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bstract

The Ozawa and the modified Avrami models were usually used to describe the nonisothermal crystallization of polymers. A computer simulation
pproach was adopted to verify the two models. The results show that the Ozawa model is suitable under constant heating and cooling rate conditions,

ut not the modified Avrami model. Therefore, the Ozawa model was extended to acquiring the linear growth rate of polymer entities. A nonlinear
elationship between the logarithm of the rate function and temperature was found. The values of the Avrami exponent are approximate to the
esigned value and the linear growth rates of the entities obtained are consistent with the designed ones.

2007 Elsevier B.V. All rights reserved.
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. Introduction

The computer simulation of polymer crystallization has been
ttracting more and more attention because of its bridge effect
etween theoretical and experimental studies [1]. Since Hay and
rzekop [2] evaluated the Avrami equation by computer simu-

ation of crystal growth, the computer simulation has become
powerful technique for assessing models. Galeski [3,4] simu-

ated two-dimensional and three-dimensional spherulite growth
nd showed the Avrami exponent, the spherulite size distribu-
ions and morphology for different nucleation modes. Billon et
l. [5] proposed a model derived from Evans’ theory for describ-
ng the isothermal crystallization of a thin polymer film and
eveloped a computer simulation of the crystallization to test
he model. Pineda et al. [6] examined effects of both the reduc-
ion in the nucleation and growth rates and the non-randomness

n the nucleation protocol on Avrami kinetics. Piorkowska [7]
xtended the computer simulation to fiber reinforced compos-
te system to verify the derived expressions and to visualize the
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olymer morphology. Sun et al. [8] simulated isothermal crys-
allization process of polymers and a primary turning point was
ound in the Avrami plot at the very beginning of the crystal-
ization in case that the sample thickness is equal or less than
given value. Up to date, the computer simulation of polymer

rystallization kinetics has been shown to be an effective means
f studying the crystallization.

However, most of the research on simulation of crystalliza-
ion of polymers has been limited to isothermal process. In
urrent paper, the nonisothermal crystallization was simulated
nd two of the most popular nonisothermal models were exam-
ned.

. Nonisothermal crystallization kinetics

Several methods have been proposed to obtain the parameters
haracterizing the kinetics of nonisothermal crystallization, such
s Ozawa method [9], Harnisch and Muschik method [10], mod-

fied Avrami method [11], Vyazovkin method [12], Mo method
13], Dutta method [14], Caze and co-workers’ method [15],

alet method [16], etc. [17–19], wherein the Ozawa and the
odified Avrami methods are two of the most popular ones in

olymer science.
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himic

2

m

1

w
β

o
F
i
t

F

w
t
t
o
s
o
b
S
d
t
p
t
t
t
o
o
k
r
i
i

2

n
t
c

l

w
A
Z
e
r

l

w
[

i
e
n

3

t
n
s
n
1
b
a
t
e
i

G

w
e
g
l
p
t
e
i
m
i
w
e
c
m
[

T
i
b
t
fi
ψ

c

r

w
3

Z. Zhang et al. / Thermoc

.1. Ozawa method

Based on the basic Evans theory, Ozawa derived a nonisother-
al crystallization expression as follows [9]:

− α = exp

[−F (T )

|β|n
]

(1)

here α is the relative degree of crystallinity at temperature T;
, the heating or cooling rate; n, the Avrami exponent depending
n the nucleation mode and the growth geometry of the crystals;
(T), the rate function of nonisothermal crystallization, which

s related to the nucleation rate and the linear growth rate. For
he constant cooling process, F(T) was expressed as

(T ) = g

∫ T

T0

∫ θ

T0

υ(T ) dT

[∫ T

T0

G(T ) dT −
∫ θ

T0

G(T ) dT

]l
G(θ) dθ (2)

here υ(T) is the nucleation rate as a function of T; G(T),
he linear growth rate as a function of T; T0, the tempera-
ure above which the process cannot proceed; g and l depend
n the growth geometry. For the constant heating process, the
imilar equation holds. If the Ozawa model is valid, the plot
f ln[−ln(1−α)] versus ln |β| at a given temperature should
e a line with a slope of −n and an intercept of ln F(T).
o far, the Ozawa equation has been successfully used for
escribing the nonisothermal crystallization of poly(ethylene
erephthalate) [9], polypropylene [20,21], polyamide 6 [22],
oly(p-phenylene sulphide) [23], poly(trimethylene tereph-
halate) [24], poly(trimethylene terephthalate)/poly(butylene
erephthalate) blend [25], and some polyethylene [26]. Also,
he nonlinearity of the Ozawa plot was found in the case
f polyethylene [20], poly(ethylene oxide) and poly(ethylene
xide)/poly(methylmethacrylate) blends [27], poly(ether-ether
etone) [28], etc. In consideration of the fact that contradictory
esults were reported in literature, it is necessary to test the valid-
ty of the Ozawa model and the errors of the parameters obtained
n terms of the model.

