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Abstract

In calorimetry and particularly in heat capacity measurements, different characteristic relaxation time constants may perturb the experiment
which cannot be considered at thermodynamic equilibrium. In this case, thermodynamics of irreversible processes has to be taken into account
and the calorimetric measurements must be considered as dynamic. In a temperature modulated experiment, such as ac-calorimetry, these non-
equilibrium experiments give rise to the notion of frequency dependent complex heat capacity. In this paper, it is shown that for each irreversible
process an experimental frequency dependent complex heat capacity can be inferred. Furthermore, we demonstrate rigorously that a same equality
connects the imaginary part of these different complex heat capacities with the entropy produced during these irreversible processes. Finally, we
claim that the presence of an imaginary part in the measured heat capacity always indicates that a certain amount of heat does not participate to
the classical equilibrium heat capacity of the sample when measured over the observation time scale.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It is well-known that calorimetric experiments can be per-
turbed by different parasitic relaxation time constants. These
different time constants can alter the measurement in such a
way that what we measure is not what we really believe. For
example, in heat capacity measurements, one of the fundamen-
tal time constant is ey, the time constant of the adiabaticity.
This is the external relaxation time constant of the temperature
of the sample towards the constant temperature of the bath. If the
time scale of the measurement is larger than this time constant,
the calorimetric measurement cannot be considered as adiabatic
(in a calorimetric sense and not in a thermodynamic sense) and
heat has time to relax towards the thermal bath. A correction
has thus to be taken into account considering the heat exchange
coefficient in order to correctly derive the heat capacity of the
sample. The second important relaxation time constant is still
due to the non-equilibrium behaviour of the temperature of the
whole sample. It is connected to the diffusion of heat within
the body of the sample. What is thus the exact temperature of
the whole sample when the thermal diffusivity is low? Suppose
that in a modulated temperature calorimetric experiment the fre-
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quency of the input power is so high that at the other extremity of
the sample the thermometer never oscillates. We can understand
that, in this case, the exact heat capacity of the sample is never
recorded. The third time constant that we want to consider in this
article is the kinetic relaxation time constant of specific internal
degrees of freedom of the sample. When heat is supplied to the
sample in a fast way, some of these degrees of freedom have
never time to absorb this quantity of heat over the time scale of
the experiment. In this case, these degrees of freedom do not
contribute to the heat capacity measured by the experimentalist.
In modulated temperature measurements this particularity has
provided the famous notion of frequency dependent complex
heat capacity with a real and an imaginary part satisfying the
Kramers—Kronig dispersion relations (see for example, the fol-
lowing reviews and references therein [1-3]). This latter notion
has been already investigated in the literature of calorimetry and
we do not want to discuss this in details here. Nevertheless, we
will recall that the imaginary part of the complex heat capacity is,
in this case, also deeply connected to the entropy produced over
one period of the temperature cycle. The last of these relaxation
time constants that we want to address is not widely known and is
linked to the relaxation of the thermal power due to finite veloc-
ity of the heat carriers. It involves a regime where the Fourier’s
law becomes inexact.

In this paper, we demonstrate that for each of this characteris-
tic time constants, there isa different irreversible process where a
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different complex heat capacity can be inferred. In these four dif-
ferent cases, the imaginary part of these complex heat capacities
is always connected to the entropy produced over one period of
the temperature cycle during the irreversible process. The paper
is composed of the following different sections involving each
time one of the time constants aforementioned. Before going into
the details of these different sections, we would like firstly, to
explain what we want to say by “time scale of the measurement”,
which is another very important time constant in experimental
calorimetry.

2. Time scale of the measurement

The time scale of the measurement is the smallest character-
istic time interval during which a physical property of a system
is recorded by the experimentalist without any specific aver-
aging. Over this time interval, an experimental point can be
inferred. In classical calorimetric experiment, for example in
differential scanning calorimetry (DSC), this time interval is
the smallest finite time interval Ar during which an experimen-
tal heat capacity point (more precisely a differential heat flow
point) is recorded. The measured heat capacity is thus the natural
averaging of the instantaneous heat capacity taken over this time
interval. In modulated temperature measurements, this charac-
teristic time is the period of the oscillating input thermal power.
The influence on the measurement of the other time constants
depends on the ratio of their own value as compared to this char-
acteristic time scale. The time scale of the measurement is the
reference against which the various time constants encountered
in the calorimetric experiments have to be compared. Let us take
a well-known example: when we consider the kinetic relaxation
time constant due to slow structural change inside a sample or
the slow advancement of a chemical reaction, the ratio of this
time constant on the time scale of the measurement is called the
Deborah number [4]:

T
-= ®

This typical ratio is used to characterize the difference between a
liquid and a glassy state. For infinitely fast time scale of the mea-
surement all is frozen (D — +o00) and nothing has time to move,
we observe a frozen-in solid. On the contrary, under an observa-
tion time scale which tends to the infinity all is in movement and
we observe a liquid (D — 0). In calorimetric modulated tem-
perature experiments, the Deborah number wt, appears in the
denominator of the frequency dependent complex heat capacity.

