shall
see inanext section. Knowing that the modulus of the oscillating
temperature is written:

Py

6Tge = ——— 84
o ®|Cres| (84)

(83) is written as follows:

_ p; "

O = 1 (G (85)
@?Td. |Crmes|

The amount of energy involved per half-period of the oscillation
is:
T/4 PO )
3Q0 = / Pocos(wt)dt =2—, (Py/w perquart-period)
—T/4 w
(86)

Thus, the mean entropy production, per half-period of the oscil-
lation, of the irreversible processes occurring within the sample
during non-equilibrium calorimetric experiments is:

JSQ%C”ZMQ%.m( 1 ) @7
4 T2 |Cuesl> 4 TZ Cres

Oj

In other words, this time averaged entropy production is directly
proportional to the imaginary part of the complex impedance of
the measurement (see also Ref. [30]). For instance, we can con-
clude that if there is a dissipation of heat, or heat loss, in dynamic
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oscillating calorimetric experiments, it should be more physi-
cally linked to the imaginary part of the dynamic calorimetric
impedance of the measurement and not simply to the imaginary
part of the complex heat capacity. However, both the imaginary
part of the complex heat capacity and the complex impedance
vanish at equilibrium and at completely frozen equilibrium. Our
point of view of the question will be given in the next section.

6. Generality of the non-equilibrium thermodynamics
approach in dynamic calorimetry

In this section we would like to show that the previous
approach can be regarded on a very general manner in dynamic
calorimetry. Of course, the previous model is simplified. Firstly,
it can be used only near thermodynamic equilibrium. Certainly,
even with low temperature rates, lots of transitions should occur
in the non-linear regime far from equilibrium. In this case, the
affinity and the entropy production cannot be neglected in the
model. Also, what happens in real first-order transition when
heat capacity curves become very sharp? Secondly, to con-
sider the freezing of one peculiar degree of freedom with one
relaxation time constant can just be applied to simple chemical
reaction. Nevertheless, in this case the model can be complicated
considering, as Davies did, a distribution of relaxation time con-
stant or multiple time constants [97]. In this section, firstly we
will show that under the conditions previously mentioned, this
approach can be usefully applied to all dynamic calorimetric
experiments. The case of simplified classical DSC is treated.
Some comments will be given for the study of the glass transi-
tion via this model. Secondly, we would like to show that the
derivation of the so-called formula of the entropy production
(Eq. (83)), generally derived in the literature, is only a pecu-
liar case of the derivation made by Baur and Wunderlich in the
general case of irreversible processes. Indeed, this is simply the
irreversible process due to thermal relaxation towards the heat
bath. It can be also obtained from the irreversible process due
to diffusion of heat inside the sample as we will see. In the last
part, we will give our point of view on imaginary part of complex
heat capacity and heat dissipation in heat capacity measurements
during non-equilibrium physico-chemical transformations.

6.1. Macroscopic non-equilibrium thermodynamics applied
to dynamic DSC

Let be a DSC experiment with a constant temperature rate:
dr
v constant = y (88)

As already mentioned, the case of a pure isothermal first-order
phase transition (y =0) is not envisaged here. We consider at
first that the experiment is realized close to equilibrium, which
means that the temperature ramp is not too fast, but rather fast
to unbalance the system. Let assume that in the time interval
At, the temperature step is AT. Then we consider that this tem-
perature variation occurs around a constant mean temperature
T4c. Thus, for 0<z< At, we have Tqc — ATI2<T<T4c + ATI2.
We also assume that T and aeq are constant around Ty and also

that they have very small and smooth variations during the entire
calorimetric experiment.