.2. Modified Avrami method

Jeziorny [11] extended the isothermal Avrami equation to the
onisothermal situation, the method in terms of which is referred
o as the modified Avrami method here. The Avrami equation
an be expressed in a double logarithmic form:

n[−ln(1 − α)] = n ln t + lnZ (3)

here α is the relative degree of crystallinity at time t; n, the
vrami exponent, related to the mechanism of crystallization;
, the parameter for crystallization kinetics. By considering the
ffect of nonisothermal process, Z should be corrected by the
ate of cooling. The final form of this parameter is given by
nZc = lnZ

|β| (4)

here β is the linear heating or cooling rate. Many authors
24,29–31] applied the Avrami method to analyze the non-
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sothermal crystallization of polymers. It is also necessary to
valuate the validity of the modified Avrami equation under
onisothermal conditions.

. The simulation experiment

In the computer simulation experiments, we assume that
he crystallization process is composed of two main steps:
ucleation and crystal growth. In the experiments, it is con-
idered that the nucleation process is instantaneous. The
uclei are randomly distributed in a box with a volume of
00 �m × 100 �m × 100 �m. The growth of spherulites would
e limited by each other, that is, the growth would be terminated
t the point of the impingement of the growth front. Therefore,
he growth geometry of a spherulite would be a polyhedron at the
nd of the crystallization. The linear growth rate of the crystals
s considered to follow the following equation [32–34]:

(T ) = G0 exp

(
− Ed

RT
− ψT 02

m

T 2(T 0
m − T )

)
(5)

here G(T) is the linear growth rate at temperature T; G0, the pre-
xponential factor, a constant for a given polymer; R, the molar
as constant; Ed, the activation energy of diffusion of crystal-
izing segments across the phase boundary; ψ, the nucleation
arameter related to the surface-free energy of forming crystals,
he melting enthalpy, and the geometry of the crystals; T 0

m, the
quilibrium melting temperature. Eq. (5) can be transformed
nto a linear form by logarithmizing it. In the current experi-

ents, we chose poly(ethylene terephthalate) (PET) sample with
ntrinsic viscosity of 0.67 dL/g. G(T) and the nucleation density
as determined using an Olympus BX51 polarizing microscope

quipped with a Linkam THMS600 hot stage controlled by a
omputer program. The nucleation density N is 107 mm−3, esti-
ated from the maximum spherulite radius by the expression

35]:

4

3
πR̄3

max = 1

N
(6)

he value of T 0
m for PET was chosen to be 583 K [34]. Accord-

ng to knowledge of G(T) and T 0
m, G0, Ed, andψ can be obtained

y the weighted least squares method with the weighted func-
ion: G(T)2 [36]. The values of the parameters obtained from
tting are G0 = 1.3393 × 1022 �m/min, Ed = 106.47 kJ/mol, and
= 1634.9 K. At a given time t, the radius of spherulites can be

alculated from:

(t) = 1

β

∫ T

T0

G[T (t)] dT (7)

here T0 = 506.91 K for the constant cooling experiments and
89.90 K for the constant heating experiments, the linearly

xtrapolated values by using the data determined by using DSC
urves with several scanning rates. In computer simulation, the
arameters above were adopted. In the case of linear heating or
ooling rate, the relationship between temperature and time is
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iven by

= T0 + βt (8)

The steps of computation process are as follows:

a) Yield M nuclei which are randomly distributed in a box. The
position of each nucleus is denoted by the coordinates (xi,
yi, zi) (i = 1, 2, . . .M). The relative degree of crystallinity is
zero at this time since the nuclei are assumed not to occupy
any space.

b) Let t increase to t +�t. Calculate the temperature from Eq.
(8) and the radius of each spherulite from Eq. (7).

c) Yield a random point with the coordinates (x, y, z) in the box
and examine if this point drops into any one of the spherulites
in terms of following express:

(x− xi)
2 + (y − yi)

2 + (z− zi)
2 ≤ r2 (9)

d) Repeat step (c) for N0 times. If there is N points dropping
into any one of the spherulites in N0 sampling, the relative
degree of crystallinity at this moment is written as

α(t) = N

N0
(10)

e) Repeat steps (b)–(d) until α= 1.

