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bstract

In this study, thermal wave method is applied to predict the non-steady effective thermal conductivity of composites with coated fibers, and
he analytical solution of the problem is obtained. The Fourier heat conduction law is applied to analyze the propagation of thermal waves in the
brous composite. The scattering and refraction of thermal waves by a cylindrical fiber with coating in the matrix are analyzed, and the results
f the single scattering problem are applied to the composite medium. The wave fields in different material layers are expressed by using the
ave function expansion method, and the expanded mode coefficients are determined by satisfying the boundary conditions of the layer. The

heory of Waterman and Truell is employed to obtain the effective propagating wave number and non-steady effective thermal conductivity of

omposites. As an example, the effects of the material properties of the coating on the effective thermal conductivity of composites are graphically
llustrated and analyzed. Analysis shows that the non-steady effective thermal conductivity under higher frequencies is quite different from the
teady thermal conductivity. In the region of lower frequency, the effect of the properties of the coating on the effective thermal conductivity is
reater. Comparisons with the steady thermal conductivity obtained from other methods are also presented.

2008 Elsevier B.V. All rights reserved.
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. Introduction

The subject of the effective thermal conductivity of compos-
tes is one of the classical problems in heterogeneous media
hich has recently draw renewed interest due to the increasing

mportance of high temperature systems, e.g., car manufactur-
ng, dedicated space structures, etc. These materials usually
ndergo a complex thermal history. The design of composite
aterials for such applications requires a thorough under-

tanding of heat conduction in them. The foundation of this

nderstanding lies in the development of micromechanics mod-
ls for accurately predicting the effective thermal conductivity
f multiphase composites [1].
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The methods used to measure the thermal conductivity are
ivided into two groups: the steady state and the non-steady state
ethods. In the first one, the sample is subjected to a constant

eat flow. In the second group, a periodic or transient heat flow
s established in the sample [2]. In the past, much attention has
een focused on the problems of steady state.

The earliest models for the thermal behavior of composites
ssumed that the two components are both homogeneous, and
re perfectly bounded across a sharp and distinct interface. The
axwell solution [3] is the starting point to find the effective

onductivity of two-phase material systems, but it is valid only
or very low concentration of the dispersed phase. Subsequently,
any structural models, e.g., Parallel, Maxwell–Eucken [4], and
ffective Medium Theory models [5], were proposed. Recently,
amantray et al. applied the unit-cell approach to study the effec-
ive thermal conductivity of two-phase materials [6]. The idea
f the Generalized Self-Consistent Model was also developed
y Hashin [7] to determine the effective thermal conductivity of
he two-phase materials.
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Recently, coating inclusions have been introduced in the
esign of composite to enhance thermal properties. In the mod-
ling, the coating was also introduced for other reasons: first,
uring the manufacturing process, a chemical reaction between
nclusion and matrix can create a third phase: the coating. Sec-
nd, due to a mismatch between the two phases, the perfect
nterface assumption is not valid. Thus, the coating contributes to
he character of the non-perfect interface. The dramatic effect of
nterfacial characteristics on thermal conductivities and thermal
iffusivities has been experimentally demonstrated by Hassel-
an et al. in particle [8] and fiber reinforced composites [9].
ased on an equivalent inclusion concept, Hasselman and John-

on extended Maxwell’s theory to the systems of spherical
nd cylindrical inclusions with contact resistance [10]. Ben-
eniste and his co-worker have proposed several analytical
odels to predict the effective thermal conductivity of compos-

te materials which include the important effects of a thermal
ontact resistance between the fillers and matrix [11], and the
oated cylindrically orthotropic fibers with a prescribed ori-
ntation distribution [12]. Lu and Song [13,14] investigated
oated or debonded inclusion and developed a more general
odel to predicting the effective thermal conductivity of com-

osites.
Due to the complexity of non-steady loading, there are few

alculations on the effective thermal diffusivity in these materi-
ls under modulated conditions. Recently, Monde and Mitsutake
15] proposed a method for determining the thermal diffusivity
f solids by using an analytical inverse solution for unsteady
eat conduction. By using modulated photothermal techniques,
alazar et al. [2] studied the effective thermal diffusivity of com-
osites made of a matrix filled with aligned circular cylinders
f a different material. Most recently, Fang and Hu investi-
ated the distribution of dynamic effective thermal properties
long the gradation direction of functionally graded materials
y using Fourier heat conduction law [16] and non-Fourier heat
onduction law [17].

