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bstract

This work is dedicated to investigate the dynamic effective thermal properties of ceramics–metal functionally graded fibrous composites
esulting from thermal waves. A micromechanics-based thermo-dynamical model is developed to predict the distribution of dynamic effective
hermal properties of functionally graded fibrous composites in the gradation direction. Generally speaking, in functionally graded materials there
xist two microstructurally distinct zones: fiber–matrix zone and a transition zone. In fiber–matrix zone, based on the heat conduction equation in
aterials, the dynamic effective thermal properties for any macroscopic material points are determined by employing effective medium method in

he corresponding microstructural representative volume element (RVE). In transition zone, a transition function is introduced to make the wave
elds continuous and differentiable. Numerical examples of the dynamic effective thermal properties in the gradation direction under different

arameters are graphically presented. Obtained results reveal that the material properties of each phase, the incident frequency, and the gradation
arameter of materials have great effect on the distribution of dynamic effective properties in the gradation direction. In different material zones,
he effect displays great difference. At last, the results are discussed in detail.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Functionally graded materials (FGMs) are a new generation
f engineering materials, wherein the micro-structural details are
patially varied through non-uniform distributions of the rein-
orcement phases. An ideal FGM combines the best properties
f metals and ceramics—the toughness, electrical conductiv-
ty, and machinability of metals, and the low density, high
trength, high stiffness, and temperature resistance of ceram-
cs. The volume fraction of FGMs changes gradiently, and the
on-homogeneous microstructures in the materials produce con-
inuous graded macroscopic properties, such as the thermal
onductivity, specific heat, mass density and elastic modulus.

ll the properties make FGMs preferable in many advanced

pplications, e.g., thermal barrier coating, thermal protection
f reentry capsule, furnace liners, personal body armor, and
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eat resistance materials for the electromagnetic sensors [1,2].
o the theoretical and experimental investigations of the effec-

ive properties of FGMs have received great interest in recent
ears.

The determination of the static effective properties of func-
ionally graded materials has been reported in some literatures
n the past decade. There are many methods that are currently
pplied for getting the material property distribution of FGMs.
he most common method is the law of mixture method, which is
ormally used for laminated composites. The power law and the
xponential law are also commonly used in many researches.
hor and Gu [3] presented an experimental investigation on

he thermal diffusivity/conductivity of plasma-sprayed function-
lly graded thermal barrier coating, and the mixture method of
he material properties was considered. By means of essential
nd natural boundary conditions, Ostoja-Starzewski and Schulte

4] demonstrated the effective thermal conductivities of FGMs.
ased on a micromechanics-based elastic model, Yin et al. also
erived the static effective elastic properties (Young’s modulus
nd Poisson’s ratio) [5] and effective thermal property (thermal
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with phase B matrix, and the transition zone 2 (d1 ≤ Y ≤ d2). In
fiber–matrix zone, it is assumed that the dispersed fibers parallel
to each other are distributed randomly in continuous matrix. In
the transition zone, the fiber and matrix phases cannot be well
C. Hu, X.-Q. Fang / Thermo

onductivity) [6] of functionally graded materials, and the power
aw variation of material properties was considered.

It is well known that the material structures under dynamic
echanical and thermal loading are more important in engineer-

ng [7], so the researches on the dynamic effective properties
f composite materials are crucial for designing more practical
aterials. However, due to the coherence of wave scattering in

ynamics and the multiple scattering of thermal waves among
he fibers, the theoretical analysis of the dynamic effective
roperties constitutes a much more difficult task than that of
he static problem. Up to present time, the researches on the
ynamic effective properties mainly focused on the effective
roperties under mechanical loading. Based on the multiple
cattering theory, Foldy [8] studied earlier the effective wave
umber of the scalar wave propagating through the inhomoge-
eous medium with distributed particles. Subsequently, Bose
nd Mal [9] extended the multiple scattering theory of the scalar
aves to the elastic waves and enhanced the theory by introduc-

