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Abstract

This work is dedicated to investigate the dynamic effective thermal properties of ceramics—metal functionally graded fibrous composites
resulting from thermal waves. A micromechanics-based thermo-dynamical model is developed to predict the distribution of dynamic effective
thermal properties of functionally graded fibrous composites in the gradation direction. Generally speaking, in functionally graded materials there
exist two microstructurally distinct zones: fiber-matrix zone and a transition zone. In fiber-matrix zone, based on the heat conduction equation in
materials, the dynamic effective thermal properties for any macroscopic material points are determined by employing effective medium method in
the corresponding microstructural representative volume element (RVE). In transition zone, a transition function is introduced to make the wave
fields continuous and differentiable. Numerical examples of the dynamic effective thermal properties in the gradation direction under different
parameters are graphically presented. Obtained results reveal that the material properties of each phase, the incident frequency, and the gradation
parameter of materials have great effect on the distribution of dynamic effective properties in the gradation direction. In different material zones,

the effect displays great difference. At last, the results are discussed in detail.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Functionally graded materials (FGMs) are a new generation
of engineering materials, wherein the micro-structural details are
spatially varied through non-uniform distributions of the rein-
forcement phases. An ideal FGM combines the best properties
of metals and ceramics—the toughness, electrical conductiv-
ity, and machinability of metals, and the low density, high
strength, high stiffness, and temperature resistance of ceram-
ics. The volume fraction of FGMs changes gradiently, and the
non-homogeneous microstructures in the materials produce con-
tinuous graded macroscopic properties, such as the thermal
conductivity, specific heat, mass density and elastic modulus.
All the properties make FGMs preferable in many advanced
applications, e.g., thermal barrier coating, thermal protection
of reentry capsule, furnace liners, personal body armor, and
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heat resistance materials for the electromagnetic sensors [1,2].
So the theoretical and experimental investigations of the effec-
tive properties of FGMs have received great interest in recent
years.

The determination of the static effective properties of func-
tionally graded materials has been reported in some literatures
in the past decade. There are many methods that are currently
applied for getting the material property distribution of FGMs.
The most common method is the law of mixture method, which is
normally used for laminated composites. The power law and the
exponential law are also commonly used in many researches.
Khor and Gu [3] presented an experimental investigation on
the thermal diffusivity/conductivity of plasma-sprayed function-
ally graded thermal barrier coating, and the mixture method of
the material properties was considered. By means of essential
and natural boundary conditions, Ostoja-Starzewski and Schulte
[4] demonstrated the effective thermal conductivities of FGMs.
Based on a micromechanics-based elastic model, Yin et al. also
derived the static effective elastic properties (Young’s modulus
and Poisson’s ratio) [5] and effective thermal property (thermal
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conductivity) [6] of functionally graded materials, and the power
law variation of material properties was considered.

It is well known that the material structures under dynamic
mechanical and thermal loading are more important in engineer-
ing [7], so the researches on the dynamic effective properties
of composite materials are crucial for designing more practical
materials. However, due to the coherence of wave scattering in
dynamics and the multiple scattering of thermal waves among
the fibers, the theoretical analysis of the dynamic effective
properties constitutes a much more difficult task than that of
the static problem. Up to present time, the researches on the
dynamic effective properties mainly focused on the effective
properties under mechanical loading. Based on the multiple
scattering theory, Foldy [8] studied earlier the effective wave
number of the scalar wave propagating through the inhomoge-
neous medium with distributed particles. Subsequently, Bose
and Mal [9] extended the multiple scattering theory of the scalar
waves to the elastic waves and enhanced the theory by introduc-
ing the more realistic pair-correlation function to describe the
interaction between two particles accurately. Adopting Foldy’s
theory, Nozaki [10] studied the propagation and scattering of P
and SV waves in a fiber-reinforced metal-matrix composite with
thick non-homogeneous interface layers and the effect of the
layer property on effective elastic modulus was also analyzed.
Liu and Kriz [11] investigated the scattering of shear waves in a
multiphase fiber—-matrix composite, and the effect of interfacial
material properties on the dynamic effective properties was also
discussed.