Nevertheless, no attention has been paid to the non-steady
ffective thermal conductivity of composites with coated fibers.
ith the wide application of materials in aerospace and other

igh temperature situations, the study on the non-steady effec-
ive thermal conductivity of composites with coating fibers plays
ery important role in the designing and manufacture of mate-
ials. The main objective of this paper is to investigate the
cattering of thermal waves and the effects of coating on the
on-steady effective thermal conductivity of materials. Ther-
al wave is often applied with Fourier conduction law. Fourier’

aw underlies “parabolic thermal wave” associated with a non-
inear dependence of thermal conductivity on temperature and
he “thermal wave method” of measuring thermal properties.
he composite medium contains a random distribution of cylin-
rical inclusions of same size with coating of same thickness.
he temperature fields in different regions of the material are
xpressed by using the wave function expansion method, and

he expanded mode coefficients are determined by satisfying
he boundary conditions of the coating. The theory of Water-

an and Truell [18] is applied to obtain the non-steady effective
hermal conductivity of composites. The variation of effective

T

w
q

ig. 1. Coated cylindrical fiber and the incidence of thermal waves in compos-
tes.

hermal conductivity under different parameters is graphically
llustrated and discussed.

. Dynamical equations and their solutions

Consider a composite material containing long, parallel, ran-
omly distributed coated fibers embedded in an infinite matrix
14]. The fibers of radius a0 have identical properties. Let λ, c, ρ
e the thermal conductivity, specific heat capacity and mass den-
ity of the matrix, and λf, cf, ρf those of the fibers. It is assumed
hat the thickness of the coating is h with material properties λc,
c, ρc.

In order to study the scattering of thermal waves in composite
aterials with coated fibers, we first consider the scattered field

ue to a single fiber with coating layer. The geometry is depicted
n Fig. 1, where (x, y) is the Cartesian coordinate system with
rigin at the center of the fiber and (r, θ) is the corresponding
ylindrical coordinate system. Let the boundary of the fiber and
he coating be denoted by Cf, and that of the coating and the

atrix by Cm.
Based on the Fourier heat conduction law, the heat conduc-

ion equation in the composite material, in the absence of heat
ources, is described as

2T (r, t) = 1

D

∂T

∂t
, (1)

here �2/∂2 + ∂2/∂y2 represents the two-dimensional Laplacian
perator, T is the temperature in composite materials, D is the
hermal diffusivity with

= λ

ρc
, (2)

here λ, c and ρ are the thermal conductivity, specific heat at
onstant pressure and density of the matrix, respectively.

The solution of periodic steady state is investigated. Suppose
hat
= T0 + Re[ϑ exp(−iωt)], (3)

here T0 is the average temperature, and ω is the incident fre-
uency of thermal waves.
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Substituting Eq. (3) into Eq. (1), the following equation can
e obtained

2ϑ + κ2ϑ = 0, (4)

here κ is the wave number of complex variables in materials,
nd

= (1 + i)k, (5)

ith k = √
ω/2D being the incident wave number.

By using wave function expansion method, the incident ther-
al waves are expressed as

(i) = ϑ0 ei(κx−ωt) = ϑ0

∞∑
n=−∞

inJn(κr) einθ e−iωt, (6)

here the superscript (i) stands for the incident waves in the
atrix, ϑ0 is the temperature amplitude of incident thermal
aves in the matrix, and Jn(·) are the nth Bessel functions of

he first kind. It should be noted that all wave fields have the
ame time variation e−iωt, which is omitted in all subsequent
epresentations for notational convenience.

