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1. Introduction
Molar excess enthalpy of liquid mixtures is an important basic
property used in chemical industry designs. The measurement, cor-
relation, and theoretical calculation of the molar excess enthalpy
are the subject of active research [1–8]. Further molar excess vol-
umes data of the liquid mixtures are required, for instance, for
relating excess enthalpy and excess free energy values. From a
practical point of view, the data are useful for the design of mix-
ing, storage and process equipment. Anilines are known to be
associated [9–11] in the pure state through bonding. The addi-
tion of a compound like chloroform to aniline or o-toluidine
may tend either to rupture or enhance the self-association of
aniline or o-toluidine or chloroform. As the state of aniline or
o-toluidine or chloroform in pure as well mixture state may or
may not be same, therefore, thermodynamic and topological stud-
ies of aniline or o-toluidine + chloroform mixtures can provide
information about the state of aggregation of these compounds
and the nature of species present in these mixtures. These con-
siderations prompted us to study the thermodynamic properties
molar excess volumes, molar excess enthalpies and isentropic com-
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lar excess enthalpies, HE, and speeds of sound data, u, of chloroform
ary mixtures have been measured as a function of composition at 308.15 K.
ges of mixing, �E

S have been determined by employing speed of sound data.
data reveals that aniline, chloroform and o-toluidine are associated enti-
ntain a 1:1 molecular complex. The IR studies lend further support to the
for the proposed molecular entity in the mixtures. HE and �E

S values have
ing Moelwyn-Huggins concept [Polymer 12 (1971) 387] taking topology

ures. It has been observed that calculated HE and �E
S values compare well

imental values. The observed VE, HE and �E
S data have also been analyzed

© 2008 Elsevier B.V. All rights reserved.

pressibility change of mixing of chloroform + aniline or o-toluidine
mixtures.

2. Experimental
Aniline (A) [AR Grade], o-toluidine (OT) [Fluka], chloroform (AR
Grade) were purified by standard methods [12]. The purities of the
purified liquids were then checked by measuring their densities at
298.15 ± 0.01 K and these agreed to within ±0.05 kg m−3 with their
values reported in literature [12].

Molar excess volumes, VE for the binary (i + j) mixtures were
determined at 308.15 K as a function of composition in a V-shaped
dilatometer that has been described elsewhere [13]. The uncertain-
ties in the measured VE values are ±0.5%.

Molar excess enthalpies, HE for binary mixtures were mea-
sured at 308.15 K by 2-drop calorimeter (model, 4600) supplied
by the Calorimetry Sciences Corporation (CSC) USA in a manner
as described elsewhere [14] and the uncertainties in the measured
HE values are ±1%.

Speeds of sound in binary mixtures were measured at
308.15 ± 0.01 K using a variable path interferometer (Model-M 84,
Mittal Enterprises, India) and a measuring cell. Water from the
thermostat was circulated through the cell to maintain the desired
temperature. The uncertainties in the measured speed of sound
values are ±1 ms−1.

http://www.sciencedirect.com/science/journal/00406031
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Fig. 1. Molar excess volumes, VE, for chloroform (i) + aniline (j), (�) chlorofom (i) + o-
toluidine (j), and (�) at 308.15 K.
Samples for IR studies were prepared by mixing (i) and (j) com-
ponents in 1:1 (w/w) ratio and their IR spectra were recorded on
PerkinElmer-Spectrum RX-I, FTIR spectrometer.

3. Results

Molar excess volumes, VE, molar excess enthalpies, HE
, and

speeds of sound, u, data of chloroform (i) + A or OT (j) binary mix-
tures at 308.15 K over the whole composition range are recorded
in Supplementary Tables 1–3 (plotted in Figs. 1 and 2), respec-
tively. The isentropic compressibility,�S for binary mixtures were
calculated using Eq. (1).

