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Abstract

In this study, thermal wave method is applied to predict the non-steady effective thermal conductivity of composites with coated fibers, and
the analytical solution of the problem is obtained. The Fourier heat conduction law is applied to analyze the propagation of thermal waves in the
fibrous composite. The scattering and refraction of thermal waves by a cylindrical fiber with coating in the matrix are analyzed, and the results
of the single scattering problem are applied to the composite medium. The wave fields in different material layers are expressed by using the
wave function expansion method, and the expanded mode coefficients are determined by satisfying the boundary conditions of the layer. The
theory of Waterman and Truell is employed to obtain the effective propagating wave number and non-steady effective thermal conductivity of
composites. As an example, the effects of the material properties of the coating on the effective thermal conductivity of composites are graphically
illustrated and analyzed. Analysis shows that the non-steady effective thermal conductivity under higher frequencies is quite different from the
steady thermal conductivity. In the region of lower frequency, the effect of the properties of the coating on the effective thermal conductivity is

greater. Comparisons with the steady thermal conductivity obtained from other methods are also presented.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The subject of the effective thermal conductivity of compos-
ites is one of the classical problems in heterogeneous media
which has recently draw renewed interest due to the increasing
importance of high temperature systems, e.g., car manufactur-
ing, dedicated space structures, etc. These materials usually
undergo a complex thermal history. The design of composite
materials for such applications requires a thorough under-
standing of heat conduction in them. The foundation of this
understanding lies in the development of micromechanics mod-
els for accurately predicting the effective thermal conductivity
of multiphase composites [1].
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The methods used to measure the thermal conductivity are
divided into two groups: the steady state and the non-steady state
methods. In the first one, the sample is subjected to a constant
heat flow. In the second group, a periodic or transient heat flow
is established in the sample [2]. In the past, much attention has
been focused on the problems of steady state.

The earliest models for the thermal behavior of composites
assumed that the two components are both homogeneous, and
are perfectly bounded across a sharp and distinct interface. The
Maxwell solution [3] is the starting point to find the effective
conductivity of two-phase material systems, but it is valid only
for very low concentration of the dispersed phase. Subsequently,
many structural models, e.g., Parallel, Maxwell-Eucken [4], and
Effective Medium Theory models [5], were proposed. Recently,
Samantray et al. applied the unit-cell approach to study the effec-
tive thermal conductivity of two-phase materials [6]. The idea
of the Generalized Self-Consistent Model was also developed
by Hashin [7] to determine the effective thermal conductivity of
the two-phase materials.
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Recently, coating inclusions have been introduced in the
design of composite to enhance thermal properties. In the mod-
eling, the coating was also introduced for other reasons: first,
during the manufacturing process, a chemical reaction between
inclusion and matrix can create a third phase: the coating. Sec-
ond, due to a mismatch between the two phases, the perfect
interface assumption is not valid. Thus, the coating contributes to
the character of the non-perfect interface. The dramatic effect of
interfacial characteristics on thermal conductivities and thermal
diffusivities has been experimentally demonstrated by Hassel-
man et al. in particle [8] and fiber reinforced composites [9].
Based on an equivalent inclusion concept, Hasselman and John-
son extended Maxwell’s theory to the systems of spherical
and cylindrical inclusions with contact resistance [10]. Ben-
veniste and his co-worker have proposed several analytical
models to predict the effective thermal conductivity of compos-
ite materials which include the important effects of a thermal
contact resistance between the fillers and matrix [11], and the
coated cylindrically orthotropic fibers with a prescribed ori-
entation distribution [12]. Lu and Song [13,14] investigated
coated or debonded inclusion and developed a more general
model to predicting the effective thermal conductivity of com-
posites.

Due to the complexity of non-steady loading, there are few
calculations on the effective thermal diffusivity in these materi-
als under modulated conditions. Recently, Monde and Mitsutake
[15] proposed a method for determining the thermal diffusivity
of solids by using an analytical inverse solution for unsteady
heat conduction. By using modulated photothermal techniques,
Salazar et al. [2] studied the effective thermal diffusivity of com-
posites made of a matrix filled with aligned circular cylinders
of a different material. Most recently, Fang and Hu investi-
gated the distribution of dynamic effective thermal properties
along the gradation direction of functionally graded materials
by using Fourier heat conduction law [16] and non-Fourier heat
conduction law [17].

