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1. Introduction

The kinetics of the crystallization process can be studied with
the help of thermo-analytical techniques namely, differential scan-

ning calorimetry (DSC) and differential thermal analyzer (DTA). The
DSC/DTA experiments can be carried out in isothermal as well as
non-isothermal (linear heating) conditions. Efforts made by the
researchers in this field so far, to analyze the data obtained from
DSC and hence to determine the kinetic parameters of the crys-
tallization processes (say, activation energy, rate constant, etc.),
raise two important issues: (i) the selection of the mode of experi-
ment (isothermal or non-isothermal) and (ii) the choice of a sound
method for the analysis of the experimental data. An elaborate
discussion of these interlinked issues is given in Section 3. How-
ever, we are more concerned with the later issue due to the fact
that several methods for the kinetic analysis are available in the
literature. These methods are generally based on either the isoki-
netic hypothesis or the isoconversional principle and they can be
accordingly categorized as (1) isokinetic methods where the trans-
formation mechanism is assumed to be the same throughout the
temperature/time range of interest and, the kinetic parameters are
assumed to be constant with respect to time and temperature;
(2) isoconversional methods, which are generally used for non-
isothermal analysis, assume that the reaction (transformation) rate
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r69.5Cu12Ni11Al7.5 metallic glass is studied under non-isothermal condition
rimetry (DSC). The kinetic parameters, viz. the activation energy (E) and

e primary (first) crystallization peak are obtained using the isokinetic and
he so-obtained E and n are utilized to derive theoretical normalized heat
ogorov–Johnson–Mehl–Avrami (KJMA) equation. The comparison of the
ormalized heat flow curves at different heating rates demonstrates that
iption of the crystallization process is not suitable. On the other hand, the
mbination with the KJMA equation provide better understanding of the
rocess.

© 2008 Elsevier B.V. All rights reserved.

at a constant extent of conversion (degree of transformation) is only
a function of temperature. The kinetic parameters, in this case, are
considered to be dependent on the degree of transformation at dif-
ferent temperature and time. The use of isoconversional methods
is widespread in the physical chemistry for the determination of
the kinetics of the thermally activated solid-state reactions. The
physicochemical changes during an exothermic or endothermic

event in DSC (or DTA) are complex and involve multi-step (serial
or parallel) processes occurring simultaneously at different rates.
Therefore, the activation energies for such processes can logically
not be same and it may vary with the degree of conversion. This
is contrary to the isokinetic view assuming all the constituents of
the material to react simultaneously at the same rate. The activa-
tion energy, in this case, is thus constant and independent of the
degree of conversion. A strong difference of opinion persists among
the researchers in the field of thermal analysis about the concept
of variable activation energy [1,2]. In the metallurgical branch of
materials science, most of the thermal phase transformations (like
crystallization, recovery) are morphological and are considered to
be governed by the nucleation and growth processes. The trans-
formation mechanisms in these processes are also complex, e.g.
interface-controlled, diffusion-controlled growth. Notwithstand-
ing this, the kinetic analysis of the transformation process like
crystallization is done according to isokinetic hypothesis. A few
sporadic crystallization studies of metallic glasses are reported con-
sidering the variation of the kinetic parameters with the degree of
conversion [3,4]. The isoconversional methods are scarcely used for
the study of the crystallization kinetics of metallic glasses. In order
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to understand the relative importance of the two types of meth-
ods, a case study of the crystallization kinetics of Zr69.5Al7.5Ni11Cu12
metallic glass is taken up in the present work.

2. Experimental

Ribbons of Zr69.5Cu12Ni11Al7.5 glass were prepared by a single
roller melt-spinning technique in argon atmosphere. The amor-
phous nature of the specimen was confirmed by X-ray diffraction
(XRD) and transmission electron microscopy (TEM). The linear
heating experiments were carried out on the as-quenched sam-
ples at four different linear heating rates (2, 4, 8 and 16 ◦C/min.) in
a DSC (DSC-50, Shimadzu, Japan) from room temperature to 793 K.
The experiments were done in the air atmosphere. The DSC has a
minimum detection sensitivity of 10 �W. The samples of the metal-
lic glass (3–4 mg) under consideration and the reference material
�-Al2O3 were sealed in aluminum pans.

