
A

t
a
t
a
fi
©

K
c

1

s
i
m
d
i
v
F
n
s
P
e
2
t
t
t
s
u
a

0
d

Thermochimica Acta 461 (2007) 122–136

Non-equilibrium heat capacity of polytetrafluoroethylene
at room temperature

J.-L. Garden ∗, J. Richard, H. Guillou, O. Bourgeois
Institut Néel, CNRS et Université Joseph Fourier, BP 166, 38042 Grenoble Cedex 9, France

Available online 24 March 2007

bstract

Polytetrafluoroethylene can be considered as a model for calorimetric studies of complex systems with thermodynamics transitions at ambient
emperature. This polymer exhibits two phase transitions of different nature at 292 K and 303 K. We show that sensitive ac-calorimetry measurements
llow us to study the thermodynamic behaviour of polytetrafluoroethylene when it is brought out of thermodynamic equilibrium. Thanks to the

hermal modelization of our calorimetric device, the frequency-dependent complex heat capacity of this polymer is extracted. The temperature
nd frequency variations of the real and imaginary parts of the complex heat capacity are obtained when polytetrafluoroethylene undergoes its
rst-order structural phase transition at 292 K.
2007 Elsevier B.V. All rights reserved.

ethyl

d
d
a
[
f
t
h
r
b
f
W
d
t
e
a
a
c
t

eywords: ac-Calorimetry; Non-equilibrium thermodynamics; Polytetrafluoro
onstants

. Introduction

The homopolymer polytetrafluoroethylene (PTFE) has been
tudied using lots of different physico-chemical methods of
nvestigation [1–3]. Among these experimental methods, ther-

al analysis or calorimetry is the only one which permits a
irect access to thermodynamic parameters such as heat capac-
ty, enthalpy variation, Gibbs free energy variation, entropy
ariation when a polymer is submitted to a temperature change.
or instance, PTFE has been already studied by differential scan-
ing calorimetry (DSC) [4], temperature modulated differential
canning calorimetry (TMDSC) [5], and ac-calorimetry [6,7].
TFE has the interesting particularity of undergoing two differ-
nt physical structural changes at room temperature, one around
92 K and the other around 303 K. It is nowadays admitted that
he first transition at 292 K is rather first order with slow struc-
ural changes resulting of the twist of the polymer chains around
heir symmetry axis [8]. The second transition is seen more as a
econd-order phase transition with fast kinetic involving molec-

lar scale change due to transition between several conformers
nd the appearance of disorder along the chain.
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However, when these two transitions are studied with
ynamical calorimetric methods such as temperature modulated
ifferential scanning calorimetry (TMDSC) or ac-calorimetry,
distinct behaviour is observed between the two transitions

5–7]. The ac-calorimetry method has two advantages: firstly, the
requency can be tuned over a wide range which allows spec-
roscopic thermal analysis, and secondly this method enables
eat capacity measurements with very high sensitivity. Highly
esolved heat capacity measurements are currently investigated
ecause it opens up tremendous possible applications in such dif-
erent fields as the nanophysics [9–11] or nanobiology [12,13].

ith ac-calorimetry measurements on PTFE, a kinetic effect is
irectly observed on the heat capacity curve of the first-order
ransition. Only a few percent of the total enthalpy (a priori
ntirely measured by DSC) is recovered with ac-calorimetry,
lthough on the second transition the two methods give with
good approximation the same results. In Ref. [7], a specific

alorimetric device has been realized in order to easily vary
he oscillating temperature frequency. According to this fre-
uency dependence, a variation of the thermal signature versus
requency has been observed, and a simple physical model has
een used to extract a quantitative value of the mean kinetic

elaxation time constant of this structural change. The high
alue of this mean relaxation time as compared to the inverse of
he thermal frequency was the explanation of this spectroscopic
ffect.

mailto:jean-luc.garden@grenoble.cnrs.fr
dx.doi.org/10.1016/j.tca.2007.03.013
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Fig. 1. The schematic view of the ac calorimeter. The central zone is zoomed
with more details. The PTFE sample is directly in contact with the two stainless
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In this paper, we study this first-order phase transition under
he new point of view that the sample is brought out of ther-

odynamic equilibrium during this solid–solid transition. We
onsider for instance that the value of the relaxation time of
he process under study is high as compared to the time scale
f the experiment bringing then the system in a non-equilibrium
hermodynamic state. Consequently, the heat capacity measured
ver this time scale during the phase transition is the result of a
ynamic experiment.

The organization of the paper is described as follows:
In Section 2, the calorimetric device used in these ac-

alorimetry experiments is thermally fashioned taking into
ccount the non-adiabaticity of the measurement at low fre-
uency and the diffusive regime at high frequency. This allows us
o expand the working frequency range of the study. In Sections 3
nd 4, experimental modulus and phase of the modulated temper-
ture of the empty cell and of the loaded cell are provided versus
requency and compared with our thermal model. In Section 5,
he addenda of the calorimetric device are extracted. Eventually,
n Section 6 the real part C′ and the imaginary part C′′ of the
on-equilibrium complex heat capacity of PTFE are extracted
nd their thermal variations and frequency dependences are dis-
ussed.

. Thermal model of the calorimetric measurement cell

The calorimetric device used for these ac-calorimetry exper-
ments is schematically depicted in Fig. 1. The sample is held
etween two stainless steel thin membranes (12.5 �m thick).
n the sides of the metallic membranes not in contact with

he sample, thin polyimide films (5 �m thick) are spin coated.
thermometer is micro-patterned on the bottom film, and a

eater on the top film, as required for ac calorimetry (see
ig. 1). Each stainless steel membrane is glued on a hollow
opper cylinder which serves as a constant temperature bath for
alorimetric measurements. The top and bottom closures of the
opper cylinders are situated few millimetres back of the metal-
ic membranes. The volume between the copper closures and
he metallic membrane is connected through a small pipe to a
ank of 2 litres filled with gaseous nitrogen under pressure of

or 2 bars. This tank which is regulated in temperature is out-
ide the calorimeter. Due to this construction, the thermal link
rom the metallic membrane to the thermostated bath consists
f two parallel terms. The principal one is due to the thermal
onductance across the stainless steel membranes and a small
ne is due to the gas under pressure. The two copper cylinders
re tightly clamped on a massive copper piece. This piece is
emperature regulated by means of a thermometer (high preci-
ion Pt100 resistor) and a heater (high power resistive heater).
his piece is thermally linked to a Peltier element which is the
old source of the experiment. The thermometer and the heater
re included in a servo-system which allows the temperature
f the entire cell to follow temperature ramps, or to be regu-

ated at a constant temperature. The precision is about 0.1 K and
he noise is about 10−4 K/

√
Hz. This system is contained in a

ypical calorimeter enclosure under vacuum with two shields
egulated in temperature. For the two micro-patterned sensitive

a
m
i
c

teel membranes. On the other side of the membranes, the heater and the ther-
ometer have been micro-patterned on a polyimide insulation layer which has

een spin-coated on each membrane.

lements (platinum thermometer/copper–nickel heater) located
n the heart of the cell, the leads are brought through the two
opper pieces (with specific electrical insulation) till a specific
hermal holder regulated in temperature to avoid thermoelec-
ric parasitic effects. The voltage signals are preamplified using
ome-made low noise preamplifier (≈ 1 nV/

