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Abstract

The Ozawa and the modified Avrami models were usually used to describe the nonisothermal crystallization of polymers. A computer simulation
approach was adopted to verify the two models. The results show that the Ozawa model is suitable under constant heating and cooling rate conditions,
but not the modified Avrami model. Therefore, the Ozawa model was extended to acquiring the linear growth rate of polymer entities. A nonlinear
relationship between the logarithm of the rate function and temperature was found. The values of the Avrami exponent are approximate to the
designed value and the linear growth rates of the entities obtained are consistent with the designed ones.
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1. Introduction

The computer simulation of polymer crystallization has been
attracting more and more attention because of its bridge effect
between theoretical and experimental studies [1]. Since Hay and
Przekop [2] evaluated the Avrami equation by computer simu-
lation of crystal growth, the computer simulation has become
a powerful technique for assessing models. Galeski [3,4] simu-
lated two-dimensional and three-dimensional spherulite growth
and showed the Avrami exponent, the spherulite size distribu-
tions and morphology for different nucleation modes. Billon et
al. [5] proposed a model derived from Evans’ theory for describ-
ing the isothermal crystallization of a thin polymer film and
developed a computer simulation of the crystallization to test
the model. Pineda et al. [6] examined effects of both the reduc-
tion in the nucleation and growth rates and the non-randomness
in the nucleation protocol on Avrami kinetics. Piorkowska [7]
extended the computer simulation to fiber reinforced compos-
ite system to verify the derived expressions and to visualize the
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polymer morphology. Sun et al. [8] simulated isothermal crys-
tallization process of polymers and a primary turning point was
found in the Avrami plot at the very beginning of the crystal-
lization in case that the sample thickness is equal or less than
a given value. Up to date, the computer simulation of polymer
crystallization kinetics has been shown to be an effective means
of studying the crystallization.

However, most of the research on simulation of crystalliza-
tion of polymers has been limited to isothermal process. In
current paper, the nonisothermal crystallization was simulated
and two of the most popular nonisothermal models were exam-
ined.

2. Nonisothermal crystallization kinetics

Several methods have been proposed to obtain the parameters
characterizing the kinetics of nonisothermal crystallization, such
as Ozawa method [9], Harnisch and Muschik method [10], mod-
ified Avrami method [11], Vyazovkin method [12], Mo method
[13], Dutta method [14], Caze and co-workers’ method [15],
Malet method [16], etc. [17-19], wherein the Ozawa and the
modified Avrami methods are two of the most popular ones in
polymer science.
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2.1. Ozawa method

Based on the basic Evans theory, Ozawa derived a nonisother-
mal crystallization expression as follows [9]:

—F(T)}
181"

where « is the relative degree of crystallinity at temperature T;
B, the heating or cooling rate; n, the Avrami exponent depending
on the nucleation mode and the growth geometry of the crystals;
F(T), the rate function of nonisothermal crystallization, which
is related to the nucleation rate and the linear growth rate. For
the constant cooling process, F(T) was expressed as
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where u(7) is the nucleation rate as a function of 7; G(7),
the linear growth rate as a function of T; Ty, the tempera-
ture above which the process cannot proceed; g and / depend
on the growth geometry. For the constant heating process, the
similar equation holds. If the Ozawa model is valid, the plot
of In[—In(1—«)] versus In|B| at a given temperature should
be a line with a slope of —n and an intercept of InF(7).
So far, the Ozawa equation has been successfully used for
describing the nonisothermal crystallization of poly(ethylene
terephthalate) [9], polypropylene [20,21], polyamide 6 [22],
poly(p-phenylene sulphide) [23], poly(trimethylene tereph-
thalate) [24], poly(trimethylene terephthalate)/poly(butylene
terephthalate) blend [25], and some polyethylene [26]. Also,
the nonlinearity of the Ozawa plot was found in the case
of polyethylene [20], poly(ethylene oxide) and poly(ethylene
oxide)/poly(methylmethacrylate) blends [27], poly(ether-ether
ketone) [28], etc. In consideration of the fact that contradictory
results were reported in literature, it is necessary to test the valid-
ity of the Ozawa model and the errors of the parameters obtained
in terms of the model.