3. External thermal relaxation time constant of the
temperature

3.1. Definition

Let us consider the Fig. 1, where a finite thermodynamic
system with a heat capacity C is linked via a heat exchange coef-
ficient K to a thermal bath with a constant temperature Tp. The
macroscopic thermodynamic system is a sample under calori-
metric investigation. Its temperature is well defined and in this
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Fig. 1. A simple classical finite thermodynamic system (a sample under calori-
metric investigation) of heat capacity C at a temperature 7'is linked via a thermal
conductance X to a thermal bath of constant temperature 7p.

section we consider that its thermal diffusivity is infinite. The
external thermal relaxation time constant of the temperature of
the system defines the temperature of equilibrium as compared
to that of the heat bath. It represents the time constant necessary
for the heat to relax towards the heat sink. At thermodynamic
equilibrium the temperature of the system equals precisely those
of the bath. On the other hand, the temperature of the system can
be constant and different from the temperature of the bath when
stationary conditions are fulfilled. The system is then in a con-
stant non-equilibrium state often called a stationary steady-state.
The ratio of the external thermal time constant on the time scale
of the measurement defines the condition of adiabaticity of the
measurement. According to the value of this ratio, the calori-
metric experiment may be realized in an adiabatic manner or
not. The calorimetric experiment is adiabatic (in a calorimetric
sense and not in a thermodynamic sense) if there is not heat
exchanged between the sample and the heat bath, other than the
quantity of heat supplied to (or released from) the sample by the
experimentalist during the time scale of the measurement. If the
experiment is not adiabatic, heat has time to flow away from the
sample during this characteristic time. Subsequently, during this
time scale the temperature of the sample relaxes exponentially.
This adiabaticity time constant is defined by
C

Text = ? (2)

C is the heat capacity of the sample and K is the coefficient of
heat exchange.

3.2. Principle of the ac-calorimetry method

In this section, we shall briefly recall the principle of the
ac-calorimetry method which will serve as a model for our
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demonstration, although all the developments made in this paper
can be applied with more or less complications to all other
dynamic calorimetric methods.

An input thermal power P(r) = Py + Pac constituted by a dc
and an ac term is supplied to the system. In the stationary regime,
the temperature response is composed by a dc and an ac com-
ponent:

Po
ATye = Tgc — To = ?,

Tae = 8Tacexpli(wr — @)1 (3)
The star indicates complex notations of the oscillating variables
used here for the sake of calculus simplicity (for example the
exact oscillating temperature of the system is the real part of 73 :
Tac = Re(T};) = 8Ty cos(wt — ¢)). Tqc is the mean constant dc
temperature of the sample, Ty the constant temperature of the
bath, 8T, the amplitude of the oscillating temperature, w is the
angular frequency and ¢ is the phase between the oscillating
temperature and the input oscillating heat flow with a phase
taken by convention equal to zero:

Py, = Poexp(iowr) 4)
When the period 27/w is the only characteristic time involved
in the measurement, the heat capacity is simply:
Pz;kc _ P:c _ Py

= - = 5

Crmes =

with a phase lag of n/2 between the thermal power and the
temperature.

3.3. Complex heat capacity

When the heat exchange coefficient cannot be neglected in
the measurement (no adiabatic measurement) the temperature
of the sample obeys in this case to the following differential
equation:
dr
dr
Considering only the oscillating part of this equation in the sta-
tionary regime (the dc part is given in Eqg. (3)) the equation can
be transformed in

. P
TextT;c + T:c =2 (7
K
In the stationary regime, the resolution of this equation gives
directly the oscillating temperature:
ac K(l —+ i(,()fext) K + |Cl)C
We observe the appearance of the adiabaticity ratio, wtext, On
the denominator which is a direct indication of the strength of
the calorimetric adiabaticity of the measurement. This equa-
tion simply means that the oscillating temperature is the sum of
two perpendicular components. An experimental complex heat
capacity can be derived from the definition (5):

P} K+ iwC
T3 - iw

P(t) = C— + K(T — To) (6)

Cmes =

K .
=Cc-i==C-ic" 9)
w
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Fig. 2. The total system under interest is composed by two homogeneous sub-
systems, the sample and the heat bath, which are thermally coupled each other
by the heat exchange coefficient K.