When the thermal waves propagate in the fibrous composite
aterial, the waves are scattered by the fibers, and the scattered
aves of the fibers are expanded in a series of outgoing Hankel

unctions. The scattered field in the matrix is expressed in the
orms

(s) =
∞∑

n=−∞
AnH

(1)
n (κr) einθ, (7)

here the superscript (s) stands for the scattered waves, H (1)
n (·)

re the nth Hankel functions of the first kind, and An are the
ode coefficients that account for the distortion of the scattered

ylindrical waves by the fiber.
The total temperature in the matrix should be produced by

he superposition of the incident field and the scattered field, i.e.,

m = ϑ(i) + ϑ(s). (8)

The refracted waves inside the fiber are standing waves, and
an be expressed as

r =
∞∑

n=−∞
BnJn(κfr) einθ, (9)

here the superscript r stands for the refracted waves, and Bn

re the mode coefficients of refracted waves.
The temperature in the coating ϑc may be described by

he sum of the two components (outgoing and ingoing) and is
xpressed in the following form [19,20]

c=
[ ∞∑

EnH
(1)
n (κcr) einθ+

∞∑
FnH

(2)
n (κcr) einθ

]
, (10)
n=−∞ n=−∞

here H (2)
n are the nth Hankel functions of the second kind,

nd denote the ingoing waves, and En and Fn are the mode
oefficients in the coating.

[

w
f
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The wave numbers κc in the coating and κf in the cylindrical
ber are given by

c = (1 + i)
√

ω

2Dc
, (11)

f = (1 + i)

√
ω

2Df
, (12)

here Dc = λc/ρccc and Df = λf/ρfcf.

. Boundary conditions and solution of the coefficients

The boundary conditions on Cm and Cf are given by

c = ϑm, qc
r = qm

r for r = an, (13)

r = ϑc, qr
r = qc

r for r = a0, (14)

here qr is the heat flow density in the radial direction, and
r = −λ(∂ϑ/∂r).

The continuous boundary condition of temperature on Cm

ives

∞∑
n=−∞

[EnH
(1)
n (κcan) einθ + FnH

(2)
n (κcan) einθ

= ϑ0

∞∑
n=−∞

inJn(κan) einθ +
∞∑

n=−∞
AnH

(1)
n (κan) einθ, (15)

ultiplying by e−isθ and integrating from 0 to 2π, the following
quation can be obtained

sH
(1)
s (κcan) + FsH

(2)
s (κcan) = ϑ0i

sJs(κan) + AsH
(1)
s (κan),

(16)

The continuous boundary conditions of temperature on Cf
ive

sJs(κfa0) = EsH
(1)
s (κca0) + FsH

(2)
s (κca0). (17)

According to the continuous boundary conditions of heat flux
ensity on Cm and Cf, one can obtain

λc

[
Es

∂

∂an

H (1)
s (κcan) + Fs

∂

∂an

H (2)
s (κcan)

]

= λ

[
As

∂

∂an

H (1)
s (κan) + ϑ0i

s ∂

∂an

Js(κan)

]
, (18)

f

[
Bs

∂

∂a0
Js(κfa0)

]
= λc

[
Es

∂

∂a0
H (1)

s (κca0)

+ Fs

∂

∂a0
H (2)

s (κca0)

]
, (19)

fter some manipulations, Eqs. (16)–(19) can be arranged as
P]{X} = {Q}, (20)

here X = As, Bs, Es, Fs, P is a coefficient matrix of 4 × 4, and
is a vector of 4 ranks, whose elements are shown in Appendix
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. After solving the linear equation system (20), the mode coef-
cients As, Bs, Es, Fs (s = 0, ±1, ±2, . . .) (s = 0, 1, 2, . . .) can be
btained.

. Effective propagating wave number of thermal waves

We now consider a composite material with N fibers ran-
omly distributed in the matrix. Their positions of these fibers
re denoted by the random variables (r1, r2, . . ., rN). The total
emperature field at any point outside all fibers can be given in
he multiple scattering form

(r; r1, r2, . . . rN ) = ϑi(r) +
N∑

k=1

T sϑi(rk)

+
N∑

m=1

T s(rm)
N∑

k=1,k �=m

T s(rk)ϑi(rm) + · · ·

(21)

here the single summation denotes the primary scattered terms,
he double summation denotes the secondary terms and so on.
he primary scattering is due to the incident waves alone, and

he second scattering represents the rescattering of the primary
cattered waves, etc. The multiple scattering theory takes into
ccount the interaction among the distributed fibers accurately.
owever, it is difficulty to deal with in order to predict the effec-

ive properties. Here, we apply the effective field approximation
o describe approximately the interaction among the distributed
bers. Following the work of Waterman and Truell [18], the
ffective propagating wave number can be obtained from the
cattered far field.