3. Theory

3.1. Kinetic analysis of thermally stimulated phase
transformations

Most of the methods, developed to study the phase transfor-
mations involving nucleation and growth, are based on the KJMA
transformation rate equation [5–7] essentially derived on the basis
of experiments carried out under isothermal conditions. The KJMA
rate equation is given by

d˛

dt
= nk(1 − ˛)[−ln(1 − ˛)](n−1)/n (1)

where ˛ is the degree of transformation at a given time t, n is
the Avrami (growth) exponent. The rate constant k is assumed to
exhibit Arrhenius temperature dependence as

k(T) = k0 exp
(

− E

RT

)
(2)

where k0 is the pre-exponential factor, E is the activation energy and
R is the universal gas constant. KJMA rate equation is based on some
important assumptions and it has been suggested recently that the
KJMA kinetic equation is accurate for reactions with linear growth
subject to several conditions and deviation from KJMA kinetics can
occur if one or more of these conditions are not satisfied [8].

KJMA rate equation is often extended to non-isothermal exper-

iments. If the transformation rate depends only on the state
variables of fraction transformed, ˛ and temperature T, and not
on thermal history, then KJMA equation can be used to describe
non-isothermal as well as isothermal transformation. However,
Henderson [9] has argued that, in general, the transformation
rate does depend on the thermal history and that Eq. (1) is valid
only for non-isothermal reactions for certain special cases, namely
site-saturated nucleation, a zero nucleation rate and isokinetic
transformations (i.e. transformations for which En = Eg, En being the
activation energy for nucleation and Eg for the growth), i.e. isother-
mal and non-isothermal transformations are governed by the same
effective activation energy. The activation energy can also vary as
a function of ˛, because a change of governing mechanism can
occur upon progressing transformation. A more general modular
numerical kinetic model [10,11] has been proposed that recog-
nizes the three mechanisms, nucleation, growth, and impingement
of growing new phase particles, as entities that can be modeled
separately. This modular model is applicable to both isothermal
and non-isothermal analyses. Even while recognizing the variation
of the activation energy during the transformation, the modular
model gives isokinetic description of the phase transformation.
Acta 473 (2008) 74–80 75

In case of complex phase transformations, the evaluation of ˛
dependent E will be logically more useful than single activation
energy. The model-free isoconversional methods are considered to
be more deterministic and give trustworthy values of the ˛ depen-
dent E. However, activation energy only will not give a complete
picture of the kinetics of phase transformation. Many times, the
microstructural information (e.g. dimensionality of the growth) of
the precipitating phase during the transformation is essential for
understanding the kinetics of the process. Microstructure evolu-
tion during the thermally activated phase transformation process
like crystallization can be described only if one take refuge to the
isokinetic assumption, i.e. one assumes a particular reaction model
followed by the phase transformation process. The results of the
present study suggest that the complementary use of both the
methods (isokinetic and isoconversional) is more useful for the
understanding of the kinetics of the crystallization process.

3.2. Methods of analysis of experimental data obtained using
thermo-analytical techniques

In this section, we give a brief description of some of the methods
for the analysis of experimental data obtained using DSC (or DTA).
We focus on the non-isothermal experiments only and the meth-
ods described are subsequently used to study the crystallization
kinetics of a Zr-based metallic glass.

3.2.1. Isokinetic methods
As discussed earlier (Section 3.1), most of the isokinetic meth-

ods are based on the KJMA rate equation (Eq. (1)). For the
non-isothermal experiments, T = T0 + ˇ t, where T0 is the onset tem-
perature and ˇ is the heating rate. Then, from Eqs. (1) and (2), we
can express the transformed fraction (˛) as

˛ = 1 − exp

[
−k0

ˇ

∫ T

T0

exp
(

− E

RT

)
dT

]n

(3)

There is no exact solution of the integral appearing in Eq. (3). Simpli-
fied treatment of this integral gives a linear equation [12,13] which
can be used to determine E and n from the plots of ln[−ln(1 − ˛)] vs.
1/T and ln[−ln(1 − ˛)] vs. ln �, respectively. But, this equation can-
not account for the non-linearity arising in these plots and hence
the evaluated E and n becomes inaccurate. Various attempts have
been made to obtain accurate approximation to this integral [14,15].
Employing the approximation [14]:
∫ T

T0

exp
(

− E

RT ′

)
dT ′ ∼= T exp

(
− E

RT

) ∞∑
m=1

(
RT

E

)m

(−1)m−1m! (4)

and considering only m = 1 term, we obtain∫ T

T0

exp
(

− E

RT ′

)
dT ′ ∼= RT2

E
exp

(
− E

RT

)
(5)

Using Eq. (5) in Eq. (3), we get

˛ = 1 − exp

[
−
{

k0RT2

ˇE
exp

(
− E

RT

)}n]
(6)

The values of E, n and k0 can be determined by fitting the experi-
mental data of ˛ to Eq. (6) with the help of method of least squares.