For 0 <¢< At, the general solution of the differential equation
governing the affinity (49) is:

A = Apexp (j) + Taeqy {1 —exp (j)} (89)

where Ay is the initial value of the affinity at the time =0.
We shall now envisage three different situations:

(i) /a1
In this case, for a large majority of times included into
the interval 0<r< At, the relaxation time t is negligible.
Thus:

A = taeq ¥ (90)

On this time interval, the measured heat capacity is given
by the formula (43):

Cres = Crev (91)

This is the reversible case.
(i) ©/Aar>1
For every time in the interval 0<r< Ay, the affinity is
with (49):

A=A (92)
Hence, with (43):
A
Cmes = C¢ + neq 0 (93)
Taeq Y

Itis the maximum possible irreversible experiment. We see
that Cmes = Ce only if the initial state is a state of equilibrium
(Ag=0).
(iii) t/Ar=~1
In this case, T and At are of the same order. Including
the general expression of the affinity (89) in the formula
(43), it gives on the time interval 0 <7< Ar:

Ao —t
Crmes = Cg + neq |:l + ( — l) exp (>:|
Taeq Y T
A —t
= Crev — Teq {(1 - 0 > EXp ()} (94)
TQeq VY T

This is the general formula of the measured heat capacity
in a DSC experiment realized near equilibrium during non-
equilibrium thermal events. The two extreme cases (i) and
(ii) can be obtained from this equation.

For the following time intervals, the temperature ramp has
brought the system to another mean temperature T4c. Now,
and oeq have new values (t(Tqc) and oeq(7qc)), but with the
assumption made before, we consider that they have not varied
a lot. We can thus envisaged the resolution of the differential
equation of the affinity in a same time interval 0 << At but
around a new temperature interval Tyc — AT/2<T<Tyc + ATI2.
The three previous cases are also envisaged but with a new initial
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value of the affinity. This new initial affinity value depends on
the following variables:

A6 = AE)(A()’ T(TdC - AT)v O‘eq(Tdc - AT)v J/) (95)

We may remark that in the extreme case (i), the affinity
depends only on the temperature dependent values of T and aeq.
Itis anyway always equal to taeq y. Therefore, in the transition
area (or thermal event area) during the DSC experiment, the heat
capacity has always its equilibrium value (reversible case). On
the other hand, if we consider an experiment taken in the inter-
mediate case (iii), or in the maximum irreversible case (ii), the
affinity depends on the value of Ag which changes at each new
time interval Az. As Ag changes in time (it follows simply Eq.
(89)), it is thus possible that before the end of the experiment it
will reach the value taeq y (if Taeq has not varied a lot). Ifitis the
case, we find again the reversible case and Cpes = Crey. This sit-
uation can happen when the time interval of the transformation
area is larger than t:

AT
Attrans = )t/rans > (96)

where Atyans IS the time duration of the thermal event area, and
ATians 1S the temperature interval of this transformation area.

In DSC experiment it seems paradoxical that the reversible
case may be reached when the affinity becomes constant. Indeed,
the system is nevertheless in a non-equilibrium state. In fact, in
this case a stationary non-equilibrium state is reached and the
affinity is constant along the time. Indeed, when the affinity
becomes constant, there is no new affinity variation (dA = 0) and
with (24), (34) or (35), we find again the reversible case.

Let now consider a DSC experiment with a decreasing tem-
perature ramp, not too fast to preserve internal thermal equilib-
rium but fast enough to unbalance the system. If the temperature
of a first order transition (liquid/solid) is crossed, bringing the
system in a non-equilibrium state, the measured heat capacity
will follow Eq. (94). The system tries to reach its thermodynamic
equilibrium state, the liquid is transformed in solid, and the time
taken by the system to do that is few t. After a certain time
interval, the system can transform all the liquid into solid. But
let imagine that before the system may reach its state of equilib-
rium, its temperature attains such a value for which the relaxation
time t takes a very high value. The affinity cannot reach the value
Taeq y- The system can never reach its thermodynamic equilib-
rium state. It is frozen in a vitreous state defined by Eq. (93).
In this case, the high variation of 7 with temperature causes the
freezing-in of the system. The ratio t/ At becomes so high that the
system is arrested in a meta-stable state. This last discussion is
not very new. Since a long time ago the glass transition has been
seen more as a “frozen first-order transition” than a new type
of thermodynamic transition. However, these last developments
in dynamic DSC by means of the macroscopic non-equilibrium
thermodynamic approach of De Donder-Prigogine—Defay can
be an interesting starting point. For more information on a non-
equilibrium thermodynamic approach of the glass transition by
means of the heat capacity measurements, see the interesting
following Refs. [103-107]. The irreversible thermodynamics

approach is also used for the study of the glass transition by
means of the hole theory [108-110].