To the authors’ knowledge, the literatures on the dynamic
effective thermal properties of FGMs are limited in numbers.
To obtain desired thermal properties and dynamical reliability,
reasonable dynamical thermal models are required. Recently,
Chakrborty and Gopalakrishnan [12] employed spectral finite
element method to analyze the wave propagation behavior in a
functionally graded beam subjected to high frequency impulse
loading. The thermal and mechanical properties are modeled
either by explicit distribution law like the power law and the
exponential law or by rule of mixture. A new beam element was
also developed to study the thermoelastic behavior of function-
ally graded beam structures, and both exponential and power
law variations of material property distribution were considered
[13].

In the present paper, effective medium method (EMM) is
applied to predict the dynamic thermal behavior of FGMs under
thermal waves. Effective medium method is a more accurate
method for evaluating the effective field and computing the
dynamic effective properties in randomly distributed elastic
medium, and it has been successfully applied to analyze the
wave field in composite materials [14,15]. By making use of this
method, one can change an original inhomogeneous medium for
a homogeneous one with the effective dynamic properties of the
former (the homogenization problem). This substitution essen-
tially simplifies the analysis of the propagation of various types
of waves in composite materials. The effective medium which
is equivalent to the original composite material is a medium
with space and time dispersion, and hence, its parameters are
functions of frequency of the incident field.

The remainder of this paper is organized as follows. In Sec-
tion 2, a micromechanics-based thermo-dynamical model is
constructed for analyzing the microstructure of fiber-reinforced
graded materials. The power law variation of the material prop-
erties is considered. In the fiber—matrix zone, a representative
volume element (RVE) for a material point is used to statistically
represent the microstructure in the neighborhood. In Section 3,
based on Fourier heat conduction equation in materials, the dis-
persion relation of effective wave number in the RVE of zone 1
is derived by using effective medium method, and the dynamic
effective thermal properties (thermal conductivity, specific heat
capacity and mass density) are obtained by iterative scheme.
The dynamic effective thermal properties in zones 2 and 3 are
calculated in Section 4. In Section 5, the numerical examples of
dynamic effective thermal properties under different parameters
are graphically presented. Comparisons with the static effec-
tive thermal properties in previous literatures are also presented
and discussed. Section 6 presents the detailed conclusion of this
investigation.

2. A micromechanics-based thermo-dynamic model of
temperature field in functionally graded materials

Consider a typical fiber-reinforced FGM microstructure with
agradual compositional variation from heat resistant ceramics to
fracture-resistant metals, which is depicted in Fig. 1. The global
coordinate system of the FGM is denoted by (XOY) with ¥
being the continuous gradation direction. The overall gradation
thickness of the FGM is d. Three material zones exist in the
gradation direction: zone 1 (0 < Y < ds) including phase B fibers
with phase A matrix, zone 3 (d2 < Y < d) including phase A fibers
with phase B matrix, and the transition zone 2 (d1 < Y <db). In
fiber—matrix zone, it is assumed that the dispersed fibers parallel
to each other are distributed randomly in continuous matrix. In
the transition zone, the fiber and matrix phases cannot be well
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Fig. 1. Schematic of material zones and incident waves in functionally graded
materials.
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defined because the two phases are interpenetrated into each
other as a connected network.

For simplicity, both phases are assumed to be isotropic mate-
rials, and in each fiber—matrix zone fibers are assumed to be
identical cylinders fully bonded to the matrix. The volume frac-
tion of fibers varies gradually, and the variational function is
¢(Y)=(Y/d)™, in which m is the gradation parameter [6,12,13].
Let Aa, ca, pa be the thermal conductivity, specific heat capac-
ity and mass density of phase A, and Ag, cg, ps those of
phase B. Suppose that a monochromatic thermal wave of fre-
quency w propagates in the fiber-matrix FGM along the Y
direction.

A microscopic representative volume element (RVE) is pro-
posed to represent the microstructure in the neighborhood of a
material point in the fiber—matrix zone. For any macroscopic
material point Yy in the range of (0 <Y <d,), the correspond-
ing micro-structural RVE contains a number of identical fibers
of phase B embedded in a continuous matrix of phase A, so
that the overall volume fraction of phase B should be consistent
with the macroscopic counterparts ¢(Yp). As seen in Fig. 1, the
whole RVE domain is denoted by D, and the microscopic coor-
dinate system (oxy) is constructed with its origin at the material
point Yy. In the RVE, the effective medium method is employed
to derive the dynamic effective thermal properties and wave
fields.