�S = (�iju
2)

−1
(1)

Fig. 2. Molar excess enthalpies, HE for chloroform (i) + aniline (j), (�) chloroform
(i) + o-toluidine (j), and (�) at 308.15 K.
Fig. 3. Isentropic compressibility changes of �E
S for chloroform (i) + aniline (j), (�)

chloroform (i) + o-toluidine (j), and (�) at 308.15 K.

The densities, �ij of the binary mixtures were calculated from
their molar excess volume data using the relation:

VE =
j∑

i=i

xiMi(�ij)
−1 −

j∑
i=i

xiMi(�i)
−1 (2)

where xi, Mi, �i are the mole fraction, molar mass and density
of component (i) of (i + j) binary mixture. Isentropic compressibil-
ity changes of mixing, �E

S for (i + j) mixtures were determined by
employing Eq. (3).

�E
S = �S −

j∑
i=i

�i(kS)i (3)

where �i and (kS)i, etc. are the volume fraction and isentropic com-
E
pressibility of component (i). The resulting kS and �S values (plotted

in Fig. 3) for the binary mixtures are recorded in Supplementary
Table 3.

Molar excess volumes, VE, molar excess enthalpies, HE and Isen-
tropic compressibility changes of mixing, �E

S data were fitted to Eq.
(4)

XE(X = V or H or �S) = xixj[X
(0) + X(1)(2 xi − 1) + X(2)(2xi − 1)2]

(4)

where X(n) (n = 0, 2), etc. are the parameters characteristic of (i + j)
mixture and have been determined by fitting XE data to Eq. (4) by
the least squares method and are recorded along with standard
deviation, �(XE)[X = V or H or �S] defined by Eq. (5)

�(XE) =
[

˙(XE
exptl − XE

Calc.Eq. (4))
2

m − p

]0.5

(5)

[where m, n are the number of data points and adjustable parame-
ters in Eq. (4)] in Supplementary Tables 1–3.
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3.1. Discussion

The HE data for chloroform (i) + A or OT (j) mixtures at 308.15 K
have been reported in the literature [15]. Our HE values for chlo-
roform (i) + A (j) mixtures are in excellent agreement with the
experimental values. However, for chloroform (i) + OT (j) mixture;
HE values differ by 2% in the range 0.6 ≤ xi ≤ 0.8. The general shapes
of the curves of the mixtures are same. We are unaware of any VE

and �E
S data for (i + j) mixtures with which to compare our results.

However, there is good agreement between the experimentally
observed and literature values of speed of sound at 298.15 K for
pure A: 1635.0 (1634.0) [16] and at 303.15 K for chloroform: 967.2
(968.0) [17]. While VE data for the studied (i + j) mixtures are nega-
tive; HE data are negative for chloroform (i) + OT (j) and are positive
for chloroform (i) + A (j) mixtures over entire composition range. VE

and HE data for an equimolar composition vary in the order: A > OT.
Further �E

S values are negative for chloroform (i) + A (j) over whole
composition range. However, �E

S values changes sign from negative
to positive values for chloroform (i) + OT (j) mixtures with increase
in mole fraction of chloroform.

The observed VE and HE data for studied (i + j) mixtures may
be qualitatively explained, if it be assumed that (i) chloroform or
A or OT are associated molecular entities; (ii) there is interaction
between lone pair of electron on the nitrogen atom of A or OT and
hydrogen atom of chloroform; (iii) interaction between in and jn
molecules then leads to depolymerization of in and jn to yield their
respective monomers; (iv) monomers of i and j then undergoes
interaction to form i:j molecular complex. The positive HE values
for chloroform (i) + A (j) mixtures suggest that contribution to HE

due to factor (iii) far outweigh the factor (iv). The addition of –CH3
substituent in benzene ring of A (as in OT) increases the �-electron
density of the benzene ring thereby allowing the lone pair of elec-
tron on the N-atom of OT to interact strongly as to compared to
that of A with chloroform. Thus VE and HE values should be less for
chloroform (i) + OT (j) mixtures as compared to chloroform (i) + A (j)
mixtures. This is indeed true. The large interactions in chloroform
(i) + OT (j) mixture than those for chloroform (i) + A (j) mixture is
further supported, if we assume that HE values are due to two fac-
tors (i) contribution due to size, HE