Therefore, considering only the adiabaticity time constant, the
measured heat capacity is a complex number. The real part of
the complex heat capacity is the heat capacity of the sample. The
imaginary part has the dimension of a heat capacity. In fact itis a
thermal conductance by unit of angular frequency. It is linked to
the heat lost over the time scale of the measurement. As we have
mentioned before, its value depends directly on the ratio of the
thermal relaxation time on the time scale of the measurement,
wText. This is however an irreversible thermodynamics process
because heat flows out of the sample irreversibly.

3.4. Entropy production

When the adiabaticity time constant plays a role, the sample
cannot be regarded as a thermally insulated thermodynamic sys-
tem. Hence, the heat bath (or thermal bath) has to be taken into
consideration in the balance of the entropy produced during this
thermodynamic non-equilibrium process (see Fig. 2). We are in
presence of a single thermodynamic system composed by two
homogeneous discrete sub-systems. One is the sample and the
other the heat bath. A thermodynamic sub-system is homoge-
neous if there is no gradient of intensive parameters wherein.
Exchanges of extensive parameters between each sub-system
are simply due to differences of intensive parameters such as
the pressure (volume exchange), the chemical potential (matter
exchange) and evidently the temperature (heat exchange). For
homogeneous discrete sub-systems the calculus of the entropy
produced in the entire system due to exchange of extensive
parameters between each sub-part are thus very simple. In the
present case, the entropy produced in the entire system (sam-
ple + bath) is only due to the exchange of heat between the
sample and the heat bath (see Fig. 3).

In the following, we assume that the stationary conditions are
fulfilled. That is to say, the dc temperature has reached a constant
value Tyc (or this value varies so slowly that its rate can be
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Fig. 3. The entropy produced inside the system is due to the exchange of heat
between the two sub-systems with different temperatures.

neglected). This value corresponds to the dc temperature of the
stationary steady non-equilibrium state. Since the temperature
of the system is the sum of a dc and an ac component, the entropy
production can be separated in two contributions. The dc part
is due to the mean constant heat flux exchanged between the
sample and the bath. There is a dc temperature gradient between
the sample and the bath (see Fig. 4). It is the reason why a
stationary non-equilibrium steady-state is reached at the level of
the sample. The ac term is linked to the heat loss towards the
bath due only to the oscillatory part of the temperature. Let us
see how these two terms can appear and can be separated. Let us
envisage the case of a thermal power supplied to the sample (see
Fig. 4). Thus, the temperature of the sample is greater than those
of the heat bath, T'= Ty + Tac > To. Hence, since it has enough
time, heat relaxes irreversibly from the sample to the heat sink.
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Fig. 4. The thermodynamic system is represented beside a time versus temper-
ature diagram. A dc constant temperature gradient is maintained between the
system and the heat bath. Hence, a dc heat exchange of heat is established across
the thermal link. Also an ac temperature component oscillates at the level of the
sample. Hence, an ac heat exchange of heat is established across the thermal
link.
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Fig. 5. An amount of heat dQS is supplied to the sample from the outside of the
system by the experimentalist. Inside the system, the amount of heat which goes
away from the sample via the heat exchange coefficient K is entirely captured
by the thermal bath (dQ7 = dQB).

From the Fig. 5, the amount of heat involved in the ac-
calorimetry experiment can be separated in two different types.
At the level of the sample, there is external heat exchanged
between the sample and the surroundings (dQS) due to the
heat flow supplied by the experimentalist, and an internal heat
exchange due to the relaxation towards the bath (d Qis). At the
level of the bath, there is only an internal heat exchange flowing
from the sample (inB). Obviously, we have the two following
relations:

doS =dQS +dof (10)

which is just the expression of the conservation of energy at the
level of the sample, and where dQ§ is positive if heat is sup-
plied to the sample from the outside world, and inS is negative
because heat flows from the hot to the cold points. We have also:

doP +doB =0 (11)

which simply means that what is released from the sample is
taken by the bath. Afterwards, considering the entire system
“sample-bath”, the total entropy variation is written:

_do®  do®  do§  dof  dQP
dStot = T+ =T +—+ T
_dog s(1 1
=7 +in ?—?0 (12)

This expression can be separated in two contributions. One is
external and must be positive or negative depending on either
heat is supplied to the sample or released from the sample by
the experimentalist. The other contribution is definitely positive
and called internal entropy variation inside the system. It is only
this contribution which is connected to the irreversible process
due to the heat flow from the sample towards the heat bath.
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Let us now envision this latter term in details:

1 1 ATye + Tac
disS=doS ( ———— — = |~ —dp? — = % 13
1 Q| (Tac + Tdc TO) Q| T02 ( )