3. Solution of dynamic effective thermal properties in
zone 1

In the two-dimensional case, when the inner thermal source is
omitted, the heat conduction equation in materials is expressed
as

aT(r, 1)
o

AP)VAT + Va(r) - VT = p(r)e(r) 1)
where v is the nabla operator, v2=082/0x2+3%/9y? is the
two-dimensional Laplace operator, T(r,?) is the temperature in
materials, and A(r), ¢(r) and p(r) are the thermal conductivity,
specific heat capacity and density of materials, respectively.

The unsteady and periodical solution of the problem is inves-
tigated. Let T= Ty + Re[0(r) exp(—iwt)], EQ. (1) can be changed
into the following equation [16]:

A(r)Vzﬁ(r) + VAR V) + iwp(r)e(r)v(r) = 0, 2

Here Ty is the mean temperature in materials, 9(r) is the ampli-
tude of temperature, w is the circular frequency of thermal
waves.

Suppose that A(r), ¢(r) and p(r) may be presented as the
following sums:
A(r) = Aa + A1s(r),

M=AB — Aa, c(r) =ca+c1s(r),

c1=cg—cA, p(r)=pa+p1s(r), p1=ps—ca (3)
where s(r) is the characteristic function of the region s occupied

by the fibers (s(r)=1if res, s(r) =0 if r ¢ s).

From Egs. (2) and (3), the governing equation of temperature
in the REV can be obtained:

AAVZO(r) + ipacawd(r) = —Vart(r)s(r) — iwp1e1d(r)s(r),
(4)

Here 1(r) = Vo (r).

Applying the operator (AaV2 +ipacao) ! to both sides of
Eq. (4), we obtain the integral equation for the temperature field
?(r) in the form:

9(r) = IA() + / [VG(r — FYmi(r)

+iwG(r — r)p1erd(r)]s() dr’, )

where 9a(r) is the temperature field that would have existed
in the medium without fibers (A1 =0, ¢1=0, p1=0). G(7) is
the Green function of the operator AoV +ipacaw [17], and
is expressed as

i
Glr) = =g Hg (kalr). (6)
where Hp(-) is the Hankel function of the first kind and zero-
order, ka is the complex wave number of thermal waves, and
ka =1 +Dkwith k = /pacaw/20A.

According to the hypotheses of EMM, the interaction
between many fibers in the RVE can be reduced to a one-fiber
problem. This problem is the diffraction of a monochromatic
thermal wave on an isolated fiber embedded in the effective
medium with the properties Ae, ce and pe. The effective thermal
wave field is 9e(r) = 9 eike =@ with ke = ken. Note that ke is
the effective wave number.

Thus, the integral equation denoted by the effective field in
the one-fiber region is described as

() = Da(r) + / [VGolr — r')reai(")

+iwGe(r — "/)Pell?(”/)] dr, ()

Here Sp is the area of the fiber cross-section, Ge(r) is the
Green function of effective medium, and Ae1 = A — Ae, Ce1 =
CB — Ce, Pel = PB — Pe-

Let the general solution of Eq. (5) be known, and the temper-
ature field 9(r) inside the fiber with the center at point > =0 be
presented in the form:

9(r) = (ADe)(r) = AlDee™"], (8)

Here A is a linear operator that depends on the dynamic prop-
erties of the effective medium and fiber.

If the fiber occupies area So with the center at a point % 0,
one can present the field ¢#(r) inside such an inclusion in the
following form (r € sg)

) = A[l_?e eike~(r7ro) eike~ro] — A[eike(rfro)]ée eike.r’0
— A[eike-(rfro)] efikg(rfro)l_}e pike'r

= A(r — r%)0e(r), A% (2) = A[eke7]e ke, 9)
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Similarly, from z(r) = V(r), the following can be obtained:
10r) = V A[De e =) gike ] = AT(r — 100, (r),
A[(Z) — VA[eike-z]eike.z’ (10)

Note that A”(z) and A’(z) do not depend on the position
r=0 of the center of the fiber. They can be constructed from the
solution of the one-fiber problem for the fiber centered at the
point »=0.

