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bstract

This paper gives a simple derivation of the well-known expression of the frequency dependent complex heat capacity in modulated temperature

xperiments. It aims at clarified again that the generalized calorimetric susceptibility is only due to the non-equilibrium behaviour occurring in
he vicinity of thermodynamic equilibrium of slow internal degrees of freedom of a sample when the temperature oscillates at a well determined
requency.

2007 Elsevier B.V. All rights reserved.

; Rel

fi
c
i

2

t
m

δ

w
s
o

a
e
n
c
o
N

eywords: AC-calorimetry; Complex heat capacity; Internal degree of freedom

. Introduction

The frequency dependent complex heat capacity, or also the
eneralized calorimetric susceptibility, can be encountered in
he literature under this following well-known form:

∗ = C′ − iC′′ = C∞ + C0 − C∞
1 + iωτ

(1)

here

′ = C∞ + C0 − C∞
1 + (ωτ)2 (2)

s the storage frequency dependent heat capacity, and:

′′ = (C0 − C∞)ωτ

1 + (ωτ)2 (3)

s the loss frequency dependent heat capacity [1]. C∞ is the
eat capacity related to the infinitely fast degrees of freedom of
he system as compared to the frequency (generally vibrational

odes or phonons bath), and C0 is the total contribution at equi-
ibrium (the frequency is set to zero) of the degrees of freedom,
ast and slow, of the sample. The time constant τ is the kinetic

elaxation time constant of a certain internal degree of freedom.
n the following, we assume that these equations are well known,
nd the reader interested by a deeper insight on this subject can
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axation time constants

nd more details in the following references [2–11]. In this short
ommunication, we show that these last formulas can be derived
n a very simple way using only few basic assumptions.

. Heat capacity at thermodynamic equilibrium

At constant pressure, and when no work is involved in a
hermodynamic reversible transformation, the first law of ther-

odynamics can be enunciated as follows:

Q = dH (4)

here δQ is the quantity of heat exchanged reversibly between a
ystem and the surroundings and H is the enthalpy state function
f the system.

Let us focus on a particular internal degree of freedom inside
thermodynamic system. For simplicity, we can observe the

volvement of a simple chemical reaction. In this case, the inter-
al degree of freedom is the evolution of the reaction and it is
haracterized by a parameter which is often called, ξ, the degree
f advance of the chemical reaction or extent of the reaction.
evertheless, we can choose any others internal degree of free-
om such as vibrational modes of the internal structure of a
olecule, translational or rotational modes within the system,

r by an order parameter characterizing the advance of a phase

ransition. For simplicity, by now ξ is called the order parameter
f the internal degree of freedom. Hence, the thermodynamic
ystem can now be characterized by two thermodynamic vari-
bles which are the temperature T and the order parameter ξ.
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he enthalpy of the system can be simply differentiated with
espect to these two variables:

H = ∂H

∂T

)
ξ

dT + ∂H

∂ξ

)
T

dξ (5)

he heat capacity is defined as the ratio of the quantity of heat
xchanged between the system and the surroundings with the
emperature variation recorded by the experimentalist:

mes = dH

dT
= ∂H

∂T

)
ξ

+ ∂H

∂ξ

)
T

dξ

dT
(6)

f the transformation is a reversible thermodynamic transfor-
ation, the system is at any time in a state of equilibrium.
his is to say that the couple of thermodynamic variables (T,
) have always their equilibrium values (Teq, ξeq) at any time.
or the temperature, this must say that firstly the temperature is
omogenous in all part of the system at any time (infinite thermal
iffusivity) and secondly that the temperature has had no time to
elax towards the thermal bath during the transformation (calori-
etric adiabaticity conditions). For the variable ξ, this simply
eans that the degree of freedom has a kinetic relaxation time

ast enough to instantaneously follow the temperature variation
ver the time interval of the transformation:

eq(t) = ξeq[Teq(t)] (7)

From Eq. (6) the temperature derivative of the order param-
ter appearing in the right-hand side can be expressed as:

dξeq

dT
= [Ceq

mes − ∂H /∂T )
eq
ξ ]

∂H /∂ξ)eq
T

(8)

et keep this expression in our memory, but we can remark
lready here that, if the measured heat capacity is inferred from
temperature modulated calorimetric experiment, then at equi-

ibrium it can be identified with C0 of formula (1). Secondly, the
emperature derivative of the enthalpy at constant order param-
ter can be identified with C∞. Indeed, this latter term is just
quivalent to the heat capacity at constant composition of the
ystem, as if the order parameter was frozen during the temper-
ture variation over the time scale of the experiment. Thus, for
reversible transformation we have:

dξeq

dT
= [C0 − C∞]