2.2. Modified Avrami method

Jeziorny [11] extended the isothermal Avrami equation to the
nonisothermal situation, the method in terms of which is referred
to as the modified Avrami method here. The Avrami equation
can be expressed in a double logarithmic form:

In[—Inl —&)] =nlnt+InZ (3)

where « is the relative degree of crystallinity at time z; n, the

Avrami exponent, related to the mechanism of crystallization;

Z, the parameter for crystallization kinetics. By considering the

effect of nonisothermal process, Z should be corrected by the

rate of cooling. The final form of this parameter is given by
InZ

nzZ,=— 4)
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where g is the linear heating or cooling rate. Many authors

[24,29-31] applied the Avrami method to analyze the non-

isothermal crystallization of polymers. It is also necessary to
evaluate the validity of the modified Avrami equation under
nonisothermal conditions.

3. The simulation experiment

In the computer simulation experiments, we assume that
the crystallization process is composed of two main steps:
nucleation and crystal growth. In the experiments, it is con-
sidered that the nucleation process is instantaneous. The
nuclei are randomly distributed in a box with a volume of
100 pm x 100 m x 100 wm. The growth of spherulites would
be limited by each other, that is, the growth would be terminated
at the point of the impingement of the growth front. Therefore,
the growth geometry of a spherulite would be a polyhedron at the
end of the crystallization. The linear growth rate of the crystals
is considered to follow the following equation [32-34]:
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where G(7) isthe linear growth rate at temperature T; Gy, the pre-
exponential factor, a constant for a given polymer; R, the molar
gas constant; Eg, the activation energy of diffusion of crystal-
lizing segments across the phase boundary; v, the nucleation
parameter related to the surface-free energy of forming crystals,
the melting enthalpy, and the geometry of the crystals; 7,0, the
equilibrium melting temperature. Eq. (5) can be transformed
into a linear form by logarithmizing it. In the current experi-
ments, we chose poly(ethylene terephthalate) (PET) sample with
intrinsic viscosity of 0.67 dL/g. G(T) and the nucleation density
was determined using an Olympus BX51 polarizing microscope
equipped with a Linkam THMS600 hot stage controlled by a
computer program. The nucleation density N is 10" mm~3, esti-
mated from the maximum spherulite radius by the expression
[35]:

4 - 1

g”R?nax = N (6)
The value of T,% for PET was chosen to be 583 K [34]. Accord-
ing to knowledge of G(T) and T,%, Go, Eg, and  can be obtained
by the weighted least squares method with the weighted func-
tion: G(7)? [36]. The values of the parameters obtained from
fitting are G = 1.3393 x 1022 um/min, Eg = 106.47 kJ/mol, and
¥ =1634.9 K. At a given time ¢, the radius of spherulites can be
calculated from:
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where Ty =506.91 K for the constant cooling experiments and
389.90K for the constant heating experiments, the linearly
extrapolated values by using the data determined by using DSC
curves with several scanning rates. In computer simulation, the
parameters above were adopted. In the case of linear heating or
cooling rate, the relationship between temperature and time is
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given by
T=To+pt (8)

The steps of computation process are as follows:

() Yield M nuclei which are randomly distributed in a box. The
position of each nucleus is denoted by the coordinates (x;,
vi, zi) (i=1, 2,...M). The relative degree of crystallinity is
zero at this time since the nuclei are assumed not to occupy
any space.

(b) Let¢increase to ¢+ At. Calculate the temperature from Eqg.
(8) and the radius of each spherulite from Eq. (7).

(c) Yield arandom point with the coordinates (x, y, z) in the box
and examine if this point drops into any one of the spherulites
in terms of following express:

—x+ -y + G-z <r ©)

(d) Repeat step (c) for Np times. If there is N points dropping
into any one of the spherulites in Ng sampling, the relative
degree of crystallinity at this moment is written as

N
alt) = N (10)
(e) Repeat steps (b)—(d) until «=1.