√
Hz RMS) and

hen measured by high quality commercial digital voltmeters.
he low frequency oscillating current generation chain allows
ighly resoluted thermal power amplitude of typical values
etween 1 mW and 100 mW (�P/P = 2�V/V = 2 × 10−6) and
ow temperature coefficient (∼1 ppm/K). All these elements
ives a heat capacity resolution �C/C of about ±5 × 10−6. With
he absolute value of the total heat capacity of about 20 mJ/K,
his calorimeter allows the detection of thermal events as low

s ±100 nJ/K. These efforts made on the electronics of the
easurement chain are necessary for the detection of small

maginary component of the frequency-dependent complex heat
apacity.
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In the basic ac-calorimetry method, a sinusoidal heating
ower P0 exp(iωt) is uniformly added to one side of the sam-
le and the temperature response δTac exp(iωt − ϕ) is measured
n the other side, the whole being linked to the constant tem-
erature bath by a thermal conductance Kb. The measured heat
apacity, then, is given by Sullivan and Seidel [14]:

Cmes| = P0

ωδTac

√
1 + 1/(ωτ1)2 + (ωτ2)2 + A

(1a)

nd

an ϕ = f (ωτ1, ωτ2) (1b)

1 = C/Kb with C the heat capacity of the sample. τ2 is the sum of
arasitic contributions of various relaxation times. For instance
2
2 = τ2

h + τ2
t + τ2

int, where τh and τt are the relaxation times of
he heater and thermometer towards the sample, respectively.

ore important is τint the internal relaxation time of the sample
hich is correlated to the diffusivity and the thickness of the

ample. A is a constant term depending on Kb and the thermal
onductance of the sample. Normally A � (ωτ2)2.ϕ is the phase
ag between the input oscillating thermal power and the output
esulting temperature modulation.

In this paper, we have considered a thermal model which is
ore adapted to our calorimetric device. This model is depicted

n Fig. 2. The calorimetric device is schematically constituted
y a multilayered system. More precisely, three different media
1, 3, and 5) with their own heat capacities and thermal conduc-
ances are linked to each others by two thermal conductances

media 2 and 4) which represent thermal interface between each
edium. The media 1 and 5 are linked to the thermal bath via

ifferent thermal conductances Kb1 and Kb2. If the values of
he internal thermal conductances of each medium and ther-

ig. 2. A general thermal model system used for the exact calculation of the
eat capacity of the PTFE sample C3. The heater and the thermometer are evap-
rated onto the media 1 and 5, respectively. We neglect their heat capacity and
heir thermal contact resistances. Thermal conductances are represented. In this
rawing, the dimensions of the different parts are not respected.
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al interfaces (Kinter2 and Kinter4) are higher than the values of
he different heat leaks towards the bath, we can simplified the

odel assuming that the whole block of different media is linked
o the thermal bath by one single thermal conductance Kb. In the
alorimetric device, the heat leak is thus constituted by the sum
f the two thermal conductances (Kb1 and Kb2) across the two
hin metallic membranes and the small conductance via the gas
ackward each membrane (see Fig. 1).

As mentioned in Appendix 1, the temperature oscillation T3
easured by the thermometer is calculated using a planar model
here the heat diffusion equation is resolved in one-dimensional

pproach. We also assume that we are in the linear regime where
Tac the amplitude of T3 over a period is small as compared to
he averaged temperature. As the sample is a composite slab

ade of five media, we use the matrix method, commonly used
n electric circuit theory and clearly explained in the Carslaw
nd Jaeger book [15]. In this formalism, each medium is repre-
ented by a transfer matrix which transforms a vector {heat flow,
emperature} in another vector. Hence, an initial vector {P0, T0}
t the position of the heater is transformed via different transfer
atrix till the vector {P3, T3} at the level of the thermometer

t the end of the medium 5. The equations of the system can be
olved if we know the initial conditions for the temperature or
he heat flow. The calculus are summarized in Appendix 1. Evi-
ently, in order to have the exact ac-response of the calorimetric
evice, these calculus have been done assuming that no transi-
ion occurs. As in Sullivan and Seidel treatment, the oscillating
emperature measured by the thermometer can be separated in
modulus and a phase component, which can be written in a
ore shortened version:

3 = P0 exp(iωt)

iω(E′ − iE′′)
(2)

here E′ and E′′ are real numbers whose the expressions are
iven in Appendix 1. This gives rise to a total complex heat
apacity where all the components of our calorimetric device
re taken into account:

T = P0 exp(iωt)

iωT3
= E′′ − iE′ (3)

In order to obtain the complex heat capacity of the studied
ample from this latter equation, we need to know all the ther-
al conductances and heat capacities of the five media of our
odel. For that purpose, we have performed a detailed and very

recise calibration of our experimental device. In the first mea-
urement there is no PTFE sample in the calorimetric cell, each
embrane being clasped together. Then we have measured the

ell with a PTFE sample at the centre which is squeezed between
he two stainless steel membranes. However, in each case, the
hermal interfaces between deposited metallic thin film (heater
nd thermometer) and the insulation thin polyimide layer have
een neglected. In fact, thermal conductance interfaces between
eposited metallic thin film and polyimide film of very low heat

apacities are so high (few tens of W/K) that they do not play a
ajor role in this thermal model and can be neglected as com-

ared to the other values of the thermal conductances used in
his model. Moreover, heat capacities of deposited metallic thin
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lm thinner than 1 �m are very small (less than 1 mJ/K). Hence,
elaxation time constants induced by these interfaces are very
mall as compared to the others taken into account in this study.

oreover, the thermal interfaces between coated thin polyimide
nsulation layer and the metallic membranes are also neglected
or the same reasons. These two different experimental situations
re now examined in the next two sections.

. Adiabatic plateau and phase behaviour of the empty
ell at fixed temperature

By measuring the empty cell we can determine the heat capac-
ties of the two stainless steel membranes with deposited metallic
hin film and polyimide film. We can also get a first value for Kb
nd the internal conductances.

.1. Experiment under the variation of the thermal
requency

The frequency behaviour of this empty cell is obtained exper-
mentally as a function of the thermal frequency. The experiment
as been realized at 283 K, a temperature outside the area of the
hase transitions of the PTFE. Two different types of information
an be extracted from this experiment.

The first information, called the adiabatic plateau (ωδTac or
δTac/P0 versus ω), is a specific frequency representation of

he modulus of the oscillating temperature. This representation
which looks like a plateau) allows the determination of the fre-
uency range where the sample is in perfect thermal equilibrium
not necessarily in thermodynamic equilibrium as we will see in
he following when we consider a system where internal degrees
f freedom are relaxing). Indeed, at a given frequency the value
f the point on the top of the plateau must be directly equals to

he inverse of the heat capacity. The experimental plateau mea-
ured at 283 K is presented in Fig. 3. The second information is
nferred when we represent the phase of the modulated tempera-
ure versus the frequency. The frequency-dependent phase curve

ig. 3. The modulus of the inverse apparent heat capacity of the empty cell as
function of the frequency at 283 K. The points are experimental data. The full
nd broken lines are obtained from fits with Eq. (29) in Appendix 1. The fitting
arameters are shown in Table 2.
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hase shift on the “plateau”. The points are experimental data. The full and
roken lines are obtained from fits with Eq. (29) in Appendix 1. The fitting
arameters are shown in Table 2.

s shown in Fig. 4. The fits presented in Figs. 3 and 4 are issued
rom our model and are explained in the following sections.
hese phase and modulus variations are a direct indication that
ynamic phenomena due to the non-equilibrium of the sample
emperature occur at low and high frequency. At low frequency
ωτ1 � 1), over one period of the modulation a certain amount
f heat relaxes towards the bath via the heat exchange coeffi-
ient Kb. Somehow, this quantity of heat does not contribute to
he heat capacity measurement. At high frequency (ωτ2 	 1),
part of the input thermal power supplied to the sample does

ot contribute to the heat capacity measured by the thermometer
ecause of the thermal diffusion within the sample between the
eater and the thermometer. The modulus and phase of the mea-
ured modulated temperature are simply extracted by Discrete
ourier Transform using Labview software.