The two temperature differences ATy, and T,c have been
neglected as compared to Tp (recall that in ac-calorimetry
T=Tgc+Tac=To+ ATyc +Tac). Subsequently, the instanta-
neous rate of production of entropy is

LGS __dOP (AT + Tao)
"Tdr — dr 8

(14)

In ac-calorimetry from Sullivan and Seidel work [5], it is well-
known that the heat flux exchanged between the sample and the
heat bath via the heat exchange coefficient K is the sum of two
components, a dc and an ac term included in the second term of
the right-hand side of (6):

do?
dr

Consequently the entropy production takes the following expres-
sion:

K
oj = F(ATdc + Tyc)? (16)
0

which can be separated in two components. The first is a dc
component:

ATy \? AT, P2
of = ( dc) i e an
T2~ KT

This term represents the constant and continuous entropy pro-
duced inside the system due to the dc constant heat flow between
the sample and the heat bath in the stationary regime. This heat
flow is exactly compensated by the dc thermal power supplied
by the experimentalist to the sample, maintaining it in a non-
equilibrium stationary state. The second term is the sum of two
oscillatory terms (one oscillates at the frequency of the input
power and the second at twice the frequency):

Toc \ 2 ATy T,
- K(T"“;) 12K ]“fz ac (18)
0

This term is the instantaneous entropy production due to
the oscillatory component of the sample temperature relaxing
towards the bath. Now, if we take the average of this entropy
production over one period of the temperature cycle, then it
remains only the contribution of the twice frequency oscillating
term:

8Tac \ e §Tac \° K
of¢ = K<“> / cos?(wt — @) di = n(“) = 9
To To w
)
With Eq. (9) of the complex heat capacity we have:
_ 5Toc \ 2
o = n(ac) c’ (20)
To

Hence, in one period of the temperature modulation there is
positive creation of entropy due to oscillatory heat exchange
between the sample and the heat bath, which is proportional
to the imaginary part of the experimental frequency dependent
complex heat capacity. To be more precise, knowing that the
modulus of the oscillating temperature can be expressed as
8T = L (21)
@|Crnes|

and also that the amount of heat involved per half-period of the
oscillating cycle is

T/4

P
8Q0 = / Py cos(wt) dt = 202 (22)
w
—T/4

then over one period of the temperature oscillation (20) can be
expressed as follows:

_ 802 C” 802 1
oiac = E& = E& Im (23)
4 T2 |Cmesl> 4 T?

Cmes

Hence, the entropy produced irreversibly per period of the tem-
perature modulation due to oscillatory exchange of heat between
the sample and the thermal bath is directly proportional to the
imaginary part of the complex impedance of the measurement.
During this period of time, we can say that heat is lost (dissipated,
absorbed) because it does not contribute to the measurement of
the usual heat capacity of the sample. All this last formula have
been already derived by different authors who start in deriving
the entropy at thermodynamic equilibrium to the second order
term in the oscillatory temperature [2,6,7]. Nevertheless, as it
was clarified in a recent paper [3], this derivation has nothing
to do with the well-known classical expression of the frequency
dependent complex heat capacity where internal degrees of free-
dom are involved (see the last section). Here, this approach
concerns the ac-calorimetry case, but the TMDSC method will
be envisaged under the same point of view in a forthcoming pub-
lication. Indeed, in TMDSC method the condition of adiabaticity
is basically not fulfilled, because generally heat is directly sup-
plied to the sample from the heat bath via the heat exchange
coefficient K.

4. Internal thermal relaxation time constant of the
temperature

4.1. Definition

As in the previous section, this thermal time constant is also
related to the thermal disequilibrium of the sample. In this case,
the thermodynamic system that we have to consider is only com-
posed by the sample which is thermally insulated from the heat
bath (the condition of adiabaticity is supposed to be respected).
The ratio of this thermal time constant on the time scale of the
measurement defines the condition of homogeneity of the tem-
perature of the sample. That is to say, according to the value
of this ratio, the temperature may be or may not be the same
anywhere and at any time within the sample. The calorimetric
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experiment fulfils the condition of temperature homogeneity of
the sample if during the time scale of the measurement heat is not
diffused (or absorbed) along the spatial dimensions of the sam-
ple. If the requirement is not fulfilled, heat is lost along the path
linking the hot point (generally the heater) and the cold point
of the sample (usually the thermometer). In this case, as in all
diffusion phenomena, the temperature measured at the level of
the thermometer relaxes exponentially over a spatial dimension.
Let us point out that not only the finite value of the diffusiv-
ity of the sample medium is a limiting factor, but also all the
thermal interfaces (thermal contacts) encountered between the
hot source and the thermometer are limiting factors for a perfect
internal temperature equilibrium of the sample. Let us now enter
in the general treatment of complex heat capacity measured in
diffusive media.