Let us introduce random functions x”(r) and x'(r) in 2D-
space. These functions coincide with A?(r — #) and A’(r — r)
if 7 is inside the fiber centered at point #(i=1, 2, 3, ...), and
they are equal to zero in the matrix. Substitution of Egs. (9) and
(10) into Eq. (5) yields the following:

5(r) = Dalr) + / [VG( — FYix (*)0e(r)

+HoG(r = r)preix” ()9S dr, (11)

In order to find the mean wave field, let us average both
sides of Eq. (11) over ensemble realization of the random set of
fibers, and take into account the condition of ¥¢(r) = (¢(r)), the
following can be obtained:

(3() = DA) + $(¥o) / [VG(r — r')as A°

+iwG(r — r’)plclAp](z?(r’)) ar, (12)

=i ! v = i r)dr
Apllee) = lim o2 /QX (dr=15 </ AT >(’13)

¢ o 1 t _i ") dr
Alke) = M ooy /QX (dr=19 </A () >’(14)

where A, and A€ are constant scalar and vector, respectively,
is the two dimensional plane (x,y) in the RVE, ¢(Yp) is the vol-
ume fraction at the material point Yp, and s is the area occupied
by the typical fiber.

Let us apply the Fourier transform to Eq. (12) and multiply
the result with La (k) = Aak? — ipacaw. Taking into account the
equations:

LaAK)G(k) =1,  La(k)9a(k) =0, (15)

the following can be obtained

Le(k)(9(k)) = 0,

Le(k) = La(k) + ¢(Yo)r1ik; A°(ke) — ¢(Yo)priwA p(ke)
—¢(Yo)criwA p(Ke). (16)

Because vector A€ in Eq. (15) is a function of the vector ke

only, A€ may be written as
Ac(ke) = —ikeHC(ke), ke = |Ke| (17)

where Hc(ke) is a scalar function. If the mean temperature field
(®(r)) is a plane thermal wave ((9(r)) = e e'ke "), its Fourier

—~
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r

Fig. 2. Schematic of the wave fields in one-fiber problem.

transformis (9(k)) = (Zn)‘léea(k — kg), and Eq. (15) takes the

form Le(kK)S(k — ke) =0, namely:

Le(ke) = La(ke) + ¢(Yo)21(ke)” H(ke) — ¢(Yo)pric A (ke)
—¢(Yo)c1iwA ,(ke) = 0. (18)

This equation may be simplified as

)»e(ke)kg — iw[pe(ke) + ce(ke)] =0,
Le(ke) = Aa+d(Yo)r1 He(ke), pe(ke)=pa+¢(Y0)p1 A (ke),
ce(ke) = ca + d(Yo)c1 Ap(ke). (19)

Note that Eq. (19) is the dispersion relation for the effective wave
number ke of the mean thermal wave field in the RVE.

The one-fiber problem in the effective temperature field is
shown in Fig. 2. Zone | denotes the effective field, zone 11 denotes
the matrix, zone 111 denotes the fiber, and the radius of the fiber
is a(a < d1). The relation between a and b is (a/b)? = ¢(Yo).

To obtain Hc(ke) and A, (ke), the differential equations of the
one-fiber problem are given by

ipgcBW

FPo+kE9 =0, |rl<a Kki= ) (20)
AB
i
PO +k30=0, a<|rl<b K= p’;CA“). (21)
A
|
PO +k20=0, b<l|r|, K= pe;e‘” (22)
e
The solutions of them have the following forms:
o
9(r) =Y _anJn(ker) cos(mg), 0<r<a. (23)
m=0
o
9(r) = > lem Jm(kar) + dm N (kar)] cos(mg),
m=0
a<r<bhb. (24)
o0 -
9(r) = > _[€m(—1)"Oem(ker) + by Hy (ker)]
m=0
x cos(me), b < r. (25)
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where N, (-) is the mth Bessel function of the second kind, H,,,(-)
is the mth Hankel function of the first kind, and €,, =1, if m=0,
€n=2ifm>0.

According to the continuous boundary conditions of the
temperature and heat-flux density around the fiber, the mode
coefficients take the following forms:

1 1
am = —(B1Az — B2A1z). b = ——(B1Az1 — B2An),

T T
cn = —Anap, dn = ———Anap,
21L0 2100

A= AnA» — ArAz,

A1l = )\AkAaJm(kBa)N,’n(kAa) — ABkBaJ,/n(kBa)Nm(kAa),
A12 = Aekeb N,y (kab)H,, (keb) — akabHy (keb) N, (kab),
A2y = hekebJym (kpb)H,, (keb) — AakabHy, (keb)J,, (kab),

Bi = € p(—i)"Oe[AakabJy (keb)N., (kab)
—ekebJ), (keb) N,y (kab)],

By = € py(—i)"Oe[AakabJy (keb)J!, (knb)
—AekebJ! (keb)Jyn (kb)]. (25)