The relative degrees of crystallinity or its increments at differ-
ent times (or temperatures) are recorded with a sampling number
of 108 per cubic millimeter for each step.

4. Results and discussion

4.1. Simulated increment curves of the relative degrees of
crystallinity

The derivative of degree of crystallinity with respect to time
(dae/dr) is directly proportional to the absolute value of the heat
flow under linear heating or cooling rate. The plots of da/dz
versus temperature obtained in the simulation experiments are
shown in Fig. 1.

4.2. Ozawa model

In terms of Eq. (1), the plots of In[—In(1—«)] versus In | 8]
should be linear at a given temperature, as shown in Fig. 2. A
clear linear relationship holds between In[—In(1—c«)] and In | 8]
with a slope of —n and an intercept of In F(7), suggesting that
the Ozawa method appears to be applicable for evaluating non-
isothermal crystallization in the ideal crystallization condition.

The values of the Avrami exponent calculated by the slope of
the lines by using the least squares method are shown in Fig. 3.

The value of the Avrami exponent is dependent on the
nucleation mode and growth geometry of crystals. In current
simulation experiments, the nuclei are randomly dispersed in
the system, the nucleation process is instantaneous, and every
nucleus develops into a spherulite. Theoretically, the Avrami
exponent should be equal to 3 in such a case, as represented in
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Fig. 1. Plots of derivative of relative degree of crystallinity with respect to time
vs. temperature from (a) heating program and (b) cooling program.

the solid line of Fig. 3. The dash line is obtained by fitting the
data points using the least squares method. The average value
of the Avrami exponent is close to and slightly lower than the
theoretical value either in a heating mode or a cooling mode.
We infer that this phenomenon is related to random nucleation
mode where the distance between some nuclei are close to each
other and some are far. Therefore, it is likely that the impinge-
ment of spherulites begins to occur at the early stage of the
crystallization, which makes the Avrami exponent lower than
the ideal value. In the beginning stage of the crystallization, the
value of the Avrami exponent is close to the ideal value because
the possibility of the impingement of spherulites is small. As
the temperature rises under the heating condition or declines
under the cooling condition, the value of the Avrami exponent
decreases slightly because the spherulites become larger and the
possibility of the impingement of spherulites increases.

The relationship between In F(T) and temperature from the
intercepts of the plots of In[—In(1—«)] versus In |8, is shown
in Fig. 4.

A linear empirical relationship between logarithm of F(T)
and temperature was found by some researchers [15,20,37,38].
Differently, the plots in Fig. 4 are hardly precisely described by
a linear function, which perhaps origins from the wider range
of temperatures in current research. Additionally, it is nearly
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Fig. 2. Plots of In[—In(1—w)] vs. In | B| for nonisothermal crystallization at dif-
ferent temperatures from (a) linear heating curves and (b) linear cooling curves.

impossible to obtain the parameter of linear growth rate by using
Eq. (2) because of its complexity. Here, a new rate function was
proposed and a newly developed method was used to obtain the
parameter characterizing the crystallization rate.

From the results above, we can conclude that the Ozawa
model is suitable for describing the behavior nonisothermal
crystallization in these ideal simulation experiments. As for
the finding that the Ozawa model could not describe the
behavior of nonisothermal crystallization of some polymers
[20,27,28,39,40], the possible reason is that the secondary crys-
tallization of these polymers should not be neglected. In current
simulation experiments, we did not take the contribution of sec-
ondary crystallization to degree of crystallinity into account,
such as the further crystallization within spherulites.