Once the scattered field due to a single fiber is known, the
hase velocities and attenuations of the coherent waves through
he composite can be easily calculated by the double plane wave
heory of Waterman and Truell [18]. The scattered fields for
ncident thermal waves at a large distance from the particle can
e obtained from Eq. (7) by letting r tend to ∞. After applying
he asymptotic expression of the radial function H (1)

n (κr), the
cattered wave in the far-fields can be expressed asymptotically

(s)
r ∼

√
2

πκr
ei(κr−π/4)(iκϑ0)f (κ, θ) + o

(
1

r

)
, (22)

here

(κ, θ) =
∞∑

s=−∞
(−i)s As

ϑ0
eisθ. (23)

The function f(κ, θ) is the far-field scattering amplitudes for
he scattered thermal waves. It is noted that the far-field scattered
mplitudes are dependent on the angle θ. The far-field scattered
mplitudes at two specific angles, θ = 0 and θ = π, are of spe-

ial interest, and are called the forward and backward scattering
mplitudes, respectively.

According to the theory of Waterman and Truell [18], in the
ase of two-dimensional scatterers, the effective propagating

λ

1
λ

s
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ave number is expressed as

K

k

)2

=
[

1 − 2iN

k2 f (κ, 0)

]2

−
[

2iN

k2 f (κ, π)

]2

, (24)

here K is the propagating wave number in the effective
edium, and N is the number of the fibers per unit volume with

= Vf

πa2
0

, (25)

n which Vf is the volume fraction of the randomly distributed
ylindrical fibers in the matrix.

It is noted that f(κ, 0) is the forward scattering amplitude of a
ingle scatterer, and f(κ, π) is the backward scattering amplitude
f a single scatterer. In the theory of Waterman and Truell [20],
orrelations between the fibers are neglected. Thus, the validity
f Eq. (24) is limited to the low volume concentration of fibers.
n the region of higher frequency, the value of Vf should be
f ≤ 0.2. With the decrease of wave frequency, a greater value
f Vf can be chosen. However, it should not be greater than
.3.

. Non-steady effective properties of the fiber-reinforced
omposites

According to Eq. (5), the non-steady effective thermal
onductivity λeff can be easily obtained from the effective prop-
gating wave number as follows:

eff = ρeffceffλ

ρc

[
Re

(
k

K

)]2

(26)

here Re(·) denotes the real part, and ρeff and ceff are the effec-
ive mass density and effective heat capacity of composites.
rom Ref. [2], it is known that ρeff and ceff always follow the
ixture rule, and ρeffceff is given by

effceff = ρc

{
1 − Vf

(
1 + h

a0

)2
}

+ ρfcfVf

+ hVf

a0
ρccc

(
2 + h

a0

)
. (27)

. Numerical examples and discussion

In the following analysis, it is convenient to make the
ariables dimensionless. To accomplish this step, a repre-
entative length scale a0, where a0 is the radius of fibers,
s introduced. The following dimensionless variables and
uantities have been chosen for computation: the incident
ave number k* = ka0 = 0.1–2.0, h* = ha0 = 0.05–0.20, λ∗

f =
f/λ = 2.0–8.0, c∗

f = cf/c = 2.0–4.0, ρ∗
f = ρf/ρ = 2.0–4.0,
∗
c = λc/λ = 0.5–8.0, c∗

c = cc/c = 1.0–4.0, and ρ∗
c = ρc/ρ =

.0–4.0. The dimensionless effective thermal conductivity is
* = λeff/λ. During computation, it is found that it is numerically
ufficient to truncate s at 8 for any desired incident frequency.
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ig. 2. Non-steady effective thermal conductivity as a function of volume frac-
ion of fibers (k∗ = 1.0, λ∗

f = 4.0, c∗
f = ρ∗

f = 2.0, λ∗
c = 2.5, c∗

c =
∗
c = 1.5).