4.2. Semi-infinite diffusive medium

Generally, the case of semi-infinite diffusive medium is the
simplest and pedagogical example to treat diffusion of heat from
the Fourier’s law in oscillatory regime. Here we used this model
for simplicity keeping in mind the objective that we want to
reach, but the more complicated ac-calorimetry case is treated
in the appendix. Let a semi-infinite homogeneous medium ther-
mally coupled to a thermal bath of constant temperature Ty (cf.
Fig. 6). Let us suppose a heater supplying an ac thermal power
P, at the “free face” of the system at the origin of the one
dimensional spatial axis (x=0). In the oscillatory regime and

Heater

P (D)

ac

—— T()C,[)

Thermometer

SITTTT777

To

Fig. 6. A semi-infinite homogeneous medium is directly linked to a thermal
bath of constant temperature. In a stationary condition, a heater supplied an ac
thermal power at the top face of the medium located at the position x=0. At a
distance x from the top face, a thermometer records the temperature. The thermal
bath is located at an infinite distance from the heater.

forgetting the dc term for simplicity, the oscillatory temperature
at a distance x from the heater obeys to the diffusion equation:

aT 3°T
ot 9x2
where D is the thermal diffusivity of the medium:
k
D=— (25)
pc

where k is the thermal conductivity, o the density and ¢ is the bulk
specific heat. The ac stationary solution of this spatio-temporal
variables equation is [8]:

X X b
T = 8Tp ex (——)ex {i(r————)} 26
ac 0 EXp by p w Y 4 (26)
where §Tp is the amplitude of the oscillating temperature at
the origin and A is the characteristic diffusion length of the
temperature within the sample:

2D
=42 @7)
w

The phase —/4 is due to the boundary condition P = Py exp(iwt)
at x=0. The Fourier’s law establishes the relation between the
heat flux propagating inside the sample and the temperature
gradient at a distance x from the origin:

P(x, 1) = —ki(x, 1) (28)
0x
In the oscillatory and stationary regimes this heat flux is
* _x i(wr -2
Py, = Poexp ( A) exp {I (a)t A)} (29)

where Py is the amplitude of the alternative power at the origin
which is linked to 679 by the following equation:

k
Py = iSTo = VkpcwdTy (30)

Now, integrating the diffusion equation (Eq. (24)) from 0 to the
infinity (semi-infinite medium) we obtain:

. +00
S/ ag)ac dx /pc 3;";10 dx (31)
0 0
which gives:
00
—SPyexp(iot) = —SpciwdTy exp [i (wt — %)} /exp
0

x [-%(1 n i)} dx = —C; 8Ty

. &xpli(er — (7/4))]
1+
where C; = pcSX is a characteristic heat capacity obtained on a

characteristic volume given by the product of the surface S of
the sample and the characteristic diffusion length 1. The natural

(32)
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definition of an experimental complex heat capacity is in this
case:

Pi(x=0,1)

oT(x =0,1)/0t 33)

Cres =
This complex heat capacity can be deduced for example from
such an experiment realized with a thermometer placed at the
same location than those of the heater. It is worth noticing that
this expression is valid at any position x along the x-dimension
of the sample, because the ratio of the thermal power on the
temperature time derivative is independent of x. With (32) it
yields to

Cy
1+i
It has to be remarked that in the case of diffusive semi-infinite
medium, the heat capacity which can be inferred from an oscil-
lating temperature experiment with a heater placed at the top of
the sample, and a thermometer located at any distance x from
this side, is equal to half of the heat capacity calculated from
a volume of the homogeneous sample represented by the sur-
face S and the characteristic thermal diffusion length A. This
heat capacity can be measured equally from the in-phase or
the out-of-phase oscillating temperature component. It is well-
known that the relaxation time constant involved in these types
of situations is approximately:

Crmes =

C, .
= - (34)

L2
Tint ~ ) (35)

With (27) we have

L (36)

WTint ~ F

Consequently the heat capacity measured in this latter experi-
ment can be expressed as follows:

C
A/ @DTint

where C is the heat capacity due to the entire volume of the
sample.