Substituting Eq. (23) into Egs. (13), (14) and (17), the fol-
lowing can be obtained:

[ ()

Ap = Zamgma Hc = Zamglm» (26)

m=0 m=0
where

A - ke a) I (K

8&m = TH[ BIm+1(ksa)Jim(kea)

—keJm(kga) Jmia(kea)], (27)

2j /
&lm = &m + %Jm(kBa)Jm(kea) (28)
e

According to the dispersion relation in Eq. (19), we construct
the numerical solutions of the effective properties. Based on
Eq. (19), the numerical solutions are obtained by the iterative
procedure, i.e.

o= M et — Aa(L e (Yo)a Ho (Kt Ao )],
P = Ot 4 elofs = pa(l+o(Yo)or A (K, o )],

e =it +elclat — cal + ¢(Yo)er A (K, i )],

1/2
. ,0? Crll w - A
no_ 1 e-le , )\’ =,
e =(1+1) (2)49 1 A
_ P, - a
IO]_:—’ Clz—’ (29)
PA cA

where k7, 1Y, ¢, and pf, are the effective parameters for the nth
iteration, the subscript 1 denotes material zone 1, and functions
Hc(kie,r1e), Ap(kie,p1e) and A, (k1e,c1¢) are defined in Eq. (26).
Parameter £(]¢| < 1) is to be chosen for conversion of the iterative

process. As an initial (zero) approximation, the static solu-
tionsk{Y = (1 + 2i)v/[pa + p1@(Yo)l[ca + c1(¥o)]w/71s and
A(l? = A1s are applied. 115 is the static thermal conductivity, and
is proposed as [8]

a(Yo)[1+¢(Y0) B2 /41+[1 — ¢(Yo)]
ad(Yo)(Aa/r8)[1+4(Yo)B2/41+[1 — ¢(Yo)] |
(30)

AMs=Aa |1+

Here « = 3Ag/(AB + 224), B = (A8 — 2a)/(AB + 2X4).

The dynamic effective thermal properties in the RVE cor-
respond to those of the Yy layer in the global coordinate, so
the dynamic effective properties in zone 1 (0 <Y <d;) can be
obtained by solving Eq. (29).

4. Solution of dynamic effective thermal properties in
zones 2 and 3

According to the solving method in zone 1, the dynamic effec-
tive thermal properties in zone 3 (d» < Y < d) can be calculated
by interchanging the fiber and matrix phases.

In transition zone 2 (dy < Y < dy), the fiber and matrix phases
cannot be well defined because the two phases may be interpene-
trated into each other as a connected network. As a sequence, the
effective wave fields of both phases cannot be explicitly deter-
mined by the above method. Following the work of Yin [6], a
phenomenological transition function is introduced as

o(Y) — p(dr) ] [ o(Y) — p(da) } 2
¢(dr) — ¢(d2) | [ p(dr) — Pp(d2) ]

so that the dynamic effective properties can be approximated as
the combination of the solutions for two fiber—matrix zones, i.e.

fr)=|1-2

31)

A2e(Y) = f(Y)h1e(Yo) + [1 — F(¥)]Aze(Y0). (32)
p2e(Y) = f(¥)p1e(Yo) + [1 — f(¥)]pze(Y0). (33)
c2e(Y) = f(¥)ec1e(Yo) + [1 — f(¥)]ese(Yo). (34)

Note that the subscripts 1, 2 and 3 denote the three material
zones in Fig. 1.

5. Numerical examples and analysis

Consider a thermal wave propagating along the Y direction in
functionally graded materials, as shown in Fig. 1. For simplicity,
it is assumed that d = 1. In zone 1 the reinforcing fibers are mate-
rials with high strength and good thermal conductivity, and the
matrix consists of materials with high heat resistance. In zone 3,
the fibers and matrix are interchanged. The following dimension-
less variables and quantities have been chosen for computation:
the wave number is k" = ka = 0.1-2.0, the phase thermal conduc-
tivity contrast ratio is A" = Ag/Aa =5.0-20.0, the phase specific
heat capacity contrast ratio is ¢ = cg/ca = 2.0-5.0, and the phase
density contrast ratio is p* = pg/pa = 2.0-5.0. According to Eqs.
(29) and (32)—(34), the dynamic effective thermal conductivity,
specific heat capacity and density in the overall thick of FGMs
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Fig. 3. Effect of phase thermal conductivity contrast ratio on effective thermal
conductivity (k" =0.01, ¢* =2.0, p" =2.0, m=1.0).

can be obtained. It should be noted that we find that the trunca-
tion after m = 12 gives practically adequate results at any desired
frequencies.