phys and (ii) contribution arising

from molecular interactions, HE
chem. If HE

phys values were taken be

HE
expt for cyclohexane + chloroform mixture [18], then HE

chem values
at an equimolar comparison for chloroform (i) + A or OT (j) mixtures
are −434.4 and −975.2 J mol−1, respectively. The HE

chem values thus

support our viewpoint that OT interacts strongly with chloroform
as compared to A.

The �E
S values for chloroform (i) + A or OT (j) mixtures suggest

that A gives relatively more packed structure in chloroform as com-
pared to OT. This is due to the presence of –CH3 groups in OT which
restrict the approach of OT to the chloroform molecules.

The addition of chloroform (i) to A or OT (j) may cause change
in the topology of i and or j, which in turn must be reflected in the
thermodynamic properties of (i + j) mixtures. Since, VE, is a packing
effect, and would be influenced by the change in topology of the
molecules, it would, therefore, be worthwhile to analyze VE data of
chloroform (i) + A or OT mixtures in terms of Graph theory [19] that
employs the theoretical concept of the connectivity parameters of
third degree, 3�, of the constituents of (i + j) mixtures. According to
this theory [19,20], VE is given by

VE = ˛ij[{xi(
3�i)m + xj(

3�j)m
)}−1 −

∑
xi(

3�i)
−1
i ] (6)

where ˛ij is a constant characteristic of (i + j) mixtures and (3�i) (i = i
or j), (3�i)m (i = i or j) are the connectivity parameters of third degree
of components (i) and (j) in pure and mixture state and are defined
a Acta 471 (2008) 74–79

by Eq. (7)

3� =
∑

m<n<o<p

(ıv
m ıv

n ıv
o ıv

p)−0.5 (7)

where ıv
m, etc. have the same significance as explained elsewhere

[21].
We regarded (3�i) (i = i or j), (3�i)m (i = i or j), etc. parameters as

adjustable parameters as the degree of association of i and j is not
known in pure and mixture state. These parameters were deter-
mined by fitting VE data of (i + j) mixtures to Eq. (6). Only those
(3�i) (i = i or j), (3�i)m (i = i or j), etc. values were taken that best
reproduced the experimental VE data. Such (3�i) (i = i or j), (3�i)m

(i = i or j) values alongwith the VE values (calculated using Eq. (6))
at various values of xi are recorded in Table 1. Examination of data
in Table 1 reveals that calculated VE values compare well with their
corresponding experimental values. Thus 3� values for various com-
ponents can be relied upon to extract information about their state
in pure and mixed state. For this purpose, number of structures
were assumed for chloroform, A, OT and their 3�/ values were cal-
culated from structural consideration [via Eq. (7)]. These 3�/ values
were next compared with 3� values obtained from VE data (Table 1).
Any structure or a combination of structures for a component that
give 3�/ value which compared well with its 3� values were taken
to be a representative structure of that component.

For the analysis of present (i + j) mixtures, we assumed that
chloroform, A and OT exist as molecular entities I, II–III, IV–V,
respectively (Scheme 1). The 3�/ values for these molecular enti-
ties were then calculated to 1.260, 1.361, 1.890, 0.949, and 1.401,
respectively. 3� values 1.251, 1.801, 1.802 for chloroform, A and OT
suggest that they exist as dimers. In evaluating 3�/ values of molec-
ular entities III and V we assigned ıv(� = 1).(3�/

j
)
m

values were next
calculated to understand the state of A or OT in chloroform. It was
assumed that studied (i + j) mixtures may contain molecular entity
VI (3�/ = 1.951) and is characterized by interaction between lone
pair of electron on nitrogen atom of A or OT with hydrogen atom
of chloroform. (3�j)m value of 1.801 and 1.803 (Table 1) for (i + j)
mixtures suggest that (i + j) mixtures contain molecular entity VI.