Cy =~

@37)

4.3. Entropy production

The instantaneous entropy production by unit of volume
resulting from the irreversible aspect of the propagation of heat
in diffusive media is given by

2
ok (ar) )

This formula is derived again from the product of the thermody-
namic force V,(1/T) ~ @T/ T02 in the linear regime of validity
of the Fourier’s law, with the thermodynamic induced flux, the
heat flux (see (28)). Multiplying by the constant surface S and
integrating from zero to the infinity, it gives the instantaneous

rate of production of entropy in the entire volume:

+o00 2
k (0T
oi=S [ | dx
15 ox
0
+o00

_ 2k(8To)*S 2x ) x
= AZTg/EXp 0 Ccos (wt— X> dx
0

_ (0To)’wC;, [

47

1+ %cos(Za)t) + isin(Zwt)} (39)

Taking the time average of this latter expression over one period
of the temperature cycle gives:

_ (6To)? C,, (6To)? ,

Oi=n—p— =75 C (40)
12 2 T

In the appendix, we show also the validity of this relation in
the particular case of ac-calorimetry in diffusive regime. We can
assume that this expression is also valid for any kind of diffusive
experiments with any types of sample with complicated spatial
geometry.

5. Internal thermal relaxation time constant of the heat
flux

5.1. Beyond the Fourier’s law

Some specific situations can happen in which the Fourier’s
law is not valid anymore. As a matter of fact, Fourier’s law
yields to a paradoxical infinite speed of propagation of heat in
a medium. In fact, when the ratio of the absolute temperature
on the mean free path of the heat carriers becomes small as
compared to the temperature gradient, the Fourier’s law goes
out of its domain of validity [9]:

Eg > } = Fourier isnotvalid (41)
T ox l
where [ is the mean free path of the heat carriers. This partic-
ular situation can be reached theoretically and experimentally
in studies of propagation of heat in non-homogeneous diffusive
media [10]. Anyway, the discussion on the domain of validity
of the Fourier’s law seems to be still opened. For instance, let
us suppose that a modulated calorimetric experiment is realized
in such a situation. A supplementary term, taking into account
the relaxation time constant t of the heat flux (relaxation of the
heat carriers) has to be added to the classical Fourier’s law. This
yields to the Vernotte—Cattaneo equation [11,12]:

do dg
vt = KAT (42)
Itis straightforward to see that the classical Fourier’s law, where
K isthe internal thermal conductance of asample, is found when
this relaxation time constant becomes negligible. Eq. (42) is a
first order linear equation ensuring that once again the treatment
is realized in the vicinity of thermodynamic equilibrium. As
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usual, the temperature variation AT in (42) is written:

If we write P=dQ/dr the heat flux, then at equilibrium P =
0and Ty = 0 and we recover the Fourier’s law:

Py = Ks(Tgc — To) (44)

In order to consider disequilibrium around this constant dc situ-
ation (stationary condition), the \ernotte—Cattaneo equation can
more explicitly be written:

T(SP+(SP:K5T3(; (45)

where §P = P(r) — Py is the little departure of P around its
constant equilibrium value Py. The resolution of (45) in complex
notations and under stationary conditions yields to

5P* _ Ks T;C

14wt (46)

Let us remark that the heat flux propagating inside the sample is
the sum of two oscillating components with a phase difference
of /2. A part of the thermal power is dispersed, and the other
part is absorbed due to the relaxation of the heat carriers inside
the sample. From this last result, a different perspective might be
to consider a complex thermal conductance inside the sample.

5.2. Complex heat capacity

Starting with the definition (5) of the complex heat capacity
we obtain:
sP* K T K 1
Cmes = —— :_7572 —i—- 3 (47)
loTg o [1+(07)7] @ [1+(w7)]
Consequently, just beyond the Fourier’s law the imaginary part
of the frequency dependent complex heat capacity is
_ K 1
o [+ (0]

/"

(48)

5.3. Entropy production

Let us start with the same definition (14) of the rate of pro-
duction of entropy as a product of a thermodynamic force by the
induced thermodynamic flux:

U _ dOP (AT + Tao)
"Tdr T dr 8

(49)
This time, the induced thermodynamic flux is just given by (46)
and we obtain (in complex notations):

(ATyc + Ty) —(p KsTy '\ (ATgc + Ty)
2 1+iwt ¢

o = P*(r)
° (50)

The dc rate of production of entropy which maintains the system
in a non-equilibrium quasi-stationary state is found again (see

Eq. (17)):

2 2

AT, ATee P
oidC=K3< dC) — Py = 0 (51)
To T2~ KsT{

This time, the permanent heat flux is flowing inside the sample
from the hot source towards the cold source, and the internal
thermal conductance across the sample replaces the heat leak of
the non-adiabatic case. For the ac part, all the other oscillating
terms are either terms modulated at the frequency w or terms
expressed as a product of two oscillating terms in quadrature,
apart for one term which oscillates at twice the frequency. When
the net entropy produced over the time scale of the experiment
is calculated by taking the time integral over one cycle, only this
latter term contributes. It is straightforward to see that this term
is