.2. Fits of the plateau and phase of the empty cell as a
unction of the thermal frequency

In this particular empty cell configuration, the model
escribed in the previous section is used as follows (see Fig. 5):

The medium 1 corresponds to the thin insulating polyimide
layer with the thermometer or the heater deposited on the
surface.
The medium 3 corresponds to the two stainless steel mem-
branes.
The medium 5 is equivalent to the medium 1.
The two interfaces (media 2 and 4) form a single medium
interface between each metallic membrane.

From this diagram, the calculus made in Appendix 1 give the
mplitude and phase of the oscillating temperature at the position

f the thermometer. For the fits, numerical values are obtained
sing the values of the specific heat and thermal conductivity
f the stainless steel, the polyimide film and the PTFE sample
used only in the future experiment) which can be found in the
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Fig. 5. The model of the empty cell. In this model we made the same hypothesis
for the heater and thermometer than in Fig. 2. We also suppose perfect contacts
between the media 1 and 3 and between the media 5 and 1. Nevertheless, the
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hermal interface between the media 3 and 5 is taken into account by the medium
. Here Kb is the total thermal conductance for all the heat links between the
ifferent media and the thermal bath.

iterature generally at 298 K [16]. The temperature variations of
hese parameters have also been taken in the literature in order
o have their values at 283 K the temperature of the experiment
17]. The values of these parameters at 298 K and 283 K are
hown in Table 1. The usual definitions of the heat capacity and

he thermal conductance have been used

= cpρSL and K = k
S

L
(4)

able 1
alues of ρ, cp, and k taken from the literature (see ref. [16] and [17]), excepted the
est fit in Fig. 3 and Fig. 4. The value of cp of the stainless-steel at 298 K is deduce
iterature [17]

Density (g cm−3) T = 298 K

cp (J/g K)

tainless steel 7.9 0.454
olyimide 1.47 1.1268
TFE

able 2
eat capacities and thermal conductances values used in the fit of the Fig. 3 and Fig

nd Fit 2 is the fit with Kinterface

T = 283 K

C (J/K) K (W/K) α/
√

ω

edium 1 0.801 × 10−3 5.716 8.4173 × 1
edium 3 8.8 × 10−3 62.3328 8.40 × 10−

it 1
it 2
a Acta 461 (2007) 122–136

here cp is the specific heat (J/g K), ρ the density, S the surface,
the length, and k is the thermal conductivity (W/m K) of the

onsidered materials. In Table 2, the values of the heat capacities,
hermal conductances and parameters α (see Appendix 1) of the
ifferent media 1 and 3 used in the different fits are provided. In
rder to get accurate fits, three different adjustable parameters
ave been taken into account:

The first of these adjustable parameters is the value of the spe-
cific heat of the stainless steel at 283 K. A good fit is obtained
by taking 0.454 J/g K which is close to the accepted value of
0.44 J/g K found in the literature.
The second parameter is the value of the thermal link Kb
between the device and the thermal bath. If we calculate
the value of the horizontal conductance inside the two thin
metallic membranes of stainless steel we obtain Kb ∼ 5.67 ×
10−3 W/K. Furthermore, we have made a dc experiment in
order to obtain Kb (Kb = P0/�Tdc ∼ 4.51 × 10−3 W/K). The
value of Kb used for the best fit is 5 × 10−3 W/K, which is in
good agreement with the above values.
The last of the adjustable parameters are the values K′

1 and K′
2

the thermal conductance interfaces represented by the media 2
and 4 (which play the same role in this configuration). In fact,
thermal conductance interfaces are very difficult to estimate
because they generally depend on different parameters such
as the pressure and the surface state. In Figs. 3 and 4 two
different fits using different values of these thermal interfaces
are provided. All the values needed in both fits are shown
in Table 2. The first fit is realized with very high values of
K′, which means in fact that we do not take into account

any influence of these interfaces. This fit is not satisfying at
high frequencies. The best fit into all the frequency range is
obtained with K′

1 = 0.17 W/K (for a surface of 1 cm2). The
difference between the two fits is due to the low quality of

value of cp of the stainless-steel at 283 K which is taken in order to obtain the
d from the value of cp at 283 K using the thermal variation of cp found in the

T = 283 K

k (W/m K) cp (J/g K) k (W/m K)

16 0.446 15.583
0.2895 1.1020 0.28578
0.25 0.2495

. 4. The media 1 and 3 are explained in Fig. 5. Fit 1 is the fit without Kinterface

K′
1 (W/K) K′

2 (W/K) Kb (W/K)

0−3

3

1000 1000 5 × 10−3

0.17 1000 5 × 10−3
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the thermal contact between both stainless steel membranes
(hard/hard contact).

Taking all these parameters into account, the best fit is
emarkably adjusted to the experimental plateau and phase
urves at different frequencies. Hence, the thermal model used
n this configuration may allow us to know very well the ther-

al behaviour of the calorimetric device, particularly at low and
igh frequency. At low frequency, spurious frequency effect due
o the non-adiabaticity of the experiment can be thus corrected.
t high frequency spurious frequency effect due to the non-
omogeneity of the device temperature (diffusion and thermal
ontact) can be also corrected. Moreover, the heat capacity of
he addenda at different frequencies can be extracted from this
rst type of experiment. Nevertheless, we have to bear in mind

hat the thermal interface K′
1 or K′

2 plays a non-negligible role
n this empty cell experiment. In the following, we will envisage
he measuring configuration with a PTFE sample at the centre of
he cell and after that explore in details the addenda extraction
rocedure from these two different configurations.

. Adiabatic plateau and phase behaviour of the cell
ith PTFE sample at fixed temperature

In this type of experiment, a 50 �m thick sample of PTFE
as been inserted inside the cell. In this configuration, shown in
ig. 6, the model is used as follows:

The medium 1 corresponds to the ensemble polyimide/
stainless steel membrane.

The medium 3 is now constituted by the PTFE sample.
The media 2 and 4 correspond to the two thermal interfaces K′

1
and K′

2 between the media 1 and 3 and 3 and 5, respectively.
The medium 5 is identical to the medium 1.

ig. 6. The model of the cell filled with a PTFE sample. Here the medium 1 is
ade of the media 1 and 3 of the empty cell.

i
t
P
m
h
t

F
t
o
d
1

ith a PTFE sample, as a function of the frequency at 283 K. The points are
xperimental data. The full and broken lines are obtained from fits with Eq. (29)
n Appendix 1. The fitting parameters are shown in Table 3.

In this configuration, the medium 1 is now constituted by a
ixture of the previous media 1 and 3 of the empty cell con-
guration. Thus, its heat capacity and thermal conductance are
imply calculated from the values of the heat capacities and ther-
al conductances of the previous media 1 and 3. If we write C0

1,
0
3, K0

1 and K0
3 the previous values, then the new values are

1 = 1

2
[C0

3 + 2C0
1] and

1

K1
= 1

2

[
1

K0
3

+ 2

K0
1

]
(5)

In this experiment, the experimental adiabatic plateau and
hase behaviour as a function of the frequency are presented
n Figs. 7 and 8. The experiment was carried out at a constant
emperature of 283 K outside the phase transitions area of the

TFE. On the same figures, two different fits issued from the
odel are also provided. Once again, the values of the specific

eat and thermal conductivity of the different materials and
heir temperature dependence have been used (see Table 1). In

ig. 8. Frequency dependence of the phase shift between the heater and the
hermometer plus 90◦, for a cell filled with a PTFE sample. We added 90◦ in
rder to have a zero phase shift on the “plateau”. The points are experimental
ata. The full and broken lines are obtained from fits with Eq. (29) in Appendix
. The fitting parameters are shown in Table 3.
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Table 3
Heat capacities and thermal conductances values used in the fit of the Fig. 7 and Fig. 8. The media 1 and 3 are explained in Fig. 6. Fit 1 is the fit without Kinterface

and Fit 2 is the fit with Kinterface

T = 283 K K′
1 (W/K) K′

2 (W/K) Kb (W/K)