The postulation of the existence of molecular entity VI in chlo-
roform (i) + A or OT (j) mixtures suggest that addition of A or OT
to chloroform should have influence the C H vibrations of chloro-
form and C N vibrations of A or OT. In view of this, we analyzed the
IR spectra of pure chloroform, A or OT and equilibrium mixture of
chloroform with A or OT. It was observed that while chloroform and

A or OT in pure state showed characteristic absorption at 2887 cm−1

(C H stretching), and 1383 and 1384 cm−1 (C N stretching) [22],
the IR spectra of equimolar mixtures of chloroform (i) + A or OT (j)
showed absorption at 2914 and 2926 cm−1 (C H stretching) and
1387 and 1389 cm−1 (C N starching), respectively. The IR spectra
of chloroform (i) + A or OT (j) mixtures thus indicate that addition
of chloroform to A or OT does influence the C H and C N vibra-
tions of chloroform and A or OT. The IR studies thus lend additional
support to the presence of molecular entity VI in (i + j) mixtures.
These observations are in consistence with earlier observations
made in explaining the qualitative discussion of thermodynamic
data of these mixtures [15].

We next employed Moelwyn-concept [23,24] of interactions
between the surfaces of components of binary mixtures (using the
concept of connectivity parameter of third degree, 3� of a molecule
which in turn depends on its topology) to evaluate molar excess
enthalpies, HE and isentropic compressibility changes of mixing,
�E

S of the studied (i + j) mixtures. For this purpose it was assumed
that mixture formation in chloroform (i) + A or OT mixtures involve
processes; (1) establishment of unlike contacts between in and jn
molecules; (2) unlike contact formation then results in the depoly-
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Table 1
Comparison of VE, HE and �E

S values calculated from appropriate equations with their corresponding experimental values at 308.15 K as a function of, xi , mole fraction of
component (i)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Chloroform (i) + aniline (j)
VE (Exptl) −0.069 −0.101 −0.110 −0.109 – −0.092 −0.074 −0.054 −0.030
VE (Graph) −0.033 −0.060 −0.082 −0.097 – −0.104 −0.095 −0.057 −0.044
VE (Flory) −0.147 −0.273 −0.377 −0.453 – −0.499 −0.454 −0.351 −0.179
HE (Exptl) 59.2 111.9 153.5 180.9 – 185.2 161.1 120.6 65.8
HE (Graph) 63.6 115.8 155.2 – – 187.1 166.0 128.2 73.1

E 3.4
0.2
–
0.3

0.078
0.070
0.399
8.8
–
3.5
7.5
–
9.3

nterac
H (Flory) 1.7 4.2 8.0 1
�E

S (Exptl) −3.4 −7.1 −9.6 −1
�E

S (Graph) −9.3 −13.1 −6.3
�E

S (Flory) −31.5 −59.4 −82.6 −10

(3�i) = (3�i)m = 1.251; (3�j) = (3�j)m = 1.801; ˛ij = 4.735 cm3 mol−1

�/
ij

= 344.0 Jmol−1; �* = 419.9 Jmol−1; �//
ij

= 3.1 J mol−1

�/
ij

= 70.019 T Pa−1; �* = −78.336 T Pa−1

Chloroform (i) + o-toluidine (j)
VE (Exptl) −0.026 −0.050 −0.070 −
VE (Graph) −0.024 −0.044 −0.044 −
VE (Flory) −0.124 −0.233 −0.233 −
HE (Exptl) −104.5 −195.4 −268.2 −31
HE (Graph) −105.1 −196.0 −268.5
HE (Flory) −25.5 −49.8 −72.6 −9
�E