Following Bao and Cai’s suggestion [18], the lower and upper
bounds d; and d are conveniently selected where the corre-
sponding coordinates are Y= 0.4 and 0.6, respectively. The effect
of phase thermal conductivity contrast ratio on the dynamic
effective thermal conductivity in the gradation direction with
parameters: kK =0.01and m = 1.0 is illustrated in Fig. 3. It should
be noted that when k™ = 0.01, the dynamic effective thermal con-
ductivity tends to the static solution. It is found that the results
in Fig. 3 are consistent with the static solutions in Ref. [6].

It can be seen from Fig. 3 that the dynamic effective ther-
mal conductivity in the gradation direction of FGMs increases
as the volume fraction of phase B increases, ranging from zone
1 (phase B as fiber phase) to zone 2 (transition zone) to zone 3
(phase B as matrix phase). Continuous and differentiable jump
is expected in the transition zone when the phase thermal con-
ductivity contrast ratio is relatively great. The greater the phase
thermal conductivity contrast ratio, the greater the jump.

Shown in Fig. 4 is the effect of the phase specific heat capacity
contrast ratio on the dynamic effective specific heat capacity in
the gradation direction with parameters: k& =0.01and m = 1.0. It
can be seen that when the phase specific heat capacity contrast
ratio is small, the effective specific heat capacity in the FGM
gradation direction increases linearly as the volume fraction of
phase B increases, ranging from zone 1(phase B as fiber phase)
to zone 2 (transition zone) to zone 3 (phase B as matrix phase).
However, when the phase specific heat capacity contrast ratio is
great, continuous and differentiable jump is seen in the transition
zone. The greater the phase specific heat capacity contrast ratio,
the greater the jump.

Shown in Fig. 5 is the effect of the phase density contrast ratio
on the dynamic effective density in the gradation direction with
parameters: k¥~ =0.01 and m = 1.0. It can be seen that the effective
density in the FGM gradation direction increases linearly as the
volume fraction of phase B increases, ranging from zone 1(phase

5.0

451 2 (-*=_2..0
40}
351

. 30l
25}
20}

1.6+

1'00 0.1 02z 03 04 05 06 07 08 09 1.0

9

Fig. 4. Effect of phase specific heat capacity contrast ratio on effective specific
heat capacity (K" =0.01, A" =10.0, p* =2.0, m=1.0).

B as fiber phase) to zone 2 (transition zone) to zone 3 (phase B
as matrix phase). Unlike the effective thermal conductivity and
specific heat capacity, when the phase density contrast ratio is
relatively great, the great jump of effective density exists in the
three material zones. From Figs. 3-5, it is clear that when the
variational function of ¢(Y) is the same, the variation of effective
thermal conductivity in the transition zone is the greatest, and
the variation of effective density is the smallest.

The variation of dynamic effective thermal conductivity in
the gradation direction under different frequencies of thermal
waves is depicted in Fig. 6. It can be seen that as the incident wave
number (frequency) increases, the effective thermal conductivity
displays little variation in zone 1, while it shows great variation
in zone 3. That is to say, the increase of incident frequency
has great influence on the material zone with its matrix having
good thermal conductivity, and the greater the wave frequency,
the greater the influence. However, in the material zone with
its fibers having good thermal conductivity, the effect of wave

5.0

451

T, o, ]
1

N
S o

B —

4.0F

3.5F

251

204

1.5+

1.0 1 | | ) )
0 . ; ;

Fig. 5. Effect of phase density contrast ratio on effective density & =0.01,
17=10.0,¢"=2.0,m=1.0.
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Fig. 6. Effect of wave number on effective thermal conductivity A" =10.0,
¢ =20, p"=2.0,m=1.0.

frequency on the dynamic effective thermal conductivity is little.
Asthe incident wave number (frequency) increases, the variation
of dynamic effective thermal conductivity in two fiber—matrix
zones becomes little, while it has great jumps in transition zone.
If the phase thermal conductivity contrast ratio is fixed, the jump
of effective thermal conductivity in zone 2 increases with the
increase of incident wave number.