6.2. Averaged entropy production over one period of the
temperature cycle

In Refs. [28,30,92] sus-cited, Eq. (83) (or a close expres-
sion) of the entropy production averaged over one period of
the temperature oscillation is always derived from the following
integral:

72 ¢
oi = [40) dt 97)
—172 T(?)

where T in the integral limits is the period of the modulated
temperature. Indeed, from this equation, taking 7(z) = Tqc + Tac,
knowing that Q(r) = Py (1 4 cos(wtr)) and keeping only the
term of the second order in the entropy, Eq. (83) can be easily
derived (see Ref. [30]). In these three different publications, the
authors explain the existence of the imaginary part of the com-
plex heat capacity as the consequence of the entropy exchanged
by the system with the heat bath for one period of the oscil-
lation. Hohne has emitted strong doubts about the validity of
this reasoning [33]. He proposed to use rather irreversible ther-
modynamics to resolve the problem. In fact the formula (83) is
valid, but we agree with Héhne that in this case the derivation
of this formula have nothing to do with generalized calorimet-
ric susceptibility given by Eq. (1). In fact, in this case, where
TMDSC method is treated, the entropy production is simply
due to the non-equilibrium behavior of the oscillating temper-
ature of the sample as compared to the temperature of the heat
bath and indeed, it may have an entropy exchange over one
period of the cycle between the sample and the bath. This entropy
results on the non-adiabatic behavior of the TMDSC method. In
TMDSC, the measurement being non-adiabatic, the system can-
not be considered as isolated, and the heat bath has to be taken
into account in the balance of the entropy produced. In other
words, the calculated averaged entropy production is only due
to the irreversible effect of the external non-equilibrium behav-
ior of the temperature of the system as compared to the bath. In
ac-calorimetry, the situation is different because the condition
of adiabaticity is generally respected. Thus, the only possible
entropy exchanged between the system and the heat bath is the
constant heat flow, which maintains constant the mean temper-
ature of the sample (first order term of the entropy in (97)).
There is no entropy exchange due to the oscillating tempera-
ture between the sample and the heat bath. The sample alone
has to be taking into account in the balance of the entropy pro-
duced. But, let imagine that the second condition of validity of
ac-calorimetry measurements (internal thermal equilibrium) is
not fulfilled. In this case, a heat diffusion effect occurs due to the
oscillating temperature of the sample. The generalized De Don-
der’s approach is then applied as follows. The thermodynamic
driving force (generalized affinity) in presence of a temperature
gradient is:

A=n (;) (98)
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The generated flux is simply the heat flow propagating through
the sample:
) do
= == 99
v=00)= (99)
For a temperature oscillation of amplitude 875 around Ty, the
driving force is written:

1 1 1 Tac
Al )= R
(T) Tae Toc+ Tac szc
where the amplitude of the temperature modulation Ty is
neglected as compared to Tqc (linear regime). Hence, the aver-
aged entropy production over one period of the temperature
modulation due to the irreversible heat diffusion effect, which
is directly given by the integral of the product of the force with
the induced flux, is given by:

(100)

T/2 . T.
oi = O(r)—5 dr
/2

(101)
Tdc

whichis equivalentto the second order term of (97) with the same
consequence as above. Nevertheless, the two last examples of
irreversible thermal effects are peculiar cases of irreversible pro-
cesses and have nothing to do with frequency dependent complex
heat capacity. As Hohne well saw and Baur and Wunderlich did,
the exact way to obtain (83), in the case of generalized calori-
metric susceptibility, is the developments made in Ref. [88] or
in a closed way in the present paper.