C (J/K) K (W/K) α/
√

ω

Medium 1 5.226 × 10−3 5.465 21.866 × 10−3

Medium 3 9.598 × 10−3 0.499 98.07 × 10−3

F 1000 1000 5 × 10−3

F 1.4 1000 5 × 10−3
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Fig. 9. Temperature dependence of the heat capacity of the total empty cell made
at the fixed frequency of 1.737 Hz. The points represent the experimental data
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able 3, the values of heat capacities, thermal conductances,
coefficients, and different thermal interfaces necessary for

he fits are given. All the parameters used in the empty cell
onfiguration have been kept identical, but new values of K′

1
nd K′

2 must be used. Indeed, once a time the two different fits
re calculated, one with high values of the thermal interface
nd the other with small values. It is interesting to note that
n this configuration, the thermal interface does not play such
n important role. It is explained by a better thermal interface
etween PTFE and stainless steel (soft/hard contact) than stain-
ess steel/stainless steel thermal contact (hard/hard contact).
n this case, the decrease of the plateau at high frequency is
ainly due to the low value of the internal thermal conductance

cross the thickness of the PTFE sample (see Table 3).
Nonetheless, once again the agreement between the model

nd the experiment is very satisfying. This good agreement
etween calorimetric device characterization experiments and
he thermal model allows sensitive ac-calorimetry experi-

ents over a wide frequency range of about three decades
40 mHz ≤ Fth ≤ 40 Hz).

. Extraction of the addenda as a function of the
emperature

In the empty cell configuration, an experimental heat capacity
urve as a function of the temperature, at a frequency of 1.737 Hz
at the top of the plateau) is provided in Fig. 9. Now, using our
odel in this configuration, taking into account the temperature

ariations of the different thermodynamic parameters taken from
he literature, a temperature-dependent heat capacity curve of the
ddenda is directly extracted and shown in Fig. 9.

The temperature dependence of Kb is necessary to obtain this
alculated curve; we have simply taken the temperature variation
f the thermal conductance of the stainless steel normalized to
he value found at 283 K. In other words, the temperature depen-
ence of the small part of the total heat exchange coefficient due
o the gas on the back of to the cell has been neglected. These
wo curves prove that the temperature dependence taken in the
iterature for the parameters used for the empty cell is correct. In
he following, at each experimental frequency, the extracted heat
apacity curve as a function of the temperature obtained from the

mpty cell configuration will be used in order to extract the part
f the signal due only to the sample. However, before entering the
xact extraction procedure of the frequency-dependent complex
eat capacity of the PTFE sample during its phase transitions

m
T
m
w

nd the full line the results of a fit using Eq. (29) in Appendix 1 with the fitting
arameters shown in Table 2 (The thermal variations of the parameters are taken
rom the literature; see text).

t different frequencies, let recall more precisely the physical
odel that we used.

. Physical model and extraction of the complex heat
apacity

.1. Physical model

In calorimetry, for a given temperature variation, the instanta-
eous temperature rate defines a time scale of observation. If this
ime scale is small enough as compared to the kinetic relaxation
ime constant of a phase transformation, then it is possible that
he sample under study is out of its thermodynamic equilibrium
tate over this time scale. In this case, the measured heat capac-
ty is the result of a non-equilibrium or dynamic experiment
18,19]. The value of the temperature variation, around a mean
onstant temperature (stationary condition), can be controlled
y the experimentalist via the heater. For example, this results
n the choice of the temperature ramp in DSC experiment. In ac-
alorimetry, the thermal power is chosen in such a way that the
mplitude of the temperature modulation takes a correct value; a
orrect value is obtained when the amplitude of the temperature

odulation is low as compared to the width of the transition.
his very intuitive notion is the condition of linearity of the
easurement. It is impossible to fulfil this requirement for very
eak pure first-order transition where theoretically the transi-
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ion occurs at a fixed temperature. In the case of configurational
hanges of PTFE, the phase transitions have a finite width, so the
mplitude of the temperature oscillations used in these experi-
ents (approximately 0.26 K) fulfils the condition of linearity.
oreover, in order to verify that the linearity requirement is ful-

lled, a good criterion is to measure the “4 ω” term during the
xperiment. For each experiment, this term was found negligible,
hich was not the case for amplitude of temperature modula-

ion higher than 1 K. Hence, in the present measurements, we
onsider that the PTFE is out of thermodynamic equilibrium,
ut close to equilibrium. Under this condition, when one single
elaxation time characterizes the transition (Debye relaxation),
he dynamic heat capacity can be written

∗ = C′ − iC′′ = C∞ + C0 − C∞
1 + iωτ

(6)

here

′ = C∞ + C0 − C∞
1 + (ωτ)2 (7)

s the storage frequency-dependent heat capacity, and

′′ = (C0 − C∞)ωτ

1 + (ωτ)2 (8)

s the loss frequency-dependent heat capacity [20], where ω is
he angular frequency of the modulated temperature, C∞ is the
eat capacity related to the degrees of freedom of the system
aving infinitely small relaxation time constants as compared
o the inverse of the frequency (generally vibrational modes or
honons bath), and C0 is the total contribution at equilibrium
the frequency is set to zero) of the degrees of freedom having
igh and small relaxation time constants. The time constant τ

s the kinetic relaxation time constant of the non-equilibrium
egree of freedom involved in the transition.

.2. Extraction of the real and imaginary part of the
requency-dependent complex heat capacity of PTFE

Before extracting the real and imaginary parts of the
requency-dependent complex heat capacity due only to the ther-
odynamic behaviour of the PTFE, it is important to take into

ccount the different spurious effects in the complex heat capac-
ty due to the fact that the PTFE is not in thermal equilibrium.
he exact thermal model of our device derived in Appendix 1
an be simplified knowing that the frequencies used in these
c-calorimetry measurements are rather low. Indeed, the exper-
mental frequencies never exceed 10 Hz. Thus, Eqs. (30) and
31) of Appendix 1 giving E′ and E′′ can be simplified to first
rders with respect to ω. Hence, from Appendix 1, if we write

he complex heat capacity of the PTFE as follows

3 = C′
3 − iC′′

3 (9)
t
t
t
t

tan ϕ = E′

E′′ ≈ (C′
3 + 2C1)[1 + (Kb/2)(1

(Kb/ω) − ω{(1/6)(C′
3 + 2C1)2(1/K3 + 2/K
a Acta 461 (2007) 122–136 129

hen a development to the second order in ω yields to

′′ = C′′
3 + Kb

ω
− ω

{
1

6
(C′

3 + 2C1)2
(

1

K3
+ 2

K1

)

+ (C′
3 + C1)

[
C1

(
1

K′
1

+ 1

K′
2

+ 1

3K3

)
− C′

3

3K1

]}
(10)

or the imaginary part of the total complex heat capacity, and

′ = (C′
3 + 2C1)

[
1 + Kb

2

(
1

K3
+ 2

K1

)]

+ Kb

[
C′

3

K′
2

+ C1

(
1

K′
1

+ 1

K′
2

)]

+ ωC′′
3

[
C′

3

3K3
+ C1

(
1

K′
1

+ 1

K′
2

+ 1

K1
+ 1

K3

)]

− ω2

4

{
C′3

3

30K2
3

+ 4

3

C3
1

K1

(
1

K3
+ 4

5K1

)