4.3. Obtaining the parameter characterizing crystallization
rate

In terms of the Avrami theory, the relationship between the
real volume of crystalline phase per unit volume V and the
‘extended’ volume of the crystalline phase Vex can be expressed
in following form without isothermal limit [41]:

=1l-« (12)

(a) 4.0

3.8
m  from simulation experiments
theoretical line

———————— fitted line

3.6

3.4

3.2 4

2.8 4

Avrami exponent n

2.6 1
2.4 4

2.2

20 T T T v T T T T T v T v T T 1
390 395 400 405 410 415 420 425
T/K

(b) 4.0-

3.8+ = from simulation experiments
theoretical value
——————— fitted value

3.6+
3.4 4

3.2+

o NS T R
2.8- -

2.6 -
24
2.2-‘

2.0

T . T o T L2 T ] T i T o T Y 1
470 475 480 485 480 495 500 505
T/IK

Fig. 3. Temperature dependence of the Avrami exponent obtained from (a) linear
heating curves and (b) linear cooling curves.

where « is the relative volume degree of crystallinity. Because
Vex neglects possible overlapping of growing entities, Eq. (11)
can be rewritten by

dV  dVe dr
dt dr dr
where ris the radius of ‘extended’ spherulites; dr/dr is the linear
grown rate of crystalline entities, only depending on temperature
for a given polymer. By taking relationships between dVey/dr
and « into account, the differential equation for describing the
nonisothermal crystallization is given by [18,42]

Q) 12)

d

di;‘ — K(D)[=In(L — )]"(1 — @) (13)
where « is the relative volume degree of crystallinity at time z;
m, the parameter characterizing the mechanism of crystalliza-
tion, which is related to the Avrami exponent » in the following

expression:
n—1
n

K(T) is the crystallization rate which is a constant at a given
temperature 7 for a given polymer and proportional to the linear

(14)

m =
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Fig. 4. Plot of In F(T) vs. temperature obtained from (a) linear heating curves
and (b) linear cooling curves.

growth rate of the crystals, the physical significance of which is
listed in Table 1.

In Table 1, Ny is the number of nuclei per unit volume; dp, the
thickness of a disk-shape entity; S, the surface area of the cross-
section of a rod-like entity; k, the ratio of the nucleation rate to
linear growth rate of crystalline entities; G(T), the linear growth
rate of the entities at temperature T, Xe, the volume fraction
occupied by crystalline entities at the end of crystallization. Eq.

Table 1
The physical significance of K(7) and m in Eq. (13)

(13) can be converted into an integrate form:

“Inl — &) =

1/(1—m)
} (15)

r t
1- m)/ K[T(r)]dt
L 0
By taking Egs. (8) and (14) into account, Eq. (15) becomes
r T

1
- = |2 |
L 0

(16)

K(T) dT] '

where g=d7/ds, the constant heating or cooling rate; Tp, the
temperature at which the crystallization begins to occur. Eq.
(16) can be expressed in the same form as Eq. (1), where F(T)
is different from that given by Ozawa [9] and here it is

[1 /T K(T)dTr (6 > 0)

n To

F(T) = (17)

17 "
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n To

The parameter characterizing crystallization rate can be calcu-

lated by differentiating Eq. (17) with respectto T

d[nF(T)Y"]
_ >0
K(T) = a7 =0 (18)
d[nF(T)""] 0
_T (/3 < )

From knowledge of F(7) and n obtained by plotting
In[—In(1—«)] versus In| 8| at different temperatures, the crys-
tallization rate parameter, K(7), can be calculated from Eqg. (18).
Furthermore, the linear growth rate, G(T), can be obtained from
the expression of predetermined nucleation and spherical geom-
etry listed in Table 1.

o = K(T)<36ijvo>l/3

In terms of the values of In F(T) and n at different temper-
atures, a curve of nF(T)Y" versus T can be fitted by a cubic
spline function and then K(T) can be obtained by a number
differential of the function, as described by Eq. (18). Then
G(T) can be estimated according to K(7) and Eq. (19) with
Xe=1and No=10"2 pm~2, as shown in Fig. 5. The solid line
is the designed linear growth rate calculated according to Eq.
(5) where Go = 1.3393 x 10%? wm/min, Eq = 106.47 kJ/mol, and

(19)
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Fig. 5. Temperature dependence of the linear growth rate. Symbol squares:
obtained from the heating experiments; symbol circles: obtained from cool-
ing experiments; solid line: original data adopted in simulation experiments;
dashed line: the fitting values in terms of those obtained from the heating and
cooling experiments.