Nevertheless, no attention has been paid to the non-steady
effective thermal conductivity of composites with coated fibers.
With the wide application of materials in aerospace and other
high temperature situations, the study on the non-steady effec-
tive thermal conductivity of composites with coating fibers plays
very important role in the designing and manufacture of mate-
rials. The main objective of this paper is to investigate the
scattering of thermal waves and the effects of coating on the
non-steady effective thermal conductivity of materials. Ther-
mal wave is often applied with Fourier conduction law. Fourier’
law underlies “parabolic thermal wave” associated with a non-
linear dependence of thermal conductivity on temperature and
the “thermal wave method” of measuring thermal properties.
The composite medium contains a random distribution of cylin-
drical inclusions of same size with coating of same thickness.
The temperature fields in different regions of the material are
expressed by using the wave function expansion method, and
the expanded mode coefficients are determined by satisfying
the boundary conditions of the coating. The theory of Water-
man and Truell [18] is applied to obtain the non-steady effective
thermal conductivity of composites. The variation of effective
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Fig. 1. Coated cylindrical fiber and the incidence of thermal waves in compos-
ites.

thermal conductivity under different parameters is graphically
illustrated and discussed.

2. Dynamical equations and their solutions

Consider a composite material containing long, parallel, ran-
domly distributed coated fibers embedded in an infinite matrix
[14]. The fibers of radius ag have identical properties. Let A, c, p
be the thermal conductivity, specific heat capacity and mass den-
sity of the matrix, and A, cf, pf those of the fibers. It is assumed
that the thickness of the coating is 2 with material properties A,
Cey Pc-

In order to study the scattering of thermal waves in composite
materials with coated fibers, we first consider the scattered field
due to a single fiber with coating layer. The geometry is depicted
in Fig. 1, where (x, y) is the Cartesian coordinate system with
origin at the center of the fiber and (r, 0) is the corresponding
cylindrical coordinate system. Let the boundary of the fiber and
the coating be denoted by Ct, and that of the coating and the
matrix by C,,.

Based on the Fourier heat conduction law, the heat conduc-
tion equation in the composite material, in the absence of heat
sources, is described as

10T
V2T(rf) = = —, 1
()= 5% ¢
where v2/32 + 3%/3y? represents the two-dimensional Laplacian
operator, T is the temperature in composite materials, D is the
thermal diffusivity with

D=—, (2)
pc
where A, ¢ and p are the thermal conductivity, specific heat at
constant pressure and density of the matrix, respectively.
The solution of periodic steady state is investigated. Suppose
that

T = Ty + Re[v exp(—iwt)], (3)

where Tp is the average temperature, and w is the incident fre-
quency of thermal waves.
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Substituting Eq. (3) into Eq. (1), the following equation can
be obtained

V29 + k%9 = 0, (4)

where « is the wave number of complex variables in materials,
and

k= (1 + i)k, (5)

with k = /w/2D being the incident wave number.
By using wave function expansion method, the incident ther-
mal waves are expressed as

)
50 — Do pilx—or) _ Do Z i" I, (k) gin® efiwt’ (6)

n=—oo

where the superscript (i) stands for the incident waves in the
matrix, ¢ is the temperature amplitude of incident thermal
waves in the matrix, and J,(-) are the nth Bessel functions of
the first kind. It should be noted that all wave fields have the
same time variation e, which is omitted in all subsequent
representations for notational convenience.

When the thermal waves propagate in the fibrous composite
material, the waves are scattered by the fibers, and the scattered
waves of the fibers are expanded in a series of outgoing Hankel
functions. The scattered field in the matrix is expressed in the
forms

o
90 = 3" A HD (kr) e, @)

n=—oo

where the superscript (s) stands for the scattered waves, H,sl)(-)
are the nth Hankel functions of the first kind, and A,, are the
mode coefficients that account for the distortion of the scattered
cylindrical waves by the fiber.

The total temperature in the matrix should be produced by
the superposition of the incident field and the scattered field, i.e.,

oM = 90 4 ©), (8)

The refracted waves inside the fiber are standing waves, and
can be expressed as

o
9 = > BuJu(crr)e’, 9)

n=—oo

where the superscript r stands for the refracted waves, and B,
are the mode coefficients of refracted waves.

The temperature in the coating ¥ may be described by
the sum of the two components (outgoing and ingoing) and is
expressed in the following form [19,20]

n=—0oo n=—oo

o 00
H°= Z EnHr(zl)(KCr) ein(9+ Z FnH;SZ)(KCr) ein@] . (10)

where H® are the nth Hankel functions of the second kind,
and denote the ingoing waves, and E, and F, are the mode
coefficients in the coating.

The wave numbers k¢ in the coating and «s in the cylindrical
fiber are given by

xc=(1+i)./2%c, (11)
Kf=(1+i)w/2%f, (12)

where D¢ = A/ pcce and Ds = A¢l pscs.
3. Boundary conditions and solution of the coefficients

The boundary conditions on C,, and Cs are given by

¢ =™, gt =g for r=a,, (13)

" = °, gr=q¢ for r=a, (14)

where g is the heat flow density in the radial direction, and
gr = —r(39/0r).