_ K. ST2 8Tae \ 2
o= L () 2
o [1+ (wr)7] T Tp

6. Kinetic relaxation time constant of internal degrees
of freedom

When a particular internal degree of freedom is suddenly
perturbed by a temperature variation, it relaxes following a
characteristic kinetic relaxation time constant. This character-
istic time is the cause of the so-called frequency dependent
complex heat capacity or generalized calorimetric susceptibility
[13,14]. This later thermodynamic complex quantity is known
for a long time ago. The frequency dependent complex heat
capacity appears at the beginning of the 20th century in the field
of ultrasonic absorption on diluted gas. Then this notation was
refund later in the field of chemical relaxation and after used a
lot in the famous calorimetric experiments of Birge and Nagel
with the so-called 3w calorimetric method. We would just like
recall here in a summary the important physical aspect of this
unusual thermodynamic quantity [1-3].

Firstly, a very important hypothesis necessary to understand
well this concept is to assume that the system is in thermal
equilibrium. That is to say that the first two studied previous
thermal relaxation time constants do not play a role here. For
ac-calorimetry experiments, mathematically this requirement
implies the two following inequalities:

1
Tint K ; K Text (53)

Experimentally the useful working frequency range is chosen
in such a way that the system is in a stationary regime with
external temperature equilibrium (adiabaticity conditions) and
with internal temperature equilibrium (infinite thermal diffusiv-
ity and perfect thermal contact). Secondly, let us now observe
a particular internal degree of freedom inside the sample. This
internal degree of freedom generally contributes to the total heat
capacity of the sample under study. That is to say, among the
quantity of heat supplied to the sample by the experimental-
ist, this degree of freedom can absorb the necessary amount
of heat which totally excites it, allowing the system to be in
another equilibrium thermodynamic state (another sample con-
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figuration, another physical state, another chemical composition,
another phase, etc.). However, if heat is supplied in a shorter
time interval than the kinetic relaxation time constant of the
degree of freedom, this degree does not contribute entirely to
the equilibrium value of the measured heat capacity under the
time scale of observation (because it is still relaxing). In this
situation, the measured heat capacity is a non-equilibrium quan-
tity which varies on time. The heat capacity becomes a dynamic
quantity. On a strict thermodynamic point of view, the sample is
out of equilibrium. As an example, the most well-known case of
irreversible process is the case of chemical reactions where the
internal degree of freedom is characterized by an internal param-
eter, or an order parameter, usually called degree of advance of
the reaction or extent of the reaction. Over a given variation of the
temperature of the sample in a given time interval, it is possible
that the extent of the reaction can not reach its equilibrium value
during this time scale because of the slow kinetic of the chemical
reaction. Sometimes, the kinetic of the internal reorganization
inside the sample is so slow, that the internal degree of freedom
is completely frozen. The sample is thus completely frozen-in
over the time scale of observation. At this level, from an original
work of Prigogine and Mazur [15], we have envisaged recently
that during the relaxation of the order parameter characterizing
the slow internal degree of freedom, a certain amount of heat is
lost (or absorbed) along a virtual axis represented by the value
of this order parameter [3]. Consequently, this amount of heat
does not participate to the equilibrium part of the measured heat
capacity, exactly in such a same way envisaged for irreversible
heat diffusive effects and irreversible relaxation of heat carriers
of the previous sections. Moreover, this relaxation is accompa-
nied by a definite positive entropy production which, when it is
averaged over the time scale of the experiment (positive entropy
creation), is directly connected to the imaginary part of the com-
plex heat capacity exactly in a same manner than in the case of
non-equilibrium temperature of the sample (non adiabaticity and
non homogeneity of the temperature of the sample).

7. Conclusion

When a time constant appears in modulated temperature
calorimetric experiment, it has to be compared to the charac-
teristic time scale of the experiment in order to see whether
the experiment is reversible (at thermodynamic equilibrium) or
irreversible (out of thermodynamic equilibrium). When this time
constant cannot be neglected as compared to the time scale of
observation, the heat capacity measurement becomes dynamic
and the measured heat capacity becomes a complex number. For
each time constant considered in this paper, it has been demon-
strated that the imaginary part of the complex heat capacity is
connected following exactly the same equality to the positive
entropy produced over the time scale of observation. The pres-
ence of an imaginary part in the complex heat capacity indicates
that a part of the total heat supplied to the system cannot totally
excite the sum of the degrees of freedom constituting the whole
heat capacity of the system. In the case of the non-adiabaticity,
this amount of heat flows away from the sample via the heat
leak. Since the imaginary part is inversely proportional to the

thermal frequency, this effect is accentuated at low frequency.
On the other hand, for all the others time constant considered
(thermal diffusivity, finite velocity of the heat carriers, and slow
internal degree of freedom), the higher is the thermal frequency,
the bigger is this quantity of heat lost within the sample for the
measurement of the static equilibrium heat capacity.