S (Exptl) −8.5 −11.8 −10.5 −
�E

S (Graph) −12.5 −14.4 −11.8
�E

S (Flory) −28.6 −53.5 −73.7 −8

(3�i) = (3�i)m = 1.251; (3�j) = (3�j)m = 1.803; ˛ij = 3.455 cm3 mol−1

�/
ij

= −551.6 J mol−1; �* = −849.4 J mol−1; �//
ij

= −4.0 J mol−1

�/
ij

= 129.39 T Pa−1; �* = −83.10 T Pa−1

Also included are the various (3�i) and (3�i)m (i = i or j) ; ˛ij parameters along with i

merization of in and jn to yield their respective monomers; (3)
the monomers of (i) undergo interactions with monomers of (j) to
form i:j molecular complex, consequently, if �ij, �ii, �jj, and �12 are
molar energy and molar compressibilities parameters for i − j, i − i,
j − j contacts and specific interactions, respectively, then change in
molar thermodynamic property X (X = H or �S) due to processes (1,
2 (a, b) and 3) would be expressible [23–25] by Eqs. (8)–(11).

	X1(X = H or �S) = xi �ij Sj

where Sj is the surface fraction of (j) defined [23] by

Sj = xj 
j∑
xi 
i
so that

	X1(X = H or �S) = xi xj �ij 
j

˙xi 
i
(8)

	X2(X = H or �S) = x2
i

xj�ii
j

˙xi 
i
(9)

	X3(X = H or �S) = x2
i

xj �jj 
j

˙xiui
(10)

	X4(X = H or �S) =
xi x2

j
�12 
j

˙xi 
i
(11)

where 
i is the molar volume of component (i). The overall excess
thermodynamic property, XE (X = H or �S) for (i + j) mixtures would
then be given by Eq. (12)

XE(X = H or �S) =
4∑

i=1

	Xi =
[xi xj 
j

˙xi
i

]
[�ij + xi �ii + xi �jj + xj �12]

(12)
– 31.3 44.7 61.8 82.9
– −5.0 −0.6 3.3 4.4
– −2.1 1.3 3.3 3.1
– −114.6 −107.6 −88.6 −53.8

– −0.067 −0.054 −0.039 −0.020
– −0.076 −0.069 −0.055 −0.032
– −0.468 −0.453 −0.396 −0.285
– −339.8 −305.1 −237.6 −136.1
– −290.7 −305.9 −239.1 −137.8
– −127.9 −140.1 −148.1 −150.9
– 0.5 12.9 15.0 11.6
– 1.0 11.7 12.7 9.1
– −101.8 −96.0 −79.5 −49.6

tion energies �ij , �12, etc. parameters.

since 
j/
i = 3�i/3�j [19]; consequently Eq. (12) reduces to Eq. (13)

XE(X = H or �S) =
[

xi xj(3�i/
3�j)

xi + xj(3�i/3�j)

]
[�ij + xi�ii + xi�jj + xj�12]

(13)

For the studied mixtures, if it be assumed that �ij
∼= �12 = �′

ij

and �ii ∼= �ij = �*, then Eq. (13) can be expressed by

XE(X = H or �S) =
[

xi xj(3�i/
3�j)

xi + xj(3�i/3�j)

]
[(1 + xj)�

′
ij + 2xi�∗] (14)

Eq. (14) contains two unknown parameters (�′
ij

and �*) and these

parameters were determined by employing HE and �E
S data of the
studied (i + j) mixtures at two compositions (xi = 0.4 and 0.5). These
parameters were subsequently utilized to predict HE and �E

S values
at other values of xi. Such HE and �E

S values along with (�′
ij

and �*) are
recorded in Table 1 and are also compared with their corresponding
experimental values. A perusal of data in Table 1 reveals that HE and
�E

S values compare well their experimental values and thus basic
arguments in deriving Eq. (14) are justified.