The continuous boundary condition of temperature on C,,
gives

00
Z [En Hy(,l)(KCan) eh? + Fy H,SZ)(Kcan) el

n=—oo

o o0
=0 Y "Ju(kan)e" + > A,HP(kay)e",  (15)

n=—oo n=—0oo

Multiplying by e~'” and integrating from 0 to 27, the following
equation can be obtained

E;HO (kcan) + FyHO (kcay) = 9oi* Jy(kan) + AsHO (kan),
(16)

The continuous boundary conditions of temperature on Ct
give
By J(kra0) = EsHM (ccao) + Fs HP (ccao). (17)
According to the continuous boundary conditions of heat flux
density on C,, and Cs, one can obtain

a a

da, Hs(l)(KCan) + F da,

Ac |:Es Hg(z) (Kcan ):|

d < 0
= A [ASBaH§l)(Kan) + 190158

n n

Js(xan)} , (18)

0 d
Af |:sts(’<fa0):| = Ac {E‘YEM)Hs(l)(Kcao)

dag
0 4@
+ Fy— H;" («cao) | , (19)
dag
After some manipulations, Egs. (16)—(19) can be arranged as
[PI{X} = {0}, (20)

where X = Ay, By, Es, Fy, P is a coefficient matrix of 4 x 4, and
fis a vector of 4 ranks, whose elements are shown in Appendix
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A. After solving the linear equation system (20), the mode coef-
ficients A, By, E5, Fy (s=0,£+1, +£2,...) (s=0,1,2,...) canbe
obtained.

4. Effective propagating wave number of thermal waves

We now consider a composite material with N fibers ran-
domly distributed in the matrix. Their positions of these fibers
are denoted by the random variables (r1, 2, ..., ry). The total
temperature field at any point outside all fibers can be given in
the multiple scattering form

N
HMrir, ro, ... rN) = 19i(r) + ZTsﬁi(rk)
k=1

N N
D Tm) Y TR0 )+
m=1 k=1,k#m
(21)

where the single summation denotes the primary scattered terms,
the double summation denotes the secondary terms and so on.
The primary scattering is due to the incident waves alone, and
the second scattering represents the rescattering of the primary
scattered waves, etc. The multiple scattering theory takes into
account the interaction among the distributed fibers accurately.
However, it is difficulty to deal with in order to predict the effec-
tive properties. Here, we apply the effective field approximation
to describe approximately the interaction among the distributed
fibers. Following the work of Waterman and Truell [18], the
effective propagating wave number can be obtained from the
scattered far field.

Once the scattered field due to a single fiber is known, the
phase velocities and attenuations of the coherent waves through
the composite can be easily calculated by the double plane wave
theory of Waterman and Truell [18]. The scattered fields for
incident thermal waves at a large distance from the particle can
be obtained from Eq. (7) by letting r tend to co. After applying
the asymptotic expression of the radial function H(V(«r), the
scattered wave in the far-fields can be expressed asymptotically

2 1
TTKY r

where

fleo)= > (—i)sg—; el (23)

s=—00

The function f{x, 6) is the far-field scattering amplitudes for
the scattered thermal waves. It is noted that the far-field scattered
amplitudes are dependent on the angle 6. The far-field scattered
amplitudes at two specific angles, =0 and 6 =, are of spe-
cial interest, and are called the forward and backward scattering
amplitudes, respectively.

According to the theory of Waterman and Truell [18], in the
case of two-dimensional scatterers, the effective propagating

wave number is expressed as

K\? 2i 2 T2 2
(3) = - T - Zrwn] . e
where K is the propagating wave number in the effective
medium, and N is the number of the fibers per unit volume with
Vi

N = — 2 (25)
in which Vs is the volume fraction of the randomly distributed
cylindrical fibers in the matrix.

It is noted that f{k, 0) is the forward scattering amplitude of a
single scatterer, and f{«, i) is the backward scattering amplitude
of a single scatterer. In the theory of Waterman and Truell [20],
correlations between the fibers are neglected. Thus, the validity
of Eq. (24) is limited to the low volume concentration of fibers.
In the region of higher frequency, the value of Vi should be
Vs < 0.2. With the decrease of wave frequency, a greater value
of Vs can be chosen. However, it should not be greater than
0.3.