ng the more realistic pair-correlation function to describe the
nteraction between two particles accurately. Adopting Foldy’s
heory, Nozaki [10] studied the propagation and scattering of P
nd SV waves in a fiber-reinforced metal–matrix composite with
hick non-homogeneous interface layers and the effect of the
ayer property on effective elastic modulus was also analyzed.
iu and Kriz [11] investigated the scattering of shear waves in a
ultiphase fiber–matrix composite, and the effect of interfacial
aterial properties on the dynamic effective properties was also

iscussed.
To the authors’ knowledge, the literatures on the dynamic

ffective thermal properties of FGMs are limited in numbers.
o obtain desired thermal properties and dynamical reliability,
easonable dynamical thermal models are required. Recently,
hakrborty and Gopalakrishnan [12] employed spectral finite
lement method to analyze the wave propagation behavior in a
unctionally graded beam subjected to high frequency impulse
oading. The thermal and mechanical properties are modeled
ither by explicit distribution law like the power law and the
xponential law or by rule of mixture. A new beam element was
lso developed to study the thermoelastic behavior of function-
lly graded beam structures, and both exponential and power
aw variations of material property distribution were considered
13].

In the present paper, effective medium method (EMM) is
pplied to predict the dynamic thermal behavior of FGMs under
hermal waves. Effective medium method is a more accurate

ethod for evaluating the effective field and computing the
ynamic effective properties in randomly distributed elastic
edium, and it has been successfully applied to analyze the
ave field in composite materials [14,15]. By making use of this
ethod, one can change an original inhomogeneous medium for
homogeneous one with the effective dynamic properties of the

ormer (the homogenization problem). This substitution essen-
ially simplifies the analysis of the propagation of various types

f waves in composite materials. The effective medium which
s equivalent to the original composite material is a medium
ith space and time dispersion, and hence, its parameters are

unctions of frequency of the incident field.
F
m

ica Acta 464 (2007) 16–23 17

The remainder of this paper is organized as follows. In Sec-
ion 2, a micromechanics-based thermo-dynamical model is
onstructed for analyzing the microstructure of fiber-reinforced
raded materials. The power law variation of the material prop-
rties is considered. In the fiber–matrix zone, a representative
olume element (RVE) for a material point is used to statistically
epresent the microstructure in the neighborhood. In Section 3,
ased on Fourier heat conduction equation in materials, the dis-
ersion relation of effective wave number in the RVE of zone 1
s derived by using effective medium method, and the dynamic
ffective thermal properties (thermal conductivity, specific heat
apacity and mass density) are obtained by iterative scheme.
he dynamic effective thermal properties in zones 2 and 3 are
alculated in Section 4. In Section 5, the numerical examples of
ynamic effective thermal properties under different parameters
re graphically presented. Comparisons with the static effec-
ive thermal properties in previous literatures are also presented
nd discussed. Section 6 presents the detailed conclusion of this
nvestigation.

. A micromechanics-based thermo-dynamic model of
emperature field in functionally graded materials

Consider a typical fiber-reinforced FGM microstructure with
gradual compositional variation from heat resistant ceramics to

racture-resistant metals, which is depicted in Fig. 1. The global
oordinate system of the FGM is denoted by (XOY) with Y
eing the continuous gradation direction. The overall gradation
hickness of the FGM is d. Three material zones exist in the
radation direction: zone 1 (0 ≤ Y ≤ d1) including phase B fibers
ith phase A matrix, zone 3 (d2 ≤ Y ≤ d) including phase A fibers
ig. 1. Schematic of material zones and incident waves in functionally graded
aterials.
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efined because the two phases are interpenetrated into each
ther as a connected network.

For simplicity, both phases are assumed to be isotropic mate-
ials, and in each fiber–matrix zone fibers are assumed to be
dentical cylinders fully bonded to the matrix. The volume frac-
ion of fibers varies gradually, and the variational function is
(Y) = (Y/d)m, in which m is the gradation parameter [6,12,13].
et λA, cA, ρA be the thermal conductivity, specific heat capac-

ty and mass density of phase A, and λB, cB, ρB those of
hase B. Suppose that a monochromatic thermal wave of fre-
uency ω propagates in the fiber–matrix FGM along the Y
irection.