The non-steady effective thermal conductivity of composites
s a function of volume fraction of fibers with parame-
ers: k* = 1.0, λ∗

f = 4.0, c∗
f = ρ∗

f = 2.0, λ∗
c = 2.5, c∗

c =
∗
c = 1.5 is presented in Fig. 2. It can be seen that the non-steady
ffective thermal conductivity increases with the increase of the
oating thickness. Because the thermal conductivity of the fiber
s greater than that of the matrix, the non-steady effective ther-

al conductivity increases with the volume fraction of fibers.
he effect of the coating thickness on the effective thermal con-
uctivity also increases with the volume fraction of fibers. From
qs. (26) and (27), it is found that the non-steady effective ther-
al conductivity increases with the increase of the values of c∗

f∗ ∗ ∗
nd ρf . The effects of the values of cf and ρf on the effective
hermal conductivity also increase with the volume fraction of
bers. It is known that the steady effective thermal conductiv-

ty is not dependent on the specific heat and density of the two

ig. 3. Non-steady effective thermal conductivity as a function of dimen-
ionless wave number (h∗ = 0.1, Vf = 0.1, λ∗

f = 4.0, λ∗
c = 2.5, c∗

c =
∗
c = 1.5)..

T
s

t

F
w
ρ

ig. 4. Non-steady effective thermal conductivity as a function of dimensionless
ave number (Vf = 0.1, λ∗

f = 4.0, c∗
f = ρ∗

f = 2.0, λ∗
c = 2.5, c∗

c =
∗
c = 1.5)..

hases. However, the specific heat and density of the two phases
ave great effect on the dynamic effective thermal conductivity
f composites.

Fig. 3 illustrates the non-steady effective thermal conductiv-
ty of composites as a function of the incident wave number
ith parameters: h∗ = 0.1, Vf = 0.1, λ∗

f = 4.0, λ∗
c =

.5, c∗
c = ρ∗

c = 1.5. It can be seen that in the region of low
requency, the variation the specific heat and density of the two
hases nearly expresses no effect on the effective thermal con-
uctivity. With the increase of the incident wave number, the
ffect of the specific heat and density of the two phases on
he non-steady effective thermal conductivity increases greatly.
he non-steady effective thermal conductivity increases with the

pecific heat and density ratio of the fiber and matrix.

Fig. 4 illustrates the non-steady effective thermal conduc-
ivity of composites as a function of dimensionless wave

ig. 5. Non-steady effective thermal conductivity as a function of dimensionless
ave number (Vf = 0.1, h∗ = 0.1, λ∗

f = 4.0, c∗
f = ρ∗

f = 2.0, c∗
c =

∗
c = 1.5).
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ig. 6. Comparison of the steady effective thermal conductivity with EMT
odel and Hasselman and Johnson (Ref. [10]) (λ∗

f = 4.0, c∗
f = 2.0, ρ∗

f =
.0, h∗ = 0, k∗ = 0).

umber with parameters: Vf = 0.1, λ∗
f = 4.0, c∗

f = ρ∗
f =

.0, λ∗
c = 2.5, c∗

c = ρ∗
c = 1.5. It can be seen that in the

egion of low frequency the non-steady effective thermal con-
uctivity increases with the increase of the value of h*. However,
n the region of high frequency, the non-steady effective thermal
onductivity decreases with the increase of the value of h*.

Fig. 5 shows the non-steady effective thermal conductivity
f composites as a function of dimensionless wave num-

er with parameters: Vf = 0.1, h∗ = 0.1,
...λ∗

f = 4.0, c∗
f =

∗
f = 2.0, c∗

c = ρ∗
c = 1.5. It can be seen that in the region

f low frequency the non-steady effective thermal conductiv-
ty increases with the increase of the value of λ∗

c . However, in
he region of high frequency, the non-steady effective thermal
onductivity nearly expresses no variation with the value of λ∗

c .
Finally, to demonstrate the validity of this dynamic thermal

odel, the steady effective thermal conductivity of two-phase
omposites without coating is given. As ka0→0, the dynamic
ffective thermal conductivity tends to the steady solutions.
n Fig. 6, the results obtained from the present model, Effec-
ive Medium Theory [5] and Hasselman and Johnson [10] are
lotted. It is noted that the steady effective thermal conductiv-
ty equations obtained from Effective Medium Theory [5] and
asselman and Johnson [10] are listed in Appendix B. Close

greement is seen to exist between the models at low volume
ractions; however, the present model predicts a lower value
f effective thermal conductivity than the Effective Medium
heory. This is consistent with regards to criticism of the conven-

ional Effective Medium Theory for overestimating the effective
hermal conductivity of two-phase composites when λf > λ. This
s attributed to the assumption that the fibers are regarded as the
ffective medium even at close range.
. Conclusions