5. Non-steady effective properties of the fiber-reinforced
composites

According to Eqg. (5), the non-steady effective thermal
conductivity A¢™ can be easily obtained from the effective prop-
agating wave number as follows:

eff eff ). 2
aeff = £ ¢ {Re (k)] (26)
pc K

where Re(-) denotes the real part, and p° and ¢*f are the effec-
tive mass density and effective heat capacity of composites.
From Ref. [2], it is known that p¢ and ¢*f always follow the
mixture rule, and pce™ is given by

h 2
peffceff = pc {l — Vi (1 + a) } + pscs Vs
0

hVi h
+ 7]( PcCc <2 + ) . (27)
ap ap

6. Numerical examples and discussion

In the following analysis, it is convenient to make the
variables dimensionless. To accomplish this step, a repre-
sentative length scale ag, where ag is the radius of fibers,
is introduced. The following dimensionless variables and
guantities have been chosen for computation: the incident
wave number k*=kag=0.1-2.0, h"=hag=0.05-0.20, A} =
/A =2.0-8.0, ¢f =cf/c =2.0-4.0, pf = ps/p = 2.0-4.0,
Af = Ae/A =0.5-8.0, ¢f = cc/c = 1.0-4.0, and pf = pc/p =
1.0-4.0. The dimensionless effective thermal conductivity is
A" =A%/, During computation, it is found that it is numerically
sufficient to truncate s at 8 for any desired incident frequency.
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Fig. 2. Non-steady effective thermal conductivity as a function of volume frac-
tion of fibers (k* =1.0, Af =40, cf=pf =20, A =25 =
pE =1.5).

The non-steady effective thermal conductivity of composites
as a function of volume fraction of fibers with parame-
ters: k" =1.0, Af =4.0, ¢} =pf =20, Ai=25 (=
g = 1.5is presented in Fig. 2. It can be seen that the non-steady
effective thermal conductivity increases with the increase of the
coating thickness. Because the thermal conductivity of the fiber
is greater than that of the matrix, the non-steady effective ther-
mal conductivity increases with the volume fraction of fibers.
The effect of the coating thickness on the effective thermal con-
ductivity also increases with the volume fraction of fibers. From
Egs. (26) and (27), it is found that the non-steady effective ther-
mal conductivity increases with the increase of the values of cf
and pf. The effects of the values of ci and pf on the effective
thermal conductivity also increase with the volume fraction of
fibers. It is known that the steady effective thermal conductiv-
ity is not dependent on the specific heat and density of the two

3.0 . . — ,
L, =p, =15

25L 2¢,=p, =20

3 hi=pf=30

20¢

1.5}

Effective thermal conductivity A’

05 1 1

06 08 10 12 14 16 18 20

Dimensionless wave number &

Fig. 3. Non-steady effective thermal conductivity as a function of dimen-
sionlesswave number (h* = 0.1, Vf=0.1, A;=4.0, ii=25 «¢{=
oF = 1.5)..

1 A =005
2 K =010
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Effective thermal conductivity A’

Fig. 4. Non-steady effective thermal conductivity as a function of dimensionless
wave number (VF=0.1, Af=40, ¢f=pf =20 r=25 <=
os =1.5)..

phases. However, the specific heat and density of the two phases
have great effect on the dynamic effective thermal conductivity
of composites.

Fig. 3 illustrates the non-steady effective thermal conductiv-
ity of composites as a function of the incident wave number
with parameters: 2* =0.1, Vf=0.1, Aif=40, if=
2.5, c¢f = pf=15.1Itcan be seen that in the region of low
frequency, the variation the specific heat and density of the two
phases nearly expresses no effect on the effective thermal con-
ductivity. With the increase of the incident wave number, the
effect of the specific heat and density of the two phases on
the non-steady effective thermal conductivity increases greatly.
The non-steady effective thermal conductivity increases with the
specific heat and density ratio of the fiber and matrix.

Fig. 4 illustrates the non-steady effective thermal conduc-
tivity of composites as a function of dimensionless wave
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Fig. 5. Non-steady effective thermal conductivity as a function of dimensionless
wave number (Vi=0.1, hr*=0.1 Aif=40,
os =1.5).
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Fig. 6. Comparison of the steady effective thermal conductivity with EMT
model and Hasselman and Johnson (Ref. [10]) (Af = 4.0, ¢f =2.0, pf =
20, h*=0, k*=0).

number with parameters: V¢ =0.1, if =4.0, c¢f =pf =
20, Af=25, cf=ps=15. 1tcan be seen that in the
region of low frequency the non-steady effective thermal con-
ductivity increases with the increase of the value of #”. However,
in the region of high frequency, the non-steady effective thermal
conductivity decreases with the increase of the value of /”.
Fig. 5 shows the non-steady effective thermal conductivity
of composites as a function of dimensionless wave num-

ber with parameters: V¢ = 0.1, h* =0.1,:af =4.0, cf =
pf =2.0, cf=pf{=15 Itcan be seen that in the region
of low frequency the non-steady effective thermal conductiv-
ity increases with the increase of the value of A%. However, in
the region of high frequency, the non-steady effective thermal
conductivity nearly expresses no variation with the value of 1.