A microscopic representative volume element (RVE) is pro-
osed to represent the microstructure in the neighborhood of a
aterial point in the fiber–matrix zone. For any macroscopic
aterial point Y0 in the range of (0 ≤ Y ≤ d1), the correspond-

ng micro-structural RVE contains a number of identical fibers
f phase B embedded in a continuous matrix of phase A, so
hat the overall volume fraction of phase B should be consistent
ith the macroscopic counterparts φ(Y0). As seen in Fig. 1, the
hole RVE domain is denoted by D, and the microscopic coor-
inate system (oxy) is constructed with its origin at the material
oint Y0. In the RVE, the effective medium method is employed
o derive the dynamic effective thermal properties and wave
elds.

. Solution of dynamic effective thermal properties in
one 1

In the two-dimensional case, when the inner thermal source is
mitted, the heat conduction equation in materials is expressed
s

(r)∇2T + ∇λ(r) · ∇T = ρ(r)c(r)
∂T (r, t)

∂t
, (1)

here � is the nabla operator, �2 = ∂2/∂x2 + ∂2/∂y2 is the
wo-dimensional Laplace operator, T(r,t) is the temperature in

aterials, and λ(r), c(r) and ρ(r) are the thermal conductivity,
pecific heat capacity and density of materials, respectively.

The unsteady and periodical solution of the problem is inves-
igated. Let T = T0 + Re[ϑ(r) exp(−iωt)], Eq. (1) can be changed
nto the following equation [16]:

(r)∇2ϑ(r) + ∇λ(r)∇ϑ(r) + iωρ(r)c(r)ϑ(r) = 0, (2)

ere T0 is the mean temperature in materials, ϑ(r) is the ampli-
ude of temperature, ω is the circular frequency of thermal
aves.
Suppose that λ(r), c(r) and ρ(r) may be presented as the

ollowing sums:

(r) = λA + λ1s(r), λ1=λB − λA, c(r) = cA + c1s(r),
c1 = cB − cA, ρ(r) = ρA + ρ1s(r), ρ1 = ρB − cA, (3)

here s(r) is the characteristic function of the region s occupied
y the fibers (s(r) = 1 if r ∈ s, s(r) = 0 if r /∈ s).
ica Acta 464 (2007) 16–23

From Eqs. (2) and (3), the governing equation of temperature
n the REV can be obtained:

A∇2ϑ(r) + iρAcAωϑ(r) = −∇λ1 t̄(r)s(r) − iωρ1c1ϑ(r)s(r),

(4)

ere t̄(r) = ∇ϑ(r).
Applying the operator (λA�2 + iρAcA�)−1 to both sides of

q. (4), we obtain the integral equation for the temperature field
(r) in the form:

(r) = ϑA(r) +
∫

s0

[∇G(r − r′)λ1 t̄(r
′)

+iωG(r − r′)ρ1c1ϑ(r′)]s(r′) dr′, (5)

here ϑA(r) is the temperature field that would have existed
n the medium without fibers (λ1 = 0, c1 = 0, ρ1 = 0). G(r) is
he Green function of the operator λA�2 + iρAcAω [17], and
s expressed as

(r) = − i

4λA
H

(1)
0 (kA|r|), (6)

here H0(·) is the Hankel function of the first kind and zero-
rder, kA is the complex wave number of thermal waves, and
A = (1 + i)k with k = √

ρAcAω/2λA.
According to the hypotheses of EMM, the interaction

etween many fibers in the RVE can be reduced to a one-fiber
roblem. This problem is the diffraction of a monochromatic
hermal wave on an isolated fiber embedded in the effective

edium with the properties λe, ce and ρe. The effective thermal
ave field is ϑe(r) = ϑ̄e ei(ke·r−ωt) with ke = ken. Note that ke is

he effective wave number.
Thus, the integral equation denoted by the effective field in

he one-fiber region is described as

(r) = ϑe(r) +
∫

s0

[∇Ge(r − r′)λe1 t̄(r
′)

+ iωGe(r − r′)ρe1ϑ(r′)] dr′, (7)

Here S0 is the area of the fiber cross-section, Ge(r) is the
reen function of effective medium, and λe1 = λB − λe, ce1 =

B − ce, ρe1 = ρB − ρe.
Let the general solution of Eq. (5) be known, and the temper-

ture field ϑ(r) inside the fiber with the center at point r0 = 0 be
resented in the form:

(r) = (Λϑe)(r) = Λ[ϑ̄e eike·r], (8)

ere Λ is a linear operator that depends on the dynamic prop-
rties of the effective medium and fiber.