∂H /∂ξ)eq
T

(9)

. Linear regime close to thermodynamic equilibrium

Now, imagine that under the variation �T, over the finite time
cale �t, the kinetic relaxation time constant τ of the considered
nternal degree of freedom is so high that its order parameter
as had not enough time to relax towards its thermodynamic
quilibrium value ξeq under the finite temporal variation �t. In
his case, the system is out of its thermodynamic equilibrium

tate with respect to the variable ξ, and this variable varies along
he time over the time scale of the measurement. Now, the most
mportant hypothesis consists to assume that, if the temperature
ncrement is small enough then the system keeps in the vicinity

o

C
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f equilibrium. This condition can mathematically be expressed
s follows:

dξ

dt
= −α[ξ(t) − ξeq(t)] (10)

This is to say, the order parameter rate in the vicinity of equi-
ibrium is just proportional to the departure of the variable ξ from
ts value at equilibrium. When it is brought outside equilibrium
relaxes exponentially towards its equilibrium value. Without

ustification, it is interesting to indicate that the proportionality
oefficient α is positive for the stability of the equilibrium state
nd also that it is identical to the inverse of the kinetic relaxation
ime τ (see also Ref. [6]).

. Temperature oscillation

The first order linear differential equation (Eq. (10)) can be
ore explicitly rewritten:

δξ̇ + δξ = δξeq (11)

here

δξ = ξ(t) − ξDC
eq

δξeq(t) = ξeq(t) − ξDC
eq

(12)

The dot represents the time derivative, and ξDC
eq is the constant

tationary equilibrium value of the variable ξ. All the varia-
ions of the different parameters are referenced to a constant dc
alue, which for instance defines the stationary conditions of the
xperiment.

In the case of a harmonic modulation of the temperature, the
quilibrium value of the order parameter follows instantaneously
he temperature oscillation, and the forcing term of Eq. (11) can
e written in the linear regime:

ξeq(t) = dξeq

dT
TAC(t) (13)

AC(t) is the oscillatory term of the temperature around the
ean constant temperature TDC, which is in fact the condition

f sationnarity for the temperature (TAC(t) = T(t) − TDC).
The resolution of Eq. (11) yields simply:

ξ(t) = (dξeq/dT )TAC

1 + iωτ
(14)

hich can be explicitly written with Eq. (9):

ξ(t) = (C0 − C∞)TAC

∂H /∂ξ)eq
T (1 + iωτ)

(15)

. Heat capacity out of thermodynamic equilibrium:
eneralized calorimetric susceptibility

Even for a small departure from thermodynamic equilibrium
he time becomes a preponderant variable. The expression (6)

f the measured heat capacity becomes near equilibrium:

mes = C∞ + ∂H

∂ξ

)eq

T

dξ/dt

dT /dt
(16)
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ncluding directly the derivative of Eqs. (15) into (16) gives:

mes = C∞ + C0 − C∞
1 + iωτ

(17)

hich is the expected expression of the frequency dependent
omplex heat capacity.

. Conclusion

This paper has recalled on a very simple manner that the
requency dependent complex heat capacity is only due to the
eparture from equilibrium of an internal degree of freedom of a
ample when it is perturbed by an harmonic temperature oscilla-
ion. The important assumptions necessary to the validity of the
otion of generalized calorimetric susceptibility is not only that
he system must be out of its thermodynamic equilibrium state
uring temperature perturbations but also more precisely that it
ust remain in the vicinity of equilibrium in the linear range.

n this regime, the time dependent parameters have exponential

elaxation towards equilibrium, and the constant parameters take
heir equilibrium values. Obviously, it is the same assumptions
han in the linear response theory approach. Another impor-
ant point is to consider that variations of the thermodynamic

[
[
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arameters T and ξ are always referenced to a constant quasi-
quilibrium state (TDC, ξDC

eq ) which does not evolve along the
ime over the time scale of the experiment. This latter point
efines the stationary conditions of the experiment.

This work was realized inside the Pôle de Capteurs Ther-
ométriques et Calorimétrie and the team of Thermodynamique

es Petits Systèmes in the Institut Néel. The author wants to
hank O. Bourgeois for having point out the importance of the
tationary conditions in Eq. (13).
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