Results for the effect of dimensionless wave number on the
dynamic effective specific heat capacity in the gradation direc-
tion are presented in Fig. 7. It can be seen that as the incident
wave number (frequency) increases, the effective specific heat
capacity displays little variation in zone 1, while it shows great
variation in zones 2 and 3. It is also clear that the effect of wave
frequency on the effective specific heat capacity is similar to that
on the effective thermal conductivity.

Results for the effect of dimensionless wave number on the
dynamic effective density in the gradation direction are pre-
sented in Fig. 8. It can be seen that as the incident wave number
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Fig. 7. Effect of wave number on effective specific heat capacity A" =10.0,
¢ =50, p’k =5.0,m=1.0.
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Fig. 8. Effect of wave number on effective density A* =10.0, ¢*=5.0, p" =5.0,
m=1.0.

(frequency) increases, the effective density displays little varia-
tion in the three zones. So, the thermal waves in materials have
little effect on the effective density of FGMs. From Figs. 6-8,
the effect of the wave frequency on the effective thermal con-
ductivity in the gradation direction is the greatest, and the effect
of the wave frequency on the effective density is the least.
Changing the phase volume fraction distribution also affects
the dynamic thermal responses of FGMs. Fig. 9 illustrates the
effect of gradation parameter on the distribution of dynamic
effective thermal conductivity in the region of low frequency
with four types of gradation parameter m =0.2, 0.5, 1.5 and 3.0.
Itis clear that when m > 1, the greater the value of m, the greater
the jump of the effective thermal conductivity in the transition
zone. When m <1, the less the value of m, the greater the jump
of the effective thermal conductivity in the transition zone. In
the case of ¥ = 1.0, the distribution of dynamic effective ther-
mal conductivity in the gradation direction with four types of
gradation parameter is given in Fig. 10. From Figs. 9 and 10, it
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Fig. 9. Effect of gradation parameter on dynamic effective thermal conductivity
k"=0.1,2"=10.0, " =2.0, p" =2.0.
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Fig.10. Effectof gradation parameter on dynamic effective thermal conductivity
kK =1.0,2"=10.0, ¢" =2.0, p" =2.0.

can be seen that if m > 1 the variation of incident frequency has
great effect on the distribution of dynamic effective thermal con-
ductivity, and the greater the value of m, the greater the effect.
However, in the case of m < 1 the increase of incident frequency
has little effect on the distribution of dynamic effective thermal
conductivity.

6. Conclusions

In this study, a micromechanics-based thermo-dynamical
model is employed to analyze the dynamic effective thermal
conductivity, specific heat capacity and density in the grada-
tion direction of FGMs. The propagation of thermal waves
along the gradation direction of FGMs is carried out. Compar-
isons with previous literatures demonstrate the validity of the
micromechanics-based thermo-dynamical model.

During the course of derivation, three zones are divided in
the thick of gradation direction, and in each zone the corre-
sponding dynamic effective thermal properties are calculated.
In fiber—-matrix zones, a microscopic representative volume ele-
ment is proposed to statistically represent the microstructure
in the neighborhood of a material point and effective medium
method is applied to derive the dynamic thermal effective prop-
erties. After obtaining the dispersion relation for effective wave
number, the numerical solutions are given by iterative scheme.
The numerical results show that the dynamic effective thermal
properties in FGMs are significantly different from those in
the static case. Therefore, to gain a better understanding of the
microstructure—performance relationship and obtain the desir-
able material properties, it is important to analyze not only the
static effective properties but also the dynamic effective proper-
ties.

Through analysis, it has been found that the dynamic effec-
tive thermal properties in the gradation direction are dependent
on the incident wave number, the material properties of each
phase, and the gradation parameter of FGMs. In the dynamic
case, the effect of thermal wave frequency on the effect thermal
conductivity in the gradation direction of FGMs is greater than
that on the effective specific heat capacity. The effect of thermal
wave frequency on the effect density in the gradation direction
of FGMs is very little, and can be neglected. The increase of
incident frequency has great influence on the material zone with
its matrix having good thermal conductivity. To reduce the jump
of effective properties in the transition zone, the phase proper-
ties contrast ratio should be considered. It is suggested that the
larger transition zone made during FGMs fabrication is desirable
to prevent the significant jump of the dynamic effective proper-
ties when the phase properties contrast ratio is large. In addition,
in the gradation function ¢(Y) = (Y/d)™, the value of m should be
restricted near 1.0, and the optimal value of it is 0.5 <m < 2.0.

The analytical solutions presented in this paper may be useful
for the optimizing design of the FGMs under dynamic thermal
loading.
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