If the fiber occupies area S0 with the center at a point r0 �= 0,
ne can present the field ϑ(r) inside such an inclusion in the
ollowing form (r ∈ s0)

ϑ(r) = Λ[ϑ̄ eike·(r−r0) eike·r0
] = Λ[eike·(r−r0)]ϑ̄ eike·r0
e e

= Λ[eike·(r−r0)] e−ike·(r−r0)ϑ̄e eike·r

= Λϑ(r − r0)ϑe(r), Λϑ(z) = Λ[eike·z] e−ike·z. (9)
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Similarly, from t̄(r) = ∇ϑ(r), the following can be obtained:

(r) = ∇Λ[ϑ̄e eike·(r−r0) eike·r0
] = Λτ(r − r0)ϑe(r),

t(z) = ∇Λ[eike·z]eike·z, (10)

Note that Λϑ(z) and Λt(z) do not depend on the position
= 0 of the center of the fiber. They can be constructed from the
olution of the one-fiber problem for the fiber centered at the
oint r = 0.

Let us introduce random functions χϑ(r) and χt(r) in 2D-
pace. These functions coincide with Λϑ(r − ri) and Λt(r − ri)
f r is inside the fiber centered at point ri(i = 1, 2, 3, . . .), and
hey are equal to zero in the matrix. Substitution of Eqs. (9) and
10) into Eq. (5) yields the following:

ϑ(r) = ϑA(r) +
∫

s0

[∇G(r − r′)λ1χ
t(r′)ϑe(r′)

+iωG(r − r′)ρ1c1χ
ϑ(r′)ϑe(r′)]S(r′) dr′, (11)

In order to find the mean wave field, let us average both
ides of Eq. (11) over ensemble realization of the random set of
bers, and take into account the condition of ϑe(r) = 〈ϑ(r)〉, the
ollowing can be obtained:

ϑ(r)〉 = ϑA(r) + φ(Y0)
∫

[∇G(r − r′)λ1Λ
c

+iωG(r − r′)ρ1c1Λ�]〈ϑ(r′)〉 dr′, (12)

�(ke) = lim
Ω→∞

1

φ(Y0)Ω

∫
Ω

χϑ(r) dr = 1

〈s〉
〈∫

s

Λϑ(r) dr

〉
,

(13)

c(ke) = lim
Ω→∞

1

φ(Y0)Ω

∫
Ω

χt(r) dr = 1

〈s〉
〈∫

s

Λt(r) dr

〉
,

(14)

here Λρ and Λc are constant scalar and vector, respectively, �
s the two dimensional plane (x,y) in the RVE, φ(Y0) is the vol-
me fraction at the material point Y0, and s is the area occupied
y the typical fiber.

Let us apply the Fourier transform to Eq. (12) and multiply
he result with LA(k) = λAk2 − iρAcAω. Taking into account the
quations:

A(k)G(k) = 1, LA(k)ϑA(k) = 0, (15)

he following can be obtained

e(k)〈ϑ(k)〉 = 0,

e(k) = LA(k) + φ(Y0)λ1ikiΛ
c(ke) − φ(Y0)ρ1iωΛρ(ke)

−φ(Y0)c1iωΛρ(ke). (16)

Because vector Λc in Eq. (15) is a function of the vector ke
nly, Λc may be written as
c(ke) = −ikeHC(ke), ke = |ke| (17)

here HC(ke) is a scalar function. If the mean temperature field
ϑ(r)〉 is a plane thermal wave (〈ϑ(r)〉 = ϑ̄e eike·r), its Fourier

ϑ

Fig. 2. Schematic of the wave fields in one-fiber problem.

ransform is 〈ϑ(k)〉 = (2π)−1ϑ̄eδ(k − ke), and Eq. (15) takes the
orm Le(k)δ(k − ke) = 0, namely:

e(ke) = LA(ke) + φ(Y0)λ1(ke)2HC(ke) − φ(Y0)ρ1iωΛρ(ke)

−φ(Y0)c1iωΛρ(ke) = 0. (18)

This equation may be simplified as

e(ke)k2
e − iω[ρe(ke) + ce(ke)] = 0,

λe(ke) = λA+φ(Y0)λ1HC(ke), ρe(ke)=ρA+φ(Y0)ρ1Λρ(ke),

ce(ke) = cA + φ(Y0)c1Λρ(ke). (19)

ote that Eq. (19) is the dispersion relation for the effective wave
umber ke of the mean thermal wave field in the RVE.