The relative degrees of crystallinity or its increments at differ-
nt times (or temperatures) are recorded with a sampling number
f 108 per cubic millimeter for each step.

. Results and discussion

.1. Simulated increment curves of the relative degrees of
rystallinity

The derivative of degree of crystallinity with respect to time
dα/dt) is directly proportional to the absolute value of the heat
ow under linear heating or cooling rate. The plots of dα/dt
ersus temperature obtained in the simulation experiments are
hown in Fig. 1.

.2. Ozawa model

In terms of Eq. (1), the plots of ln[−ln(1−α)] versus ln |β|
hould be linear at a given temperature, as shown in Fig. 2. A
lear linear relationship holds between ln[−ln(1−α)] and ln |β|
ith a slope of −n and an intercept of ln F(T), suggesting that

he Ozawa method appears to be applicable for evaluating non-
sothermal crystallization in the ideal crystallization condition.

The values of the Avrami exponent calculated by the slope of
he lines by using the least squares method are shown in Fig. 3.

The value of the Avrami exponent is dependent on the
ucleation mode and growth geometry of crystals. In current

imulation experiments, the nuclei are randomly dispersed in
he system, the nucleation process is instantaneous, and every
ucleus develops into a spherulite. Theoretically, the Avrami
xponent should be equal to 3 in such a case, as represented in

a
D
a
o

ig. 1. Plots of derivative of relative degree of crystallinity with respect to time
s. temperature from (a) heating program and (b) cooling program.

he solid line of Fig. 3. The dash line is obtained by fitting the
ata points using the least squares method. The average value
f the Avrami exponent is close to and slightly lower than the
heoretical value either in a heating mode or a cooling mode.

e infer that this phenomenon is related to random nucleation
ode where the distance between some nuclei are close to each

ther and some are far. Therefore, it is likely that the impinge-
ent of spherulites begins to occur at the early stage of the

rystallization, which makes the Avrami exponent lower than
he ideal value. In the beginning stage of the crystallization, the
alue of the Avrami exponent is close to the ideal value because
he possibility of the impingement of spherulites is small. As
he temperature rises under the heating condition or declines
nder the cooling condition, the value of the Avrami exponent
ecreases slightly because the spherulites become larger and the
ossibility of the impingement of spherulites increases.

The relationship between ln F(T) and temperature from the
ntercepts of the plots of ln[−ln(1−α)] versus ln |β|, is shown
n Fig. 4.

A linear empirical relationship between logarithm of F(T)

nd temperature was found by some researchers [15,20,37,38].
ifferently, the plots in Fig. 4 are hardly precisely described by
linear function, which perhaps origins from the wider range

f temperatures in current research. Additionally, it is nearly
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ig. 2. Plots of ln[−ln(1−α)] vs. ln |β| for nonisothermal crystallization at dif-
erent temperatures from (a) linear heating curves and (b) linear cooling curves.

mpossible to obtain the parameter of linear growth rate by using
q. (2) because of its complexity. Here, a new rate function was
roposed and a newly developed method was used to obtain the
arameter characterizing the crystallization rate.

From the results above, we can conclude that the Ozawa
odel is suitable for describing the behavior nonisothermal

rystallization in these ideal simulation experiments. As for
he finding that the Ozawa model could not describe the
ehavior of nonisothermal crystallization of some polymers
20,27,28,39,40], the possible reason is that the secondary crys-
allization of these polymers should not be neglected. In current
imulation experiments, we did not take the contribution of sec-
ndary crystallization to degree of crystallinity into account,
uch as the further crystallization within spherulites.