+2

3
C2

1C
′
3

(
1

K2
3

+ 2

K2
1

+ 4

K3K1

)
+ C1C

′2
3

3K3

×
(

1

K3
+ 2

K1

)
+ 2

3
C1

(
1

K′
1

+ 1

K′
2

)

×
[

C′2
3

K3
+ 2

C2
1

K1
+ C′

3C1

(
4

K1
+ 3

K3

)]}
(11)

or the real part of the total complex heat capacity.
The principal aim is now to resolve these two equations in

rder to obtain C3. For that purpose, it is necessary to know a
recise value of Kb. Indeed, as we work at low frequency, the
eat link has a crucial influence. In order to give a correct esti-
ate for Kb, we use experimental data obtained at the smallest

ossible experimental frequency. Hence, the following treatment
s applied only for the two measuring frequencies Fth = 0.06 Hz
nd 0.04 Hz for which the term Kb/ω becomes preponderant. We
ave also additional information which simplifies the resolution
f the equations:

considering only the temperature range where the sample does
not undergo any transitions (low and high temperature range)
the imaginary part of the complex heat capacity of the sample
is obviously equal to zero (C′′

3 = 0).

Knowing that, in order to have Kb(T), the tangent formed by
he two components E′ an E′′ of the complex heat capacity and
he modulus of the total complex heat capacity are used. Within
he same high and low temperature range and at low frequency,

he tangent is written

/K3 + 2/K1)] + (KbC1/K
′
1)

1) + (C′
3 + C1)[C1(1/K′

1 + 1/3K3) − C′
3/3K1]}

(12)
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Fig. 10. Temperature dependence of Kb, the thermal conductance of the total
heat link between the different media and the thermal bath. The solid line for K1
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• The temperature amplitude has been maintained at a constant
value for all the frequencies and it is of the order of 0.26 K peak
to peak. The amplitude of the thermal power supplied has been
b
s the result of the measurements at 0.04 Hz. Using Eq. (17) we can extract Kb.
he broken line for K2

b is derived, after a normalization made at 283 K (see text),
ith the use of the thermal variation of the stainless steel thermal conductivity.

or the sake of simplicity we write this expression as

an ϕ = E′

E′′ ≈ (C′
3 + 2C1)A

(Kb/ω) − Bω
(13)

nd for the modulus of the total complex heat capacity:

P0

ωT3

∣∣∣∣ =
(

Kb

ω
− Bω

)√
1 + tan2 ϕ (14)

ith

= 1 + Kb

[
1

2

(
1

K3
+ 2

K1

)
+ C1

K′
1(C′

3 + 2C1)

]
(15)

nd

=
{

1

6
(C′

3 + 2C1)2
(

1

K3
+ 2

K1

)
+ (C′

3 + C1)

×
[
C1

(
1

K′
1

+ 1

K′
2

+ 1

3K3

)
− C′

3

3K1

]}
(16)

As A and B are second-order terms, we can calculate them
y substituting for Kb and C′

3 in Eqs. (15) and (16) their first-
rder approximations. From the last expressions of the modulus
nd phase at low frequency, it is now possible to extract the
emperature variation of Kb from the experimental measured
urves at the frequencies of 0.06 Hz and 0.04 Hz in the range of
emperature outside of the transitions:

b = ω

[
|P0/ωT3|√
1 + tan2 ϕ

+ Bω

]
(17)

In Fig. 10, the temperature dependence of Kb resulting from
his previous treatment is provided. We used a single extrap-
lation between the data obtained at T < 288 K and T > 308 K

or covering all the temperature range. On the same figure, the
emperature dependence of the stainless steel membranes ther-

al conductance is also shown for comparison. There is a pretty
ood agreement between both curves; the difference could be

t
d

a Acta 461 (2007) 122–136

ue to some various thermal dependence of the thermal conduc-
ivity of the stainless steel as observed in the literature. Even if
hey are not represented on the figure, it has to be noted that the
xtracted values of Kb(T) are rather identical for the two differ-
nt frequencies, which validates our approach of extracting the
emperature behaviour of Kb.

Now Kb is well known, so we can resolve by successive
pproximations (Eqs. (10) and (11)) and extract precise values
or C′

3 and C′′
3 . From Eqs. (10) and (11) the first-order term of

′′
3 and C′

3 are

′′
3 = E′′ − Kb

ω
(18)

nd

′
3 = E′ − 2C1 (19)

Eq. (11) can be rewritten as an equation of second degree in
′
3:

= C′2
3
ω2

2

C1

K3

(
1

6K3
+ 1

3K1
+ 1

3K′
1

+ 1

3K′
2

)

+ C′
3

{
−1 − Kb

K′
2

− ωC′′
3

3K3
+ ω2C2

1

6

[
1

K2
3

+ 2

K2
1

+ 4

K3K1
+
(

1

K′
1

+ 1

K′
2

)(
4

K1
+ 3

K3

)]}

+ E′ − C1

[
2 + Kb

(
1

K′
1

+ 1

K′
2

)
+ ωC′′

3

(
1

K′
1

+ 1

K′
2

+ 1

K1
+ 1

K3

)
− ω2C2

1

3K1

(
1

K′
1

+ 1

K′
2

+ 4

5K1
+ 1

K3

)]

(20)

here the small third-order term, (ω2/120)(C′3
3/K

2
3) has been

eglected.1 The resolution of this second-order equation gives
′
3 at the second order. Eventually, with C′

3 calculated from Eq.
20), we obtain C′′

3 of second order.
Before giving the results of the previous extracting proce-

ure, we present in Figs. 11 and 12 the modulus and phase of
he measured total frequency-dependent complex heat capacity
raw data) as a function of the temperature at three well-distinct
requencies. One is presented at low frequency (0.04 Hz), the
econd is located on the adiabatic plateau (0.4 Hz), and the last
t rather high frequency (4 Hz). The experimental conditions
sed for these ac-calorimetry experiments are:

The sample is a 50 �m thick PTFE film purchased at Good-
1 To be more precise, this small term (second order in ω) has been added to
he constant term of Eq. (20), avoiding the resolution of an equation of the third
egree. In this case, C′

3 has been taken from Eq. (19).
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Fig. 11. Temperature dependence of the modulus of the apparent heat capacity
for three different frequencies: 0.04 Hz, 0.4 Hz and 4 Hz. We can observe the
frequency effect on the first peak around 294 K.

Fig. 12. Temperature dependence of the phase (plus 90◦) of the apparent heat
capacity for three different frequencies: 0.04 Hz, 0.4 Hz and 4 Hz.
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ig. 13. The real part of the specific heat of a PTFE sample (C′
3) as a function

f the temperature for three different frequencies: 0.04 Hz, 0.4 Hz and 4 Hz.

adjusted to fulfil this requirement. This constant temperature
amplitude allows the linearity condition to be fulfilled for all
the experiments realized at different frequencies.
In the case of measurements versus the temperature at fixed
frequency, the dc temperature has followed a slow linear ramp
with a rate of 0.3 K/min excepted for the two low frequencies
of 0.04 Hz and 0.06 Hz for which the ramp was 0.1 K/min.
These small values of the temperature rate allow the sta-
tionary criteria to be fulfilled. Indeed, with the usual ramp
used (0.3 K/min) we have observed that at these low frequen-
cies, the ramp has a small influence on the magnitude of the
peak. The decrease of the ramp by a factor 3 (to 0.1 K/min)
gives now dT/dt = 1.7 mK/s and for the lowest frequency,
4FthδTac = 21 mK/s. More than a factor of 10 between the
two temperature rates seems to be a good criterion in order to
respect the stationary condition. In this kind of experiment,
the highest value of the frequency is only 10 Hz.
The temperature range has been spread between approxi-
mately 278 K and 323 K.
The sample has been maintained during one night at about
278 K before each temperature experiment.