The one-fiber problem in the effective temperature field is
hown in Fig. 2. Zone I denotes the effective field, zone II denotes
he matrix, zone III denotes the fiber, and the radius of the fiber
s a(a 
 d1). The relation between a and b is (a/b)2 = φ(Y0).

To obtain HC(ke) and Λρ(ke), the differential equations of the
ne-fiber problem are given by

2ϑ + k2
Bϑ = 0, |r| < a, k2

B = iρBcBω

λB
. (20)

2ϑ + k2
Aϑ = 0, a < |r| < b, k2

A = iρAcAω

λA
. (21)

2ϑ + k2
eϑ = 0, b < |r|, k2

e = iρeceω

λe
. (22)

The solutions of them have the following forms:

(r) =
∞∑

m=0

amJm(kBr) cos(mϕ), 0 ≤ r ≤ a. (23)

(r) =
∞∑

m=0

[cmJm(kAr) + dmNm(kAr)] cos(mϕ),

a ≤ r ≤ b. (24)
(r) =
∞∑

m=0

[ ∈ m(−i)mϑ̄eJm(ker) + bmHm(ker)]

× cos(mϕ), b < r. (25)
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here Nm(·) is the mth Bessel function of the second kind, Hm(·)
s the mth Hankel function of the first kind, and ∈m = 1, if m = 0,
m = 2 if m > 0.

According to the continuous boundary conditions of the
emperature and heat-flux density around the fiber, the mode
oefficients take the following forms:

m = 1

Δ
(B1A22 − B2A12), bm = − 1

Δ
(B1A21 − B2A11),

cm = π

2μ0
A11am, dm = − π

2μ0
A21am,

= A11A22 − A12A21,

11 = λAkAaJm(kBa)N ′
m(kAa) − λBkBaJ ′

m(kBa)Nm(kAa),

12 = λekebNm(kAb)H ′
m(keb) − λAkAbHm(keb)N ′

m(kAb),

22 = λekebJm(kAb)H ′
m(keb) − λAkAbHm(keb)J ′

m(kAb),

1 = ∈ m(−i)mϑ̄e[λAkAbJm(keb)N ′
m(kAb)

−λekebJ ′
m(keb)Nm(kAb)],

2 = ∈ m(−i)mϑ̄e[λAkAbJm(keb)J ′
m(kAb)

−λekebJ ′
m(keb)Jm(kb)]. (25

Substituting Eq. (23) into Eqs. (13), (14) and (17), the fol-
owing can be obtained:

ρ =
∞∑

m=0

amgm, HC =
∞∑

m=0

amg1m, (26)

here

m = 2im

a

1

k2
B − k2

e
[kBJm+1(kBa)Jm(kea)

−keJm(kBa)Jm+1(kea)], (27)

1m = gm + 2im

ake
Jm(kBa)J ′

m(kea). (28)

According to the dispersion relation in Eq. (19), we construct
he numerical solutions of the effective properties. Based on
q. (19), the numerical solutions are obtained by the iterative
rocedure, i.e.

n
1e = λn−1

1e + ε[λn−1
1e − λA(1+φ(Y0)λ̄1HC(kn−1

1e , λn−1
1e ))],

n
1e = ρn−1

1e + ε[ρn−1
1e −ρA(1+φ(Y0)ρ̄1Λρ(kn−1

1e , ρn−1
1e ))],

n
1e = cn−1

1e + ε[cn−1
1e − cA(1 + φ(Y0)c̄1Λρ(kn−1

1e , cn−1
1e ))],

n
1e = (1 + i)