The scattering of thermal waves in composites with coated
bers is investigated theoretically by employing wave functions

P

P

P
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xpansion method. The analytical solution of the non-steady
ffective thermal conductivity of the composite is presented. The
heory of Waterman and Truell is applied to obtain the effec-
ive propagating wave number of thermal waves. Comparison
ith the steady effective thermal conductivity demonstrates the
alidity of the dynamical thermal model.

It has been found that the non-steady effective thermal con-
uctivity of the composites is dependent on the incident wave
umber, the material properties ratio of the fiber and matrix and
he properties of the coating. The non-steady effective thermal
onductivity of the composites increases with an increase of the
hickness of the coating, and the thermal conductivity ratio of the
ber and matrix. In contrast to the steady case, the frequency of

he thermal waves has great influence on the effective thermal
onductivity. In the region of low frequency, the variation the
pecific heat and density of the two phases nearly expresses no
ffect on the effective thermal conductivity. With the increase
f the incident wave number, the effects of the specific heat and
ensity of the two phases on the non-steady effective thermal
onductivity increase greatly. In different region of frequency,
he effect of the thickness of the coating also shows great
ifference. Therefore, to gain a higher effective thermal con-
uctivity of composites, when the frequency of thermal loading
s low, the greater thickness and thermal conductivity of the
oating and the greater thermal conductivity ratio of the fibers
nd matrix should be chosen. However, in the region of high
requency (k* > 1.0), the smaller thickness of the coating is
referable.

The results of this paper can provide guidelines for the design
f fiber reinforced composites in the presence of coating and
ould be helpful in understanding the thermal behavior of com-
osites.
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ppendix A

The expressions of P and Q are given by

(1, 1) = −H (1)
s (κan), (A.1)

(1, 2) = 0, (A.2)

(1, 3) = H (1)
s (κcan), (A.3)

(1, 4) = H (2)
s (κcan), (A.4)
(2, 1) = 0, (A.5)

(2, 2) = −Js(κ0a0), (A.6)

(2, 3) = H (1)
s (κca0), (A.7)
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(2, 4) = H (2)
s (κca0), (A.8)

(3, 1) = λ[sH (1)
s (κan) − κanH

(1)
s+1(κan)], (A.9)

(3, 2) = 0, (A.10)

(3, 3) = λc[sH (1)
s (κcan) − κcanH

(1)
s+1(κcan)], (A.11)

(3, 4) = λc[sH (2)
s (κcan) − κcanH

(2)
s+1(κcan)], (A.12)

(4, 1) = 0, (A.13)

(4, 2) = −λ0[sJs(κ0a0) − κ0a0Js+1(κ0a0)], (A.14)

(4, 3) = λc[sH (1)
s (κca0) − κca0H

(1)
s+1(κca0)], (A.15)

(4, 4) = λc[sH (2)
s (κca0) − κca0H

(2)
s+1(κca0)], (A.16)

(1) = ϑ0isJs(κan), (A.17)

(2) = 0, (A.18)

(3) = ϑ0is[sJs(κan) − κanJs+1(κan)], (A.19)

(4) = 0, (A.20)

ppendix B

The effective thermal conductivity equation obtained from
ffective Medium Method model [5] is expressed as
f
λf − λeff

λf + 2λeff + (1 − Vf)
λ − λeff

λ + 2λeff = 0. (B.1)

[
[
[
[

Acta 469 (2008) 109–115 115

The effective thermal conductivity equation obtained from
asselman and Johnson [10] is expressed as

eff = λ
(λf/λ − 1)Vf + (1 + λf/λ)

(1 + λf/λ)Vf + (1 + λf/λ)
. (B.2)
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