For the low and high frequencies, the modulus and phase
re deformed by the spurious complex components due to the
xperimental conditions of the measurement and the influence
f the device, which are, as already mentioned, the adiabaticity
nd temperature homogeneity requirements.

Once the corrections have been made following the previ-
us extracting procedure, it is then possible to directly extract
rom these curves the two components C′

3 and C′′
3 of the

requency-dependent complex heat capacity of the PTFE. In
igs. 13 and 14, the temperature dependence of C′

3 and C′′
3 is

resented at these three different frequencies.2 The discussion

f both figures will be separated in two parts. In the first part,
e will analyze the data obtained in the temperatures outside

he temperature range of the two phase transitions. The second

2 In the Fig. 13 up to the Fig. 17, the heat capacities have been transformed in
pecific heat in order to make possible comparisons with other works.
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tion is not judicious. A physical model including a distribution
of relaxation time constants could be more appropriate, but this
goes beyond the scope of this article.
ig. 14. The imaginary part of the specific heat of a PTFE sample (C′′
3 ) as a

unction of the temperature for three different frequencies: 0.04 Hz, 0.4 Hz and
Hz.

art will be devoted to the discussion of the data obtained in the
emperature range where PTFE undergoes two phase transitions:

T < 288 K and T > 308 K: in this temperature range, we are
expecting that due to very small frequency effects the C′

3(T )
are identical whatever the frequency. We have obviously the
same behaviour for the C′′

3(T ) curves. Concerning the real
part C′

3, it is exactly what we observe excepted for the curve
at 0.04 Hz in the high temperature range. By now, we think
that this effect could be due to some phase calibration prob-
lems. For the imaginary part C′′

3(T ), the agreement is good for
T less than 288 K, but in the high temperature range, higher
is the frequency bigger is the discrepancy. It is likely that the
problem is due to the temperature dependence of the thermal
conductivity of the PTFE. The thermal conductance K3(T) we
have used in our calculations is a continuous curve as a func-
tion of the temperature. Due to the phase transitions, K3(T)
could undergo some step-like variation at 292 K and 303 K.
Moreover, the second-order value of C′′

3(T ) is depending of
an ω term which is itself function of K3(T).
288 K < T < 308 K: firstly, we notice that the value of the imag-
inary part C′′

3(T ) is much more smaller than the value of
the real part. This is not surprising if we have in mind that
this imaginary part is directly associated to the mean entropy
production due to the relaxation of some internal degrees of
freedom of the PTFE averaged over the time scale of the exper-
iment (one cycle of the temperature oscillation). Indeed, this
entropy creation keeps small in the vicinity of equilibrium
[19]. Secondly, a frequency dependence is seen on the two
components of the complex heat capacity. For the real part,
the decrease of the peak when the frequency is increased rep-
resents the freezing of internal degrees of freedom involved in
the phase transition when it is observed under different time
scales [19,21]. For the imaginary part, as we have already
mentioned, it corresponds to the decrease of the net entropy

produced during the irreversible process occurring within the
PTFE when it undergoes its phase transitions. We remark that
over this frequency range, this entropy production decreases
when the frequency increases. This indicates that the typical

F
f
3

ig. 15. Cole–Cole plot of the imaginary part vs. the real part of the specific
eat of a PTFE sample made at a fixed temperature T = 294 K. The points are
xperimental data, the solid line is a fit of a Debye model with τ = 10 s.

relaxation time constant involved in the phase transition is cer-
tainly higher than the different observation time scales used
in these experiments. Thirdly, a second peak is visible on C′′

3 ,
which seems to indicate that irreversible effects occur also for
the second phase transition of the PTFE around 303 K. This
aspect is still under study.

In Fig. 15, the Cole–Cole plot C′′
3 = f (C′

3) is presented at
temperature around the maximum of the first peak where the

ensitivity to the frequency variation is maximum. On the same
gure we have shown a Cole–Cole plot directly issued from the
imple Debye model with a value of τ equal to 10 s (Eq. (6)). We
ave to bear in mind that the use of different values of τ does not
odify the curvature of a Cole–Cole plot. It is clearly seen that

his model does not fit the experimental results. Consequently,
he fact that one single internal degree of freedom with a specific
inetic relaxation time constant is involved in this phase transi-
ig. 16. The real part of the specific heat of a PTFE sample as a function of the
requency for five different temperatures: T = 283 K, 290 K, 294 K, 296 K, and
08 K.
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ig. 17. The imaginary part of the specific heat of a PTFE sample as a function
f the frequency for five different temperatures: T = 283 K, 290 K, 294 K, 296 K,
nd 308 K.

As an interesting indication, in Figs. 16 and 17, the real part
′
3 and the imaginary partC′′

3 of the PTFE are shown as a function
f the frequency at few different temperatures. Two remarks can
e made:

No kinetic effects are visible outside the transition zone.
The typical kinetic relaxation time constant of the PTFE
undergoing the 292 K phase transition has a value higher than
the biggest value of the period of the thermal oscillation used
in these ac-calorimetry experiments. At this level, certainly
the temperature modulated differential scanning calorime-
try experiments (TMDSC) could be of great interest because
the period of the temperature oscillation used in this type of
experiment are generally much longer than in ac-calorimetry
experiments [5].

The crystallized phase of the PTFE sample used in our experi-
ents ranges between 50% and 99% as indicated by GoodFellow

ompany. The combined heat of the two phase transformations
hat we have obtained by DSC on this sample (temperature
ate of 0.2 K/min) is around 6.8 J/g K [7], a value which is in
ood agreement with Ref. [5]. In accordance with Ref. [24], this
alue indicates a degree of crystallinity ranging between 52%
nd 67%. However, as Androsch seems to suggest in Ref. [5],
ualitatively the thermal history and crystallization conditions
f PTFE should not affect significantly the transition kinetics.
ubsequently, a qualitative comparison on PTFE with these two
ifferent calorimetric methods is possible. Futatsugi et al. have
rst recognized that a kinetic effect is clearly visible in the first
hase transition of the PTFE, when the heat capacity is measured
y ac-calorimetry [6]. With the TMDSC method, Androsch first
emonstrates that it is possible to observe more precisely this
inetic effect when varying the thermal frequency. In Fig. 2 of
ef. [5], a decrease of the amplitude of the heat capacity peak

s clearly observed when the frequency is increased in a good

greement with our results. Moreover, at the lowest amplitude
f modulation (0.1 K), in Ref. [5] the smallest peak which cor-
esponds to a frequency of 16.7 mHz is higher than the highest
eak of our ac-calorimetry measurement obtain for a frequency

e
T
s
m

a Acta 461 (2007) 122–136 133

f 40 mHz. The effect of the amplitude of the modulation on the
mplitude of the heat capacity peak observed in Fig. 2 of Ref. [5]
s certainly due, as Androsch himself indicates, to the station-
ry criterion which is not respected because the dc temperature
amp rate (dT/dt) is of the same order as the ac temperature
ate (=4δTacFth). In our case, as explained previously we are in
tationary condition. In fact, the most important progress that
as been made in the present paper is to provide for the first
ime on the PTFE, the real and imaginary components of the
requency-dependent heat capacity during the low temperature
hase transitions of this polymer.

. Conclusion

In this paper, we have presented a thermodynamic inves-
igation of a polymer, the PTFE, which undergoes two phase
ransitions at room temperature. The heat capacity of the PTFE
as been measured between 278 K and 323 K by means of the
c-calorimetry method.