(
ρn

1ec
n
1eω

2λn
1e

)1/2

, λ̄1 = λ1

λA
,

¯1 = ρ1

ρA
, c̄1 = c1

cA

, (29)
here kn
1e, λn

1e, cn
1e and ρn

1e are the effective parameters for the nth
teration, the subscript 1 denotes material zone 1, and functions

C(k1e,λ1e), Λρ(k1e,ρ1e) and Λρ(k1e,c1e) are defined in Eq. (26).
arameter ε(|ε| < 1) is to be chosen for conversion of the iterative

h
d
(
s

ica Acta 464 (2007) 16–23

rocess. As an initial (zero) approximation, the static solu-
ions k

(0)
1e = (1 + 2i)

√
[ρA + ρ1φ(Y0)][cA + c1φ(Y0)]ω/λ1s and

(0)
1e = λ1s are applied. λ1s is the static thermal conductivity, and

s proposed as [8]

1s = λA

[
1 + αφ(Y0)[1+φ(Y0)β2/4]+[1 − φ(Y0)]

αφ(Y0)(λA/λB)[1+φ(Y0)β2/4]+[1 − φ(Y0)]

]
,

(30)

ere α = 3λB/(λB + 2λA), β = (λB − λA)/(λB + 2λA).
The dynamic effective thermal properties in the RVE cor-

espond to those of the Y0 layer in the global coordinate, so
he dynamic effective properties in zone 1 (0 ≤ Y ≤ d1) can be
btained by solving Eq. (29).

. Solution of dynamic effective thermal properties in
ones 2 and 3

According to the solving method in zone 1, the dynamic effec-
ive thermal properties in zone 3 (d2 ≤ Y ≤ d) can be calculated
y interchanging the fiber and matrix phases.

In transition zone 2 (d1 ≤ Y ≤ d2), the fiber and matrix phases
annot be well defined because the two phases may be interpene-
rated into each other as a connected network. As a sequence, the
ffective wave fields of both phases cannot be explicitly deter-
ined by the above method. Following the work of Yin [6], a

henomenological transition function is introduced as

(Y ) =
[

1 − 2
φ(Y ) − φ(d1)

φ(d1) − φ(d2)

] [
φ(Y ) − φ(d2)

φ(d1) − φ(d2)

]2

, (31)

o that the dynamic effective properties can be approximated as
he combination of the solutions for two fiber–matrix zones, i.e.

2e(Y ) = f (Y )λ1e(Y0) + [1 − f (Y )]λ3e(Y0). (32)

2e(Y ) = f (Y )ρ1e(Y0) + [1 − f (Y )]ρ3e(Y0). (33)

2e(Y ) = f (Y )c1e(Y0) + [1 − f (Y )]c3e(Y0). (34)

ote that the subscripts 1, 2 and 3 denote the three material
ones in Fig. 1.

. Numerical examples and analysis

Consider a thermal wave propagating along the Y direction in
unctionally graded materials, as shown in Fig. 1. For simplicity,
t is assumed that d = 1. In zone 1 the reinforcing fibers are mate-
ials with high strength and good thermal conductivity, and the
atrix consists of materials with high heat resistance. In zone 3,

he fibers and matrix are interchanged. The following dimension-
ess variables and quantities have been chosen for computation:
he wave number is k* = ka = 0.1–2.0, the phase thermal conduc-
ivity contrast ratio is λ* = λB/λA = 5.0–20.0, the phase specific

eat capacity contrast ratio is c* = cB/cA = 2.0–5.0, and the phase
ensity contrast ratio is ρ* = ρB/ρA = 2.0–5.0. According to Eqs.
29) and (32)–(34), the dynamic effective thermal conductivity,
pecific heat capacity and density in the overall thick of FGMs
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good thermal conductivity, and the greater the wave frequency,
the greater the influence. However, in the material zone with
its fibers having good thermal conductivity, the effect of wave
ig. 3. Effect of phase thermal conductivity contrast ratio on effective thermal
onductivity (k* = 0.01, c* = 2.0, ρ* = 2.0, m = 1.0).

an be obtained. It should be noted that we find that the trunca-
ion after m = 12 gives practically adequate results at any desired
requencies.