.3. Obtaining the parameter characterizing crystallization
ate

In terms of the Avrami theory, the relationship between the
eal volume of crystalline phase per unit volume V and the
extended’ volume of the crystalline phase Vex can be expressed
n following form without isothermal limit [41]:
dV

dVex
= 1 − α (11)

m

t

ig. 3. Temperature dependence of the Avrami exponent obtained from (a) linear
eating curves and (b) linear cooling curves.

here α is the relative volume degree of crystallinity. Because
ex neglects possible overlapping of growing entities, Eq. (11)
an be rewritten by

dV

dt
= dVex

dr

dr

dt
(1 − α) (12)

here r is the radius of ‘extended’ spherulites; dr/dt is the linear
rown rate of crystalline entities, only depending on temperature
or a given polymer. By taking relationships between dVex/dr
nd α into account, the differential equation for describing the
onisothermal crystallization is given by [18,42]

dα

dt
= K(T )[−ln(1 − α)]m(1 − α) (13)

here α is the relative volume degree of crystallinity at time t;
, the parameter characterizing the mechanism of crystalliza-

ion, which is related to the Avrami exponent n in the following
xpression:
=
n

(14)

K(T) is the crystallization rate which is a constant at a given
emperature T for a given polymer and proportional to the linear
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ig. 4. Plot of ln F(T) vs. temperature obtained from (a) linear heating curves
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rowth rate of the crystals, the physical significance of which is
isted in Table 1.

In Table 1, N0 is the number of nuclei per unit volume; d0, the
hickness of a disk-shape entity; S′, the surface area of the cross-
ection of a rod-like entity; k, the ratio of the nucleation rate to

inear growth rate of crystalline entities; G(T), the linear growth
ate of the entities at temperature T; Xe, the volume fraction
ccupied by crystalline entities at the end of crystallization. Eq.

X
i
(

able 1
he physical significance of K(T) and m in Eq. (13)

hape Predetermined nucleation

K(T) m

phere 4πN0G(T )
(3Xe/4πN0)2/3

Xe
2/

isk
2G(T )(πd0N0Xe)1/2

Xe
1/

od
N0S

′G(T )

Xe
0
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13) can be converted into an integrate form:

ln(1 − α) =
[

(1 −m)
∫ t

0
K[T (t)] dt

]1/(1−m)

(15)

y taking Eqs. (8) and (14) into account, Eq. (15) becomes

ln(1 − α) =
[

1

nβ

∫ T

T0

K(T ) dT

]n
(16)

here β = dT/dt, the constant heating or cooling rate; T0, the
emperature at which the crystallization begins to occur. Eq.
16) can be expressed in the same form as Eq. (1), where F(T)
s different from that given by Ozawa [9] and here it is

(T ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
1

n

∫ T

T0

K(T ) dT

]n
(β > 0)

[
−1

n

∫ T

T0

K(T ) dT

]n
(β < 0)

(17)

he parameter characterizing crystallization rate can be calcu-
ated by differentiating Eq. (17) with respect to T

(T ) =

⎧⎪⎪⎨
⎪⎪⎩

d[nF (T )1/n]

dT
(β > 0)

−d[nF (T )1/n]

dT
(β < 0)

(18)

rom knowledge of F(T) and n obtained by plotting
n[−ln(1−α)] versus ln |β| at different temperatures, the crys-
allization rate parameter, K(T), can be calculated from Eq. (18).
urthermore, the linear growth rate, G(T), can be obtained from

he expression of predetermined nucleation and spherical geom-
try listed in Table 1.

(T ) = K(T )

(
Xe

36πN0

)1/3

(19)

In terms of the values of ln F(T) and n at different temper-
tures, a curve of nF(T)1/n versus T can be fitted by a cubic
pline function and then K(T) can be obtained by a number
ifferential of the function, as described by Eq. (18). Then
e = 1 and N0 = 10−2 �m−3, as shown in Fig. 5. The solid line
s the designed linear growth rate calculated according to Eq.
5) where G0 = 1.3393 × 1022 �m/min, Ed = 106.47 kJ/mol, and

Sporadic nucleation

K(T) m

3
4

3
πkG(T )

(3Xe/πk)

Xe

3/4

3/4

2 πd0kG(T )
(3Xe/πd0k)

Xe

2/3

2/3

G(T )(2XeS
′k)1/2

Xe
1/2
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Fig. 5. Temperature dependence of the linear growth rate. Symbol squares:
obtained from the heating experiments; symbol circles: obtained from cool-
ing experiments; solid line: original data adopted in simulation experiments;
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the theoretical value of 3 in the predetermined nucleation and
spherulite growth condition, as shown in Fig. 7, which suggests
that the value of the Avrami exponent obtained from the modi-