The device used for the experiments has been built up by
eans of micro-fabrication technology. Usually, since the work

f Sullivan and Seidel, the device and the sample are assumed
o constitute one single diffusive media with thermal contact
etween sensitive elements and the sample, the whole being
hermally anchored to a thermal bath via a determined heat leak-
ge. In our case, the calorimetric device holding the sample is
etter thermally represented by a multi-layered slab of different
eat capacities, thermal conductances and interfaces. Thus, the
emperature modulation measured by the thermometer has been
erived using this model.

The oscillating temperature is described by a modulus and a
hase which are together temperature and frequency dependent.
ollowing our model, this gives rise to a measured heat capacity
hich can be represented by a complex number with a temper-

ture and frequency-dependent real and imaginary component.
From the experimental data in the adiabatic plateau the modu-

us and phase of this modulated temperature have been presented
s a function of the frequency and compared to different fits fol-
owing the model. Thanks to an adequate agreement between
heory and experiments, it has been then possible to enlarge the
nteresting frequency range where a priori the heat capacity of
he sample is frequency independent. As our system is not dif-
erential, we have proceeded to empty cell experiments in order
o know exactly the temperature and frequency behaviour of the
eat capacity of the addenda. These experiments have been next
ollowed by experiments with loaded cell as a function of the
emperature over a frequency range located between 0.04 Hz and
0 Hz.

From these experiments, the real and imaginary parts of
he measured complex heat capacity of the PTFE have been
xtracted from our model in temperature and in frequency. To our
nowledge, it is the first time that the real and imaginary parts of
he complex heat capacity are presented in such a ac-calorimetry

xperiments on solid–solid phase transition in polymer [22,23].
he two components exhibit a frequency dependence clearly
een on the first phase transition of the PTFE at 292 K. On a
acroscopic non-equilibrium thermodynamic point of view, this
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ffect indicates that depending on the time scale of observation
one period of the temperature modulation) the sample is out-
ide equilibrium with respect to one of its internal degrees of
reedom involved in the phase transformation. In the high tem-
erature range, a difference exists between curves extracted at
arious frequencies which should not be the case. It is certainly
ue to the variation of the thermal conductivity of the PTFE
uring the two phase transitions, this variation being not taken
nto account in our model. Then, the two complex heat capacity
omponents have been provided as a function of the frequency at
ifferent temperatures. The decrease of the imaginary part when
he frequency increases clearly indicates that the characteristic
inetic time constant involved in the first phase transition of the
TFE should be much larger than the highest period of temper-
ture oscillations used in the experiments. A Cole–Cole plot of
′′ = f(C′) has also been presented and compared to the Debye
odel with one single time constant. Unfortunately, the discrep-

ncy between experiments and Debye relaxation is important.
In a future work, we will envisage some new directions:

A change of the thermal conductivity of the PTFE due to the
phase transitions will be incorporate in our model in order
to obtain identical temperature dependence for different fre-
quencies.
The unexpected C′′ existence for the second phase transition
of the PTFE at 303 K will be investigate in more details.
The Debye model will be abandoned, a distribution of kinetic
time constants will be considered yielding to a slightly mod-
ified expression of the frequency-dependent complex heat
capacity.
Although they are different in their basic foundations, it may
be interesting to compare low frequency ac-calorimetry exper-
iments with high frequency TMDSC experiments for a same
sample at same frequencies in order to improve comprehen-
sion of non-equilibrium phase transition in PTFE or other
polymers.
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ppendix A. Calculus of the modulated temperature of
sample constituted by five different media

Let us come back to the thermal drawing of Fig. 2. The sample
nder calorimetric investigations is constituted by five different
edia whose two of them are only thermal interfaces. The whole

s thermally linked to a thermal bath via a small thermal con-

uctance Kb, which is represented by the sum of the different
eat links (because this conductance is smaller than the internal
hermal interfaces). The symmetry of the problem allows us to
ork with one single dimension represented by the coordinate

w

K
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which characterizes the direction of the flow of heat. The ther-
al power P, which is the sum of a dc and an ac term, is directly

upplied to the top face of the medium 1. Indeed we assume
hat the heater is placed on this face at the x = 0 coordinate. The
emperature/heat flux couple is written at this coordinate (T0,
0)x = 0. Our principal aim is to calculate the temperature/heat
ux couple (T3, P3)x = L at the bottom face of the last medium
, where the thermometer is present. Indeed, it is only at this
istance L from the heater that the modulus and phase of the
scillating temperature is measured by the thermometer.

The method of propagation of heat used in this paper is the
atrix method used by Carslaw and Jeager [15]. The thermal

ath within the medium i is represented by a matrix written Ai.
or the sake of symmetry, the medium 5 is equivalent to the
edium 1 (A1 = A5). Hence, the temperature/heat flux couple

T3, P3)x = L is relied to the temperature/heat flux couple (T0,
0)x = 0 as the following

T3

Q3

]
= A

[
T0

Q0

]

=
[

a1 b1

c1 d1

][
1 −(1/K′

2)

0 1

][
a3 b3

c3 d3

]

×
[

1 −(1/K′
1)

0 1

][
a1 b1

c1 d1

][
T0

Q0

]
(21)

here A = A1A4A3A2A1 is the product of the transfer matrix of
he different media.

For the heat flux, the boundary conditions are simply

0 = P0 and Q3 = KbT3 (22)

If we write A =
[

a b

c d

]
, where a, b, c, d are complex num-

ers, then we have

3 = P0(ad − bc) exp(iωt)

aKb − c
(23)

here the aj, bj, cj, dj are given by

aj = ch θj, bj = − sh θj

Kjθj

, cj = −Kjθj sh θj,

dj = cj, for j = 1, 3 (24)

ith

θj =
√

ω

2Dj

(1 + i)Lj = (1 + i)αj and

αj =
√

ω

2Dj

Lj =
√

ωC0j

2Kj

(25)
ith

j = kj

Sj

Lj

, Dj = kj

ρjc0j

and C0j = ρjSjLjc0j

(26)



himic

w
c

w

d

T

T

w

b

T

w
e

E

a

E

{

J.-L. Garden et al. / Thermoc

ith kj the thermal conductivity, ρj the density and c0j the spe-
ific heat of the medium j.

For the calculus of the component of the total transfer matrix
e use the fact that

et A=ad − bc=det(A1) det(A4) det(A3) det(A2) det(A1) = 1

(27)

hen

3 = P0 exp(iωt)

aKb − c
(28)

here a and c are calculated using Eqs. (21), (24)–(26).
The resulting temperature at a distance L from the heater can

e written

3 = P0 exp(iωt)

iω(E′ − iE′′)
(29)

here E′ and E′′ are real numbers given by the two cumbersome
xpressions:

′ = C01

2α1
[sh 2α1 cos 2α1(ch α3 cos α3 + sh α3 sin α3)

− ch 2α1 sin 2α1(sh α3 sin α3 − ch α3 cos α3)]

+ C03

4α3
[(sh α3 cos α3 + ch α3 sin α3)(1 + cos 2α1 ch 2α1)

+ sh 2α1 sin 2α1(sh α3 cos α3 − ch α3 sin α3)]

+ C2
01α3

4C03α
2
1

[(sh α3 cos α3 + ch α3 sin α3)

× (−1 + cos 2α1 ch 2α1) + sh 2α1 sin 2α1(sh α3 cos α3

− ch α3 sin α3)] + Kb

ω
(sh α3 sin α3 ch 2α1 cos 2α1

+ ch α3 cos α3 sh 2α1 sin 2α1) + Kb

2ω

(
C03α1

C01α3
+ C01α3

C03α1

)
× [ch α3 sin α3 sh 2α1 cos 2α1

+ sh α3 cos α3 ch 2α1 sin 2α1] +
(

1

K′
1

+ 1

K′
2

)