Following Bao and Cai’s suggestion [18], the lower and upper
ounds d1 and d2 are conveniently selected where the corre-
ponding coordinates are Y = 0.4 and 0.6, respectively. The effect
f phase thermal conductivity contrast ratio on the dynamic
ffective thermal conductivity in the gradation direction with
arameters: k* = 0.01 and m = 1.0 is illustrated in Fig. 3. It should
e noted that when k* = 0.01, the dynamic effective thermal con-
uctivity tends to the static solution. It is found that the results
n Fig. 3 are consistent with the static solutions in Ref. [6].

It can be seen from Fig. 3 that the dynamic effective ther-
al conductivity in the gradation direction of FGMs increases

s the volume fraction of phase B increases, ranging from zone
(phase B as fiber phase) to zone 2 (transition zone) to zone 3

phase B as matrix phase). Continuous and differentiable jump
s expected in the transition zone when the phase thermal con-
uctivity contrast ratio is relatively great. The greater the phase
hermal conductivity contrast ratio, the greater the jump.

Shown in Fig. 4 is the effect of the phase specific heat capacity
ontrast ratio on the dynamic effective specific heat capacity in
he gradation direction with parameters: k* = 0.01 and m = 1.0. It
an be seen that when the phase specific heat capacity contrast
atio is small, the effective specific heat capacity in the FGM
radation direction increases linearly as the volume fraction of
hase B increases, ranging from zone 1(phase B as fiber phase)
o zone 2 (transition zone) to zone 3 (phase B as matrix phase).
owever, when the phase specific heat capacity contrast ratio is
reat, continuous and differentiable jump is seen in the transition
one. The greater the phase specific heat capacity contrast ratio,
he greater the jump.

Shown in Fig. 5 is the effect of the phase density contrast ratio
n the dynamic effective density in the gradation direction with

arameters: k* = 0.01 and m = 1.0. It can be seen that the effective
ensity in the FGM gradation direction increases linearly as the
olume fraction of phase B increases, ranging from zone 1(phase

F
λ

ig. 4. Effect of phase specific heat capacity contrast ratio on effective specific
eat capacity (k* = 0.01, λ* = 10.0, ρ* = 2.0, m = 1.0).

as fiber phase) to zone 2 (transition zone) to zone 3 (phase B
s matrix phase). Unlike the effective thermal conductivity and
pecific heat capacity, when the phase density contrast ratio is
elatively great, the great jump of effective density exists in the
hree material zones. From Figs. 3–5, it is clear that when the
ariational function of φ(Y) is the same, the variation of effective
hermal conductivity in the transition zone is the greatest, and
he variation of effective density is the smallest.

The variation of dynamic effective thermal conductivity in
he gradation direction under different frequencies of thermal
aves is depicted in Fig. 6. It can be seen that as the incident wave
umber (frequency) increases, the effective thermal conductivity
isplays little variation in zone 1, while it shows great variation
n zone 3. That is to say, the increase of incident frequency
as great influence on the material zone with its matrix having
ig. 5. Effect of phase density contrast ratio on effective density k* = 0.01,
* = 10.0, c* = 2.0, m = 1.0.
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of the effective thermal conductivity in the transition zone. In
ig. 6. Effect of wave number on effective thermal conductivity λ* = 10.0,
* = 2.0, ρ* = 2.0, m = 1.0.

requency on the dynamic effective thermal conductivity is little.
s the incident wave number (frequency) increases, the variation
f dynamic effective thermal conductivity in two fiber–matrix
ones becomes little, while it has great jumps in transition zone.
f the phase thermal conductivity contrast ratio is fixed, the jump
f effective thermal conductivity in zone 2 increases with the
ncrease of incident wave number.

Results for the effect of dimensionless wave number on the
ynamic effective specific heat capacity in the gradation direc-
ion are presented in Fig. 7. It can be seen that as the incident
ave number (frequency) increases, the effective specific heat

apacity displays little variation in zone 1, while it shows great
ariation in zones 2 and 3. It is also clear that the effect of wave
requency on the effective specific heat capacity is similar to that

n the effective thermal conductivity.