VE, HE and �E
S data of (i + j) mixtures have also been analyzed in

terms of Flory’s theory. According to this theory [26,27] VE, HE and
�E

S are given by Eqs. (15)–(17)

VE = V̄E
cal

[
j∑

i=i

xiv
∗
i

]
(15)

HE = ˙xiP
∗
i (v̄−1

i
− v̄−1

cal) + xiv
∗
i �j�

//
ij

v̄−1
cal (16)

�E
S = �S − �id

S (17)

where

v̄i = [1 + ˛i (T/3)/(1 + ˛iT)3]
3

(18)
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Scheme 1. Connectivity parameters

V̄E
cal = v̄7/3

0 [(4/3) − (v̄0)1/3]
−1

[T̄ − T̄0] (19)

v̄cal = v̄0 + V̄E
cal (20)

T̄0 = v̄1/3
0 − 1

v̄4/3
0

(21)

v̄∗
i = vi

v̄i
(22)

v̄0 = ˙�i v∗
i (23)

T̄ = [˙(�iP
∗
i T̄i/˙�iP

∗
i )][1 − (�i�j�

//
ij

) (˙�i P∗
i )−1]

−1
(24)
of various molecular entities.

T̄i = v̄1/3
i

− 1

v̄4/3
i

(25)

P∗ = ˙�i P∗
i − ˙�∗

i �j �//
ij

(26)

P∗
i = ˛iTv̄2

i [(KT )i]
−1 (27)

The isentropic compressibility values, �S, were determined by
employing relation:

�S = KT − Tv∗
m˛2

p/Cp,m (28)
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Isothermal compressibility, KT, of a mixture (effectively at zero
pressure) is given by relation

KT =
[(

3v̄2
m

p∗

)
(v̄1/3

m − 1)/(4 − 3(v̄1/3
m )

]
(29)

where

v∗
m =

j∑
i=i

�iv
∗
i (30)

v̄m =
j∑

i=i

�iv
∗
i (31)

˛p = 3(v̄1/3
m − 1)

T(4 − 3(v̄1/3
m )

(32)

Cp,m =
(

∂HE

∂T

)
+

∑
i=i

xiCp,i (33)

p∗ =
j∑

i=i

�ip
∗
i −

j∑
i=i

�i�j�
∗∗
ij (34)

v̄ = v

v∗ (35)

where P*, T̄ , v̄, c∗
p, i

denotes, respectively, the mole fraction and char-
acteristic volume, characteristic pressure, reduced temperature,
reduced volume and molar heat capacity of component (i) of (i + j)
mixtures and have the same significance as described elsewhere
[26,27].

Evaluation of VE and HE by Flory theory requires a knowledge

of reduced temperature, T̄ , which in turn depends upon adjustable
parameter �//

ij
of binary mixtures. These parameters were deter-

mined by fitting their HE value at xi = 0.5 to Eq. (36).

HE =
∑

xiP
∗
i (v̄−1

i
− v̄−1

cal) + xiv
∗
i �j�

//
ij

v̄−1
cal (36)

Various parameters of pure components were determined using
isothermal compressibility (KT) reported in literature [12,28]. KT

values for those liquids which were not available in the literature
were calculated by employing 	HV values in the manner as
suggested by Hilderbrand [29]. HE values for (i + j) mixtures at
298.15 K were determined in a manner described elsewhere [30].
�id

S values for the binary mixture were determined using Eq. (28)
where �id

T , ˛id
p and cid

p,m are taken volume fraction averages and
mole fraction averages of pure components. Such VE, HE and �E

S
values evaluated via Eqs. (15)–(36) by employing Flory theory
alongwith �//

ij
, etc. are recorded in (Table 1) and are also compared

with their experimental values.
Examination of data in Table 1 has revealed that Flory theory

correctly predicts the sign and order of VE, HE and �E
S values for the

[
[

[
[

[
[

[

[

[

[
[
[
[
[
[

[

[
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studied (i + j) binary mixtures. However, qualitative agreement is
poor. The failure of Flory theory to correctly predict the magnitude
of VE, HE and �E

S may be due to various assumptions made in evalu-
ating various parameters which were not reported in the literature
but have been determined theoretically.
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