Employing another approximation to the temperature integral
[16]∫

e−yy−2 dy = −e−yy−2
∞∑

p=0

(−1)p(p + 1)!y−p (7)
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i �=j
[I(E˛, T˛j)ˇi]

is a minimum. The minimization procedure can be repeated for
each value of ˛ and hence the dependence of E on ˛ can be studied.

4. Results and discussion

The DSC thermograms of as-quenched samples of
Zr69.5Cu12Ni11Al7.5 glass at four linear heating rates are shown in
Fig. 1. It exhibits a two-stage crystallization process. The first stage
corresponds to the formation of the quasi-crystals as a result of
primary crystallization whereas the second stage is due to the
decomposition of the quasi-crystals precipitated during the first
stage and the transformation of the remaining amorphous phase
into crystalline phase [29]. The results are in agreement with the
earlier reports [29,30]. In the present study, we have focused on
the analysis of the first peak only.

The fractional crystallization data obtained at different heat-
ing rates have been fitted to Eqs. (6) and (8) using the iterative
76 K.N. Lad et al. / Thermoc

where y = E/RT, Zhang and Mitchell [17] have obtained the following
equation:

ln[−ln(1 − ˛)]

= nln
(

Rk0

ˇE

)
+ n

{
2ln T − E

RT
+ ln

[
1 − E

RT
+ 6

(
RT

E

)2
]}

(8)

Eq. (8) can also be used to determine E, n and k0 using the method
of least-square fitting.

3.2.2. Isoconversional methods
The isoconversional methods can be broadly classified into two

categories: (1) isothermal methods and (2) non-isothermal meth-
ods. The later can further be classified as differential, integral and
incremental methods. The isoconversional methods are based on
the basic kinetic equation:

d˛

dt
= k(T)f (˛) (9)

k(T) is the rate constant as given by Eq. (2) and f(˛) is the reaction
model which in case of KJMA formalism gives the Eq. (1). Eq. (9)
can also be expressed in the integral form as

g(˛) =
∫ ˛

0

[f (˛)]−1d˛ = k0

ˇ

∫ T

0

exp
(

− E

RT

)
dT (10)

As mentioned earlier, exact solution of the temperature inte-
gral is not available and various approximations made for this has
resulted into different methods. A multitude of such methods is
available in the literature and it is out of place to mention all of
them here. We have selected a few most commonly used methods.
The accuracy of various isoconversional methods and, the exper-
imental and analytical errors associated with these methods are
discussed in detail by Starink [18].

3.2.2.1. Flynn–Wall–Ozawa (FWO) method [19,20]. In this method,
the temperature integral in Eq. (10) is simplified by using the
Doyle’s approximation [21,22] and hence we obtain:

ln ˇ = −1.052
E

RT
+ Const. (11)

Eq. (11) is linear and hence FWO is a linear isoconversional method.
The plot of ln ˇ as a function of (1/T) gives the slope (−1.052E/R) and

subsequently one can determine the activation energy.

3.2.2.2. Kissinger–Akahira–Sunose (KAS) method [23,24]. According
to the Murray and White approximation [25], the temperature inte-
gral can be approximated to be exp(−y2)/y2, y being E/RT. Using this
approximation in Eq. (10) results in the KAS equation:

ln

(
ˇ

T2

)
= ln

(
k0R

Eg(˛)

)
− E

RT
(12)

The slope of the plot of ln(ˇ/T2) vs. 1/T leads to the value of the
activation energy. Based on a linear equation, KAS is also a linear
isoconversional method.

3.2.2.3. Friedman method [26]. The method suggested by Fried-
man, utilizes the differential of the transformed fraction and hence
it is called differential isoconversional method. According to this
method, substituting k(T) (Eq. (2)) in Eq. (9) and taking logarithm,
we obtain:

ln
d˛

dt
≡ ln ˇ

d˛

dT
= ln k0f (˛) − E

RT
(13)
Acta 473 (2008) 74–80

The activation energy can be easily determined from the slope of
the plot of ln(d˛/dt) (or ln(ˇd˛/dT)) vs. (1/T). Since this method
does not take any mathematical approximation for the temperature
integral, it is considered to give accurate estimate of E. However,
being a differential method, its accuracy is limited by the signal
noise.