Results for the effect of dimensionless wave number on the
ynamic effective density in the gradation direction are pre-
ented in Fig. 8. It can be seen that as the incident wave number

ig. 7. Effect of wave number on effective specific heat capacity λ* = 10.0,
* = 5.0, ρ* = 5.0, m = 1.0.

t
m
g

F
k

ig. 8. Effect of wave number on effective density λ* = 10.0, c* = 5.0, ρ* = 5.0,
= 1.0.

frequency) increases, the effective density displays little varia-
ion in the three zones. So, the thermal waves in materials have
ittle effect on the effective density of FGMs. From Figs. 6–8,
he effect of the wave frequency on the effective thermal con-
uctivity in the gradation direction is the greatest, and the effect
f the wave frequency on the effective density is the least.

Changing the phase volume fraction distribution also affects
he dynamic thermal responses of FGMs. Fig. 9 illustrates the
ffect of gradation parameter on the distribution of dynamic
ffective thermal conductivity in the region of low frequency
ith four types of gradation parameter m = 0.2, 0.5, 1.5 and 3.0.

t is clear that when m > 1, the greater the value of m, the greater
he jump of the effective thermal conductivity in the transition
one. When m < 1, the less the value of m, the greater the jump
he case of k* = 1.0, the distribution of dynamic effective ther-
al conductivity in the gradation direction with four types of

radation parameter is given in Fig. 10. From Figs. 9 and 10, it

ig. 9. Effect of gradation parameter on dynamic effective thermal conductivity
* = 0.1, λ* = 10.0, c* = 2.0, ρ* = 2.0.
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ig. 10. Effect of gradation parameter on dynamic effective thermal conductivity
* = 1.0, λ* = 10.0, c* = 2.0, ρ* = 2.0.

an be seen that if m > 1 the variation of incident frequency has
reat effect on the distribution of dynamic effective thermal con-
uctivity, and the greater the value of m, the greater the effect.
owever, in the case of m < 1 the increase of incident frequency
as little effect on the distribution of dynamic effective thermal
onductivity.

. Conclusions

In this study, a micromechanics-based thermo-dynamical
odel is employed to analyze the dynamic effective thermal

onductivity, specific heat capacity and density in the grada-
ion direction of FGMs. The propagation of thermal waves
long the gradation direction of FGMs is carried out. Compar-
sons with previous literatures demonstrate the validity of the

icromechanics-based thermo-dynamical model.
During the course of derivation, three zones are divided in

he thick of gradation direction, and in each zone the corre-
ponding dynamic effective thermal properties are calculated.
n fiber–matrix zones, a microscopic representative volume ele-
ent is proposed to statistically represent the microstructure

n the neighborhood of a material point and effective medium
ethod is applied to derive the dynamic thermal effective prop-

rties. After obtaining the dispersion relation for effective wave
umber, the numerical solutions are given by iterative scheme.
he numerical results show that the dynamic effective thermal
roperties in FGMs are significantly different from those in
he static case. Therefore, to gain a better understanding of the
icrostructure–performance relationship and obtain the desir-
ble material properties, it is important to analyze not only the
tatic effective properties but also the dynamic effective proper-
ies.

[

[

[
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Through analysis, it has been found that the dynamic effec-
ive thermal properties in the gradation direction are dependent
n the incident wave number, the material properties of each
hase, and the gradation parameter of FGMs. In the dynamic
ase, the effect of thermal wave frequency on the effect thermal
onductivity in the gradation direction of FGMs is greater than
hat on the effective specific heat capacity. The effect of thermal
ave frequency on the effect density in the gradation direction
f FGMs is very little, and can be neglected. The increase of
ncident frequency has great influence on the material zone with
ts matrix having good thermal conductivity. To reduce the jump
f effective properties in the transition zone, the phase proper-
ies contrast ratio should be considered. It is suggested that the
arger transition zone made during FGMs fabrication is desirable
o prevent the significant jump of the dynamic effective proper-
ies when the phase properties contrast ratio is large. In addition,
n the gradation function φ(Y) = (Y/d)m, the value of m should be
estricted near 1.0, and the optimal value of it is 0.5 ≤ m ≤ 2.0.

The analytical solutions presented in this paper may be useful
or the optimizing design of the FGMs under dynamic thermal
oading.
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