×
{√

C03K3C01K1

2
[sh α3 cos α3 sh 2α1 cos 2α1

− ch α3 sin α3 ch 2α1 sin 2α1]

+ C01K1

2
[(ch 2α1 cos 2α1 ch α3 cos α3

− sh α3 sin α3 sh 2α1 sin 2α1) − ch α3 cos α3]

}

+
(

α3K3K1C01

2K′
1K

′
2

)
[(ch 2α1 cos 2α1 − 1)(sh α3 cos α3
− ch α3 sin α3) − sh 2α1 sin 2α1(sh α3 cos α3

+ ch α3 sin α3)] + Kb

ω

(
1

K′
1

+ 1

K′
2

)
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×
{

K1α1

2
[(ch α3 cos α3 − sh α3 sin α3) ch 2α1 sin 2α1

+ (sh α3 sin α3 + ch α3 cos α3) sh 2α1 cos 2α1]

+ K3α3

2
[(ch α3 sin α3 + sh α3 cos α3)(cos 2α1 ch 2α1−1)

+ (sh α3 cos α3 − ch α3 sin α3)sh 2α1 sin 2α1]

}

+ Kb

ω

K3K1

K′
1K

′
2
α3α1[sh α3 sh 2α1 cos α3 cos 2α1

− ch α3ch2α1 sin α3 sin 2α1] + Kb

ω

K3α3

K′
2

× (ch α3 sin α3 + sh α3 cos α3) (30)

nd

′′ = C01

2α1
[sh 2α1 cos 2α1(ch α3 cos α3 − sh α3 sin α3)

− ch 2α1 sin 2α1(sh α3 sin α3 + ch α3 cos α3)]

+ C03

4α3
[(sh α3 cos α3 − ch α3 sin α3)(1 + cos 2α1 ch 2α1)

− sh 2α1 sin 2α1(sh α3 cos α3 + ch α3 sin α3)]

+ C2
01α3

4C03α
2
1

[(sh α3 cos α3 − ch α3 sin α3)

× (−1 + cos 2α1 ch 2α1) − sh 2α1 sin 2α1(sh α3 cos α3

+ ch α3 sin α3)] + Kb

ω
(ch α3 cos α3 ch 2α1 cos 2α1

− sh α3 sin α3 sh 2α1 sin 2α1) + Kb

2ω

(
C03α1

C01α3
+ C01α3

C03α1

)
× [sh α3 cos α3 sh 2α1 cos 2α1

− ch α3 sin α3 ch 2α1 sin 2α1] −
(

1

K′
1

+ 1

K′
2

)

×
{√

C03K3C01K1

2
[ch α3 sin α3 sh 2α1 cos 2α1

+ sh α3 cos α3 ch 2α1 sin 2α1] + C01K1

2
× [(sh 2α1 sin 2α1 ch α3 cos α3

+ sh α3 sin α3 ch 2α1 cos 2α1) − sh α3 sin α3]

}

−
(

α3K3K1C01

2K′
1K

′
2

)
[(ch 2α1 cos 2α1 − 1)(sh α3 cos α3

+ ch α3 sin α3) + sh 2α1 sin 2α1(sh α3 cos α3

− ch α3 sin α3)] + Kb

ω

(
1

K′
1

+ 1

K′
2

)

× K1α1

2
[(ch α3 cos α3 − sh α3 sin α3) sh 2α1 cos 2α1

− (sh α3 sin α3 + ch α3 cos α3) ch 2α1 sin 2α1]
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[
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[

[

[
[

[
[
[
[
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+ K3α3

2
[(sh α3 cos α3−ch α3 sin α3)(cos 2α1 ch 2α1−1)

− (ch α3 sin α3 + sh α3 cos α3)sh 2α1 sin 2α1]

}

− Kb

ω

K3K1

K′
1K

′
2
α3α1[ch α3 sh 2α1 sin α3 cos 2α1

+ sh α3 ch 2α1 cos α3 sin 2α1] + Kb

ω

K3α3

K′
2

× (sh α3 cos α3 − ch α3 sin α3) (31)

eferences

[1] C.A. Sperati, H.W. Starkweather, J.R. Fortschr, Hochpolym. Forsch. Bd.
2S (1961) 465–495.

[2] K.S. Macturk, R.K. Eby, B.L. Farmer, Polymer 37 (1996) 4999–5003.
[3] R. Natarajan, T. Davidson, J. Polym. Sci. 10 (1972) 2209–2222.

[4] V. Villani, R. Pucciariello, G. Ajroldi, J. Polym. Sci. 29 (1991) 1255–

1259.
[5] R. Androsch, J. Polym. Sci. 39 (2001) 750–756.
[6] M. Futatsugi, T. Fukuzono, Y. Saruyama, Polym. Commun. 30 (1989)

22–24.

[
[
[
[
[

a Acta 461 (2007) 122–136

[7] E. Château, J.-L. Garden, O. Bourgeois, J. Chaussy, Appl. Phys. Lett. 86
(2005) 151913.

[8] S.F. Lau, H. Suzuki, B. Wunderlich, J. Polym. Sci. 22 (1984) 379–405.
[9] (a) O. Bourgeois, S.E. Skipetrov, F. Ong, J. Chaussy, Phys. Rev. Lett. 94

(2005) 057007;
(b) F.R. Ong, O. Bourgeois, S. Skipetrov, J. Chaussy, Phys. Rev. B 71 (2006)
140503 (R).

10] F. Fominaya, T. Fournier, P. Gandit, J. Chaussy, Rev. Sci. Instrum. 68 (1997)
4191–4195.

11] O. Riou, P. Gandit, M. Charalambous, J. Chaussy, Rev. Sci. Instrum. 68
(1997) 1501–1509.

12] H. Yao, K. Ema, H. Fukada, K. Takahashi, I. Hatta, Rev. Sci. Instrum. 74
(2003) 4164–4168.

13] J.-L. Garden, E. Château, J. Chaussy, Appl. Phys. Lett. 84 (2004)
3597–3599.

14] P.F. Sullivan, G. Seidel, Phys. Rev. 173 (1968) 679–685.
15] Carslaw, Jaeger, Conduction of Heat in Solids, 2nd ed., Oxford University

Press, 1959.
16] GoodFellow Catalog.
17] http://cryogenics.nist.gov.
18] Y.H. Jeong, Thermochim. Acta 304/305 (1997) 67–98.
19] J.-L. Garden, Thermochim. Acta 452 (2007) 85–105.

20] J.E.K. Schawe, Thermochim. Acta 260 (1995) 1–16.
21] H. Baur, B. Wunderlich, J. Therm. Anal. 54 (1998) 437–465.
22] K. Ema, H. Yao, Thermochim. Acta 304/305 (1997) 157–163.
23] H. Yao, T. Chan, C.W. Garland, Phys. Rev. E 51 (1995) 4585–4597.
24] J.J. Weeks, I.C. Sanchez, R.K. Eby, Polymer 21 (1980) 325–331.


	Non-equilibrium heat capacity of polytetrafluoroethylene at room temperature
	Introduction
	Thermal model of the calorimetric measurement cell
	Adiabatic plateau and phase behaviour of the empty cell at fixed temperature
	Experiment under the variation of the thermal frequency
	Fits of the plateau and phase of the empty cell as a function of the thermal frequency

	Adiabatic plateau and phase behaviour of the cell with PTFE sample at fixed temperature
	Extraction of the addenda as a function of the temperature
	Physical model and extraction of the complex heat capacity
	Physical model
	Extraction of the real and imaginary part of the frequency-dependent complex heat capacity of PTFE

	Conclusion
	Acknowledgements
	Calculus of the modulated temperature of a sample constituted by five different media
	References