Table 2
The Avrami parameters from nonisothermal crystallization

Scanning rate n ln Z/min−n Zc t1/2/min

Heating
1 3.40 −5.63 3.59 × 10−3 4.70
2 3.62 −5.41 6.69 × 10−2 4.03
4 4.19 −5.33 2.64 × 10−1 3.27
8 4.77 −4.68 5.57 × 10−1 2.47
16 5.21 −3.36 8.11 × 10−1 1.78
32 5.85 −1.68 9.49 × 10−1 1.25

Cooling
−1 5.00 −12.6 3.37 × 10−6 11.6
−2 5.72 −12.2 2.24 × 10−3 7.92
ashed line: the fitting values in terms of those obtained from the heating and
ooling experiments.

= 1634.9 K, adopted in the simulation experiments. The cal-
ulated values, which are denoted as squares for the linear
eating program and circles for the linear cooling program,
ere obtained based on the simulation results. The calculated
alues are quite consistent with the designed ones, suggesting
hat the Ozawa model and the current method to obtain the
inetic parameters are suitable for such a system. The dashed
ine was fitted using the least squares method based on both the
alculated values and Eq. (5) with G0 = 7.99 × 1019 �m/min,
d = 96.11 kJ/mol, and ψ = 1464.3 K. In range of lower and
igher temperature, the crystallization is in the beginning stage
ecause of the heating and the cooling method. The crystal-
ization reaches gradually its end stage near the maximum
rowth rate. The difference increases slightly in the end stage
f the crystallization, perhaps resulting from the increase of the
mpingement of spherulites.

.4. Modified Avrami model

According to Eq. (3), the plot of ln[−ln(1−α)] versus ln t
hould be a line with an intercept of ln Z and a slope of n, as
hown in Fig. 6(a) and (b). The parameters obtained from the
lots are listed in Table 2.

As seen in Fig. 6, the plots of ln[−ln(1−α)] versus ln t main-
ain linear, showing that the modified Avrami method could
ormally be suitable for describing the nonisothermal crystal-
ization. But the kinetic parameter Zc does not keep a constant
s suggested by Jeziorny [11] at different scanning rates. The
alf time of crystallization is also calculated from:(

ln 2
)1/n
1/2 =
Z

(20)

The values of t1/2, as listed in Table 2, decrease as increasing
β|, indicating that the rate of crystallization is faster at a higher
ig. 6. Plot of ln[−ln(1−α)] vs. ln t from (a) linear heating curves and (b) linear
ooling curves.

β|. The values of the Avrami exponent deviate significantly from
−4 6.81 −11.5 5.64 × 10−2 5.13
−8 6.89 −8.64 3.40 × 10−2 3.32
−16 7.88 −6.23 6.77 × 10−1 2.10
−32 8.20 −2.95 9.12 × 10−1 1.37
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ig. 7. Changes of the Avrami exponents with scanning rates. Squares: obtained
rom the heating experiments; circles: obtained from cooling experiments. The
otted line stands for the theoretical value.

ed Avrami method is not reasonable. The values of the Avrami
xponent approach to the theoretical value of 3 only if that the
canning rate is close to zero. Also, some higher values of the
vrami exponent were found by some researchers [31,43–47]

n the nonisothermal crystallization of many polymers in terms
f the method, which is in agreement with the results in current
aper. Therefore, it is not reasonable to explain the nucleation
echanism and growth geometry of entities based on the val-

es of the Avrami exponent derived using the modified Avrami
ethod.

. Conclusion

The Ozawa model is suitable for describing the nonisothermal
rystallization under these ideal simulation experiments and was
xtended to acquiring the linear grown rate of polymer entities.
he results show there is a nonlinear relationship between the

ogarithm of the rate function and temperature. The values of
he Avrami exponent are slightly lower than the designed value
nd the linear growth rates of the entities obtained are consistent
ith the designed ones.
The modified Avrami method is not reasonable for obtaining

he parameters characterizing the kinetics of the nonisothermal
rystallization of polymers. The values of the Avrami exponent
btained are higher than the theoretical one, which could not
eflect the nucleation mechanism and the growth geometry of
he entities.
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