3.2.2.4. Li-Tang method [27]. This method also does not make any
assumption about the kinetic model and involves no approximation
to the temperature integral. It is based on the following equation:∫ ˛

0

ln
(

d˛

dt

)
d˛ = G(˛) − E

R

∫ ˛

0

(
1
T

)
d˛ (14)

where G(˛) ≡ ˛ ln A +
∫ ˛

0
ln f (˛)d˛

3.2.2.5. Non-linear isoconversional method. For non-isothermal
experiments, a non-linear method developed by Vyazovkin [28],
avoids inaccuracies associated with analytical approximations of
the temperature integral. For a set of m experiments carried out at
different heating rates, the activation energy can be determined at
any particular value of ˛ by finding the value of E(˛) for which the
function:

m∑ m∑ [I(E˛, T˛i)ˇj] (15)
least-square fitting method (Fig. 2). The initial estimates for E and
k0 are obtained from the Kissinger analysis [23] and are equal to

Fig. 1. DSC thermograms of Zr69.5Cu12Ni11Al7.5 at different heating rates.
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Fig. 2. Fractional crystallization data for first peak obtained from DSC thermograms.
The solid line shows the least-curve fitted curve using Eqs. (6) and (8).

278 kJ/mol and 7.16 × 1019 s−1, respectively [31]. The values of the
three unknown parameters E, k0 and n obtained from the least-
square fitting are given in Table 1. It can be observed that the Avrami
exponent (n) does not vary significantly and is nearly equal to 3.
In case of non-isothermal experiments, it has been found that n
strongly depends on the heating rate. Only if extreme cases of nucle-
ation occur, pure continuous nucleation or pure site saturation, the
value of n is independent of the heating rate and is constant (n = 4
or 3) [11]. It would also be observed from the results of isocon-
versional analysis (FWO and KAS) that ˛ dependent n turns out to

be nearly equal to 4 for the heating rates 4, 8 and 16 ◦C/min. It is
therefore, evident that the primary crystallization is an interface-
controlled process with decreasing nucleation rate [32]. In case of
site saturation, the entire nucleation process takes place during
early stages of the transformation and becomes negligible after-
wards and the crystallization is an isokinetic process [33]. KJMA
analysis using Eqs. (6) and (8) gives the overall activation energy
for the first crystallization stage to be ∼252 kJ/mol.

The KJMA analysis given above is based on isokinetic approxima-
tion under isothermal conditions. In order to check the applicability
of the KJMA equation in non-isothermal conditions, different pre-
monitory tests have been suggested by Henderson [9] and Malek
[34,35]. Deviations from KJMA kinetics usually involve a reduced
reaction rate in the later stages of the transformation, which is
often detected as a deviation from the straight line expected in
the plot of ln[−ln(1 − ˛)] vs. 1/T. Linearity of this graph was the
most popular testing method for the validity of KJMA kinetics. How-
ever, it has been proved to be unreliable. A simple and practical test
has been given by Malek [35]. According to this test, a function
z(˛) = (d˛/dT)T2 is plotted as a function of ˛. It has been suggested

Table 1
Values of the Avrami (growth) exponent (n), pre-exponential factor (k0) and activa-
tion energy (E) obtained by least-square fitting of the fractional crystallization data
for the first peak at different heating rates

Heating rate
(◦C/min)

JMAK (Eq. (6)) Zhang and Mitchell [17] (Eq. (8))

n k0 (1018 s−1) E (kJ/mol) n K0 (1018 s−1) E (kJ/mol)

2 2.40 1.00 250.78 2.40 1.00 250.78
4 3.08 1.00 252.19 3.07 1.53 254.78
8 3.08 1.00 252.70 3.09 1.00 252.70

16 2.21 1.37 253.95 2.22 1.10 252.73
Fig. 3. The normalized function z(˛) for different heating rates. The arrows points
to the range of ˛ where the peak of z(˛) should fall.

that the maximum of z(˛) function should be confined to the inter-
val 0.62 < ˛p < 0.64 in case of KJMA model. The present analysis
shows that the peaks of the plots of z(˛) vs. ˛ at different heating
rates lie within ˛p = 0.50–0.57 (Fig. 3). Thus, ˛p does not fall in the
proposed interval and hence indicates deviation from KJMA model.
However, it has been stated by Henderson [9] (and also remarked by
Malek [35]), “a more rigorous check of the validity would of course
be the direct calculation of the JMA transformation rate equation
using experimentally determined kinetic parameters and a subse-
quent direct comparison with experimental trace”. In order to check
the match between the experimental and the theoretically derived
normalized heat flow curves, we derive the theoretical normalized
heat flow curve utilizing the calculated kinetic parameters (E and
n) and the following equations:

� = �Hc k(T)f (˛) (16)

with

f (˛) = n(1 − ˛)[−ln(1 − ˛)](n−1)/n (17)

� is the DSC heat flow, �Hc is the enthalpy difference associated
with the crystallization process. Fig. 4(a)–(d) shows the comparison
of the experimental normalized heat flow curves with the normal-

ized heat flow curves derived using Eqs. (16) and (17) at different
heating rates. The values of the kinetic parameters (mainly E and
n) that are utilized for the derivation of the normalized heat flow
curves are given in Table 1. It can be observed from Fig. 4(a) to (d)
that the isokinetic results (dashed lines) (i) deviate from experi-
mental curves in the initial stage of the crystallization and; (ii) show
close match with the experimental curves starting from region near
to the crystallization peak. These imply that the crystallization pro-
cess involves simultaneous nucleation and growth during the initial
stage, while from the region nearer to the crystallization peak the
process is mainly dominated by growth, i.e. nucleation, if at all
exists, becomes negligible from the region nearer to the crystalliza-
tion peak and the process becomes isokinetic. This is also consistent
with our foregoing observation that the primary crystallization
event of the present metallic glass is an interface-controlled process
with decreasing nucleation rate. Thus, it is evident that the trans-
formation process is complex (and not isokinetic) during the entire
crystallization event. The complexity of the transformation mecha-
nism during the crystallization can be judged from the dependence
of E on ˛. The so-called model-free isoconversional methods (Sec-
tion 3.2.2) have been utilized to determine E(˛) at different values
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Fig. 4. Normalized heat flow curves at different heating rates (a) 2 ◦C/min, (b) 4 ◦C/min
isoconversional results.

of ˛. The dependence of E on ˛ is shown in Fig. 5. As can be seen from
Fig. 2, the reaction is not in accordance with Eq. (9): f(˛) is depen-
dent on heating rate. Thus, FWO and KAS methods are not valid, and
application to the data results in E(˛) that varies appreciably with ˛.
The Friedman [26], Li-Tang [27] and Vyazovkin [28] methods, on the
other hand, show very small variation in the value of E over almost
entire range of ˛ except near the lower and higher values of ˛. It
has been pointed out by Malek [35] that E(˛) should be practically
independent of the fractional conversion in the 0.3 ≤ ˛ ≤ 0.7 range.
Some changes may be expected for lower and higher values of ˛ –
particularly for fast processes – because of higher errors in the base-

Fig. 5. Dependence of E on ˛ obtained using different isoconversional methods.
, (c) 8 ◦C/min, (d) 16 ◦C/min. (• • •), Experimental; (- - -), isokinetic results; (—),

line interpolation for the peak tails. A pronounced variation in E(˛)
with ˛ indicates a more complex mechanism of the crystallization
process. Thus, isoconversional methods not only provide accurate
value of activation energy but, it also hint towards the degree of
complexity of the transformation mechanism from the knowledge
of the dependence of E on ˛. The shape of dependence of E on ˛
may also shed light on the kinetic scheme of the process [36]. The
observed decreasing dependencies of E on ˛ (Fig. 5) are actually
the direct result of the two-exponential form of the temperature
dependence of the nucleation rate, given by the Turnbull–Fisher
equation [37,38]:( ) ( ∗ )

r = r0 exp − ED

kBT
exp −�F

kBT
(18)

where r is the nucleation rate, r0 is the pre-exponential factor, kB
is the Boltzmann constant, ED is the activation energy for diffu-
sion across the phase boundary and �F* is the maximum energy
for nucleus formation. This equation is basically proposed for the
nucleation processes that do not require long-range diffusion. How-
ever, long-range diffusion can be expected in phase transformation
that involve more than one component since the new phase and
the old are generally of different composition [37]. According to
the classical nucleation theory, �F* can be written as [32]:

�F∗ = 16��3V2

3(�G)2
(19)

where � is the crystal–liquid (amorphous) interfacial energy per
unit area, V is the molar volume and �G is the molar Gibbs free
energy difference between the liquid (amorphous) and crystal
phases. To estimate the value of �F*, one needs to know the values
of � and �G as well as their temperature dependences. The inter-
facial energy is directly related to the entropy of fusion. Since all
metals and alloys show heats of fusions that are not far away from



himica Acta 473 (2008) 74–80 79
K.N. Lad et al. / Thermoc

�S ≈ 8.3 J/g atom K, the interfacial energies in supercooled liquids
for moderate undercooling (far about the isentropic temperature)
are always of the order of 10−1 J/m2 [39]. Due to the metastable
nature of the glassy state, the specific heat