¥ =1634.9 K, adopted in the simulation experiments. The cal-
culated values, which are denoted as squares for the linear
heating program and circles for the linear cooling program,
were obtained based on the simulation results. The calculated
values are quite consistent with the designed ones, suggesting
that the Ozawa model and the current method to obtain the
kinetic parameters are suitable for such a system. The dashed
line was fitted using the least squares method based on both the
calculated values and Eq. (5) with Go=7.99 x 10%° wm/min,
Eq=96.11kJ/mol, and v=1464.3K. In range of lower and
higher temperature, the crystallization is in the beginning stage
because of the heating and the cooling method. The crystal-
lization reaches gradually its end stage near the maximum
growth rate. The difference increases slightly in the end stage
of the crystallization, perhaps resulting from the increase of the
impingement of spherulites.

4.4. Modified Avrami model

According to Eq. (3), the plot of In[—In(1—«)] versus Int
should be a line with an intercept of InZ and a slope of n, as
shown in Fig. 6(a) and (b). The parameters obtained from the
plots are listed in Table 2.

As seen in Fig. 6, the plots of In[—In(1—«)] versus In main-
tain linear, showing that the modified Avrami method could
formally be suitable for describing the nonisothermal crystal-
lization. But the kinetic parameter Z; does not keep a constant
as suggested by Jeziorny [11] at different scanning rates. The
half time of crystallization is also calculated from:

In2\ "
- [ == 2
72 < V4 ) (20)

The values of #1/2, as listed in Table 2, decrease as increasing
| 8], indicating that the rate of crystallization is faster at a higher
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Fig. 6. Plot of In[—In(1—«)] vs. Inz from (a) linear heating curves and (b) linear
cooling curves.

| B]. The values of the Avrami exponent deviate significantly from
the theoretical value of 3 in the predetermined nucleation and
spherulite growth condition, as shown in Fig. 7, which suggests
that the value of the Avrami exponent obtained from the modi-

Table 2

The Avrami parameters from nonisothermal crystallization

Scanning rate n In Z/min—" Zc t12/min

Heating
1 3.40 —5.63 359 x 1073 4.70
2 3.62 —5.41 6.69 x 102 4.03
4 4.19 —5.33 2.64 x 1071 3.27
8 4.77 —4.68 557 x 10! 2.47
16 5.21 —3.36 8.11x 1071 1.78
32 5.85 —1.68 9.49 x 1071 1.25

Cooling
-1 5.00 —-12.6 3.37x10°8 11.6
-2 5.72 —12.2 2.24 %1073 7.92
—4 6.81 -115 5.64 x 1072 5.13
-8 6.89 —8.64 3.40 x 102 3.32
—16 7.88 —6.23 6.77 x 1071 2.10
—-32 8.20 —2.95 9.12x 1071 1.37
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Fig. 7. Changes of the Avrami exponents with scanning rates. Squares: obtained
from the heating experiments; circles: obtained from cooling experiments. The
dotted line stands for the theoretical value.

fied Avrami method is not reasonable. The values of the Avrami
exponent approach to the theoretical value of 3 only if that the
scanning rate is close to zero. Also, some higher values of the
Avrami exponent were found by some researchers [31,43-47]
in the nonisothermal crystallization of many polymers in terms
of the method, which is in agreement with the results in current
paper. Therefore, it is not reasonable to explain the nucleation
mechanism and growth geometry of entities based on the val-
ues of the Avrami exponent derived using the modified Avrami
method.

5. Conclusion

The Ozawa model is suitable for describing the nonisothermal
crystallization under these ideal simulation experiments and was
extended to acquiring the linear grown rate of polymer entities.
The results show there is a nonlinear relationship between the
logarithm of the rate function and temperature. The values of
the Avrami exponent are slightly lower than the designed value
and the linear growth rates of the entities obtained are consistent
with the designed ones.

The modified Avrami method is not reasonable for obtaining
the parameters characterizing the kinetics of the nonisothermal
crystallization of polymers. The values of the Avrami exponent
obtained are higher than the theoretical one, which could not
reflect the nucleation mechanism and the growth geometry of
the entities.
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