From the results obtained in this paper, we would like to ask
an opened question: since the same fundamental relationship
is obtained either for the time constant implied in the thermal
equilibrium of the sample (thermal diffusivity and calorimet-
ric adiabaticity) or for the non-equilibrium behaviour of slow
internal degrees of freedom within the sample, may this remark
give rise to a generalized definition of the temperature? May the
heat capacity and particularly its imaginary part give rise to a
more general definition of the temperature for systems out of
thermodynamic equilibrium?
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Appendix A

Ingeneral, in ac-calorimetry experiments, asample of volume
V=_S8Lis linked by a thermal conductance K to a thermal bath of
constant temperature Tp (cf. Fig. 7). The heater is assumed to be
located at the position x =0 and the thermometer at the distance
x =L from the heater on the sample as depicted in Fig. 7.

The two boundary conditions necessary for the resolution of
the Fourier’s diffusion equation (see Eg. (24)) are in this case:

(C:jQ) = Py — KTy—o, <dQ> =0
I /) =0 dt x=L

Thermometer

(A1)

x=:l

*=0

Heater P(t) 5 P,[1+ exp(iewt)]

K

LT,

Fig. 7. Typical situation of ac calorimetry experiment. A heater supplied an
oscillating thermal power at a face of the sample and a thermometer records the
temperature at the other face of the sample at a distance L from the heater.
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For this geometry, the stationary solution of the diffusion equa-
tion yields to

T () = Poch(ax — 6) exp(iwt)
a Kch6é + K0sho

with Ks=k(S/L) the internal thermal conductance inside the
entire sample volume and the complex parameter a:

(A2)

a=oaL(l+1) (A.3)
and the complex parameter 6:
0= (1+i) (A.4)
with
wC
=4/ — A5
=\ 2k, (A-9)

and C = pSLc the total heat capacity of the sample.
The complex heat capacity at the position x =0 can be defined
as follows:

Po Po Po
Cres = = — = — (A.6)
(07/01)y—q 0Ty .o 10T, . cht
where T3 _; is the oscillating temperature measured with the
thermometer.

From this definition, the imaginary part of the complex
impedance of the measurement is calculated:
(xKs/2)(sh2a — sin 2a)
( 1 ) +K(ch?a — sin® a)
Im = -
Crnes K?(ch?a — sin &) + 2a2K§(sh2a
+sin? &) + a K K (sh20 — sin 2«)

(A7)

Considering that the experiment is realized at such a frequency
than the sample is thermally insulated from the heat bath (adi-
abaticity condition), the latter equation is simplified by putting
K=0:

sh2a — sin 2«

1
: = A8
" (Cmes> daKs(sh?a + sin? @) (A8)

The entropy production is calculated within the entire sample
by

L
k (3T TN
ai:/(ﬂUXXforce)dV:S/2< ac) ( ac) dx
15 0x ox
0

(A.9)

where the modulus of the oscillating temperature and the
constant dc gradient across the sample are still together
neglected before the bath temperature Ty. The cc super-
script on the second temperature gradient means the complex
conjugation.

The temperature gradient is obtained from (A.2):
dT,c _ aPosh(ax — 0)exp(ior)
ox  KchO + KsBsho
(/L)1 + D) Pofsh[e((x/L) — 1)] cos[e((x/L) — 1)]
+ich[o((x/L) — L)]sin[a((x/L) — 1)]}exp(iwt)
[Kchacosa + aKs (sha cosa — cha Sina)]
+i[Kshasina + aKs (cha sina + sha cos )]
(A.10)

Thus

ATE\ [ dTE\S
( ox ) <8x>
_ 2(o?/L?) PE{sin[a((x/L) — 1)] + sh?[a((x/L) — 1)]}

K2(ch?a — sin? o) 4 202 Ksz(shza
+sin? &) + a K Ks(sh2o — sin 2)

(A.11)
The entropy production is
Pg aKs sh2a — sin 2«
oi= —&—
I TO2 2 K%(ch?a —sin?a) + 20521(52 (sh?a + sin? &)
+aK K (sh2a — sin 2a)

(A.12)

Taking the limit when K tends to zero (adiabaticity) and inte-
grating over one half a period of the modulation (because of the
complex conjugation) gives:

_ b4 Pg aKs sh2a — sin 2«
oj=——%5— -
T o T2 2 202K2%(sh?a + sin? a)
P2 1 8Tac \ 2
=20 m ( ) - n(“) c” (A.13)
Ty Crmes To
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