Finally, to demonstrate the validity of this dynamic thermal
model, the steady effective thermal conductivity of two-phase
composites without coating is given. As kag—0, the dynamic
effective thermal conductivity tends to the steady solutions.
In Fig. 6, the results obtained from the present model, Effec-
tive Medium Theory [5] and Hasselman and Johnson [10] are
plotted. It is noted that the steady effective thermal conductiv-
ity equations obtained from Effective Medium Theory [5] and
Hasselman and Johnson [10] are listed in Appendix B. Close
agreement is seen to exist between the models at low volume
fractions; however, the present model predicts a lower value
of effective thermal conductivity than the Effective Medium
Theory. This is consistent with regards to criticism of the conven-
tional Effective Medium Theory for overestimating the effective
thermal conductivity of two-phase composites when A > A. This
is attributed to the assumption that the fibers are regarded as the
effective medium even at close range.

7. Conclusions

The scattering of thermal waves in composites with coated
fibers is investigated theoretically by employing wave functions

expansion method. The analytical solution of the non-steady
effective thermal conductivity of the composite is presented. The
theory of Waterman and Truell is applied to obtain the effec-
tive propagating wave number of thermal waves. Comparison
with the steady effective thermal conductivity demonstrates the
validity of the dynamical thermal model.

It has been found that the non-steady effective thermal con-
ductivity of the composites is dependent on the incident wave
number, the material properties ratio of the fiber and matrix and
the properties of the coating. The non-steady effective thermal
conductivity of the composites increases with an increase of the
thickness of the coating, and the thermal conductivity ratio of the
fiber and matrix. In contrast to the steady case, the frequency of
the thermal waves has great influence on the effective thermal
conductivity. In the region of low frequency, the variation the
specific heat and density of the two phases nearly expresses no
effect on the effective thermal conductivity. With the increase
of the incident wave number, the effects of the specific heat and
density of the two phases on the non-steady effective thermal
conductivity increase greatly. In different region of frequency,
the effect of the thickness of the coating also shows great
difference. Therefore, to gain a higher effective thermal con-
ductivity of composites, when the frequency of thermal loading
is low, the greater thickness and thermal conductivity of the
coating and the greater thermal conductivity ratio of the fibers
and matrix should be chosen. However, in the region of high
frequency (k" >1.0), the smaller thickness of the coating is
preferable.

The results of this paper can provide guidelines for the design
of fiber reinforced composites in the presence of coating and
would be helpful in understanding the thermal behavior of com-
posites.
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Appendix A

The expressions of P and Q are given by

P(1,1) = —H (kay), (A1)
P(1,2) =0, (A.2)
P(1,3) = H®(kcan). (A3)
P(1,4) = HO(kcay), (A4)
P(2,1) =0, (A.5)
P(2,2) = —Js(koao), (A.6)
P(2,3) = HD (kcao), (A7)
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P(2,4) = H? (icap), (A.8)
P(3,1) = AlsH® (can) — rcan HY, (kay)], (A.9)
P(3,2) =0, (A.10)
P(3, 3) = Acls HO (kcan) — rcan HEY, (iccan)], (A.11)
P(3, 4) = Acls HP(kcan) — rcan HE, (ccan)], (A12)
P(4,1) =0, (A.13)
P(4,2) = —xo[sJs(koao) — xoaoJy+1(koao)], (A.14)
P(4, 3) = Ac[sHD (kcao) — koao HY, (kcao)], (A.15)
P(4, 4) = Ac[sH® (xcao) — keao H (kcao)], (A.16)
0(1) = Doi* J(kap). (A17)
0(2) =0, (A.18)
0(3) = Voi*[sJy(kan) — kan Jyy1(kan)], (A.19)
0(4) =0, (A.20)
Appendix B

The effective thermal conductivity equation obtained from
Effective Medium Method model [5] is expressed as

)\f _ )\eff A )\'eff

7 Aot § RN 7 A
vy RSP TE

B.1
Ni2 (B.1)

The effective thermal conductivity equation obtained from
Hasselman and Johnson [10] is expressed as
eff _ )\()»f/)\ — Vi + (1 + A1/2)
A+ re/M)VE+ L+ 2e/0)

(B.2)
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