6.3. Physical meaning of the imaginary part of the
generalized calorimetric susceptibility

The time-averaged entropy production over one period of
the temperature oscillation in modulated non-equilibrium ac-
calorimetry experiments is directly proportional to the imaginary
part of the generalized calorimetric impedance of the measure-
ment. Only this imaginary part and not the imaginary part of
the frequency dependent complex heat capacity could have the
physical meaning of heat dissipation. Heat dissipation is gen-
erally linked to a lost of work. In dynamic calorimetry, under
the assumptions made before, since no work is involved in the
experiment, where is passed the “bad heat”, knowing that the
system returns exactly in the same state and that heat cannot
have time to relax towards the heat bath (adiabaticity condition)
after one period of the temperature oscillation. Once again, we
try to give a beginning of explanation referring us to the work of
Prigogine. In an article published in 1953, Prigogine and Mazur
envisaged a general extension of thermodynamics of irreversible
processes applied to systems with internal degrees of freedom
[111]. They defined an internal space of configuration of the
system, where each degree of freedom is represented by a con-
tinuing variable representing a coordinate of the internal space.
Applying the non-equilibrium thermodynamics of continuous
systems, they envisaged diffusion along the internal coordinate,
which participates to the entropy production. Hence, by analogy
with heat diffusion where heat is lost along the spatial direction
defined by the hot and the cold points, in this representation, heat

is lost by diffusion along the coordinate defined by the degree of
freedom inside the internal space of configurations. Hence, for
example in this model, chemical reactions can be regarded as
diffusion along an internal coordinate (degree of advance of the
reaction) between two stable constituents separated by a poten-
tial gap. During this diffusion effect, heat is lost (dissipated or
absorbed), entropy is produced, and the mean entropy produc-
tion per cycle of the oscillation is proportional to the imaginary
part of the inverse of the complex heat capacity.

7. Conclusions

In this paper, dynamic calorimetric experiments have been
envisaged by means of thermodynamics of irreversible pro-
cesses initiated by De Donder in the 1920s of the 20th century.
On an historical basis, we have shown that macroscopic non-
equilibrium thermodynamics can be helpful for the interpreta-
tion of dynamic calorimetric measurements. After having pro-
vided definitions of dynamic calorimetry and macroscopic non-
equilibrium thermodynamics, the notion of irreversible calori-
metric experiments has been envisaged on a qualitative way. A
focus has been made on the fact that irreversibility in calori-
metric experiments is not an absolute notion, but it depends on
the time scale of the measurements. More precisely, the ratio
of the characteristic relaxation time of the event under study
with the time scale of the measurement defines the strength of
the thermodynamic irreversibility. The link between kinetic and
non-equilibrium thermodynamics becomes clear. The time scale
of the measurement is the time interval over which the perturb-
ing parameter brings the system in a state of non-equilibrium
around the stationary equilibrium state.

Next, quantitative macroscopic non-equilibrium thermody-
namics of De Donder and the members of his school have been
envisaged on a calorimetric point of view. Derivations of the
well-known and less-known formulas of heat capacities mea-
sured during equilibrium and non-equilibrium physico-chemical
transformations have been given. Some assumptions such as
thermal equilibrium, constancy of the pressure, mechanical equi-
librium, which can be with attention verified in lots of calorimet-
ric experiments, have been considered. Assumptions of station-
arity and linearity have been implicitly made when the thermal
power provided to (or released from) the sample by the experi-
mentalist is low enough to provide a sufficiently low temperature
rate. In this case, the rate of the thermodynamic transformation
is proportional to the generalized affinity. Near equilibrium, in
the linear regime, the affinity can be considered to be negligible
in relation to the heat of the transformation. Therefore, it follows
a simple first order differential equation where the forcing term
contains the temperature rate. This state function characterizes
the force of an irreversible process, which tends to bring back the
system to a state of equilibrium. Because of the intrinsic physical
kinetics of the sample, this operation takes a certain amount of
time. This Kkinetic time constant is just the relaxation time con-
stant of the affinity. During this step, thermal power is produced
within the sample, which is proportional to the affinity. The
non-equilibrium measured heat capacity depends then directly
on the ratio of the affinity with the temperature rate. Knowing
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the time dependant affinity, the time dependant heat capacity is
found. Atthis level, the thermal power due to the positive entropy
produced by irreversible processes occurring inside the sample
has been neglected. Indeed, this thermal power is of the second
order in the affinity. As a consequence, the apparent heat capac-
ity measured by the experimentalist, which is the ratio of the
heat exchanged between the sample and the surroundings to the
temperature rate, is the sum of the true heat capacity of the sam-
ple plus a term related to the heat of the transformation whose
value depends on the force of the irreversibility. This added
term decreases when the force of the irreversibility increases.
This is the well-known decrease effect in apparent heat capac-
ity measured during dynamic calorimetric experiments. With
this last approach, perturbing now the system with an harmonic
temperature oscillation, from the work of different authors dur-
ing the last century, particularly from the recent work of Baur
and Wunderlich, the generalized calorimetric susceptibility or
frequency dependent complex heat capacity has been directly
derived. Hence, for the first time a direct connection has been
established between the two fundamental principles of thermo-
dynamic and the frequency dependent complex heat capacity.
This approach, slightly different than the linear response theory
approach (obviously equivalent in its foundations), can give a
better physical meaning of the frequency dependent complex
heat capacity and its imaginary part. To our point of view, we
can now affirm the following assertions:

e Frequency dependent complex heat capacity is the con-
sequence of irreversible physico-chemical transformations
occurring in the linear regime when the temperature of a sam-
ple follows a harmonic oscillation. During this irreversible
process, a thermal power proportional to the affinity is pro-
duced within the sample. It is the cause of the complex heat
capacity and thus, the cause of C" and C”. The thermal power
due to the entropy produced during this irreversible process
(“uncompensated heat capacity of Clausius”) is negligible
near equilibrium and does not perturb the heat capacity mea-
surement. In other words, frequency dependent complex heat
capacity is due to the slow kinetic of an order parameter char-
acterizing a peculiar internal degree of freedom of the sample
when the temperature is harmonically varied.

o Real part of the frequency dependent complex heat capacity is
related to the freezing-in of an order parameter characterizing
apeculiar internal degree of freedom of the sample. This effect
depends on the ratio of the kinetic relaxation time constant of
the degree of freedom as compared to the time scale of the
perturbation.

e Imaginary part of the frequency dependent complex heat
capacity has no particular physical meaning. Nevertheless, the
entropy produced during the irreversible process, averaged
over the time scale of the measurement, is directly propor-
tional to the imaginary part of the complex impedance of the
measurement, which is the imaginary part of the inverse of
the complex measured heat capacity. Also, the imaginary part
of the complex impedance is equal to zero at zero-frequency
(reversible experiment) and equal to zero at infinite frequency
(irreversibility maximum). The imaginary part of the complex

heat capacity has the same behavior, and we can conclude that
it may also be a representation of heat dissipation or heat lost
during the experiment.

By analogy with heat dissipation during thermal diffusion
processes, where heat is absorbed along a spatial axis, we
claim that during irreversible calorimetric experiments, a certain
amount of heat is lost along the path over a peculiar virtual axis
represented by the internal order parameter (degree of advance
of the reaction in the peculiar case of chemical reactions) repre-
senting a certain internal degree of freedom (the advance of the
reaction in the peculiar case of chemical reactions). This view
can be applied to any irreversible experiments. For example in
dielectric relaxations, the internal parameter may be the angle
between the electric field and the polarization vector response.

The generality of this previous approach has been demon-
strated. Although thermodynamics of irreversible processes due
to chemical reactions has been first considered by De Don-
der, it can concern all physico-chemical transformations or
relaxation phenomena occurring out-of-equilibrium (first order
phase transition, glass transition, relaxation phenomena, etc.)
that are induced by temperature and characterized by a state
variable (internal order parameter) characterizing a certain inter-
nal degree of freedom of a sample. On a general manner, this
approach has also been applied to dynamic DSC experiments,
assuming that thermodynamic internal thermal equilibrium is
reached. In this case, a beginning of explanation of the exper-
imentally measured heat capacity during glass transitions has
been envisaged. A special focus has been done on the link
existing between imaginary part of the inverse of the complex
heat capacity and the finite amount of entropy produced during
non-equilibrium temperature modulated heat capacity measure-
ments. The notion of entropy produced during one period of the
oscillation in temperature modulated calorimetric experiments
has been clarified.

In summary, we can conclude that the notion of frequency
dependent complex heat capacity must be very useful in ac-
calorimetry experiments for the study of lots of type of transi-
tions and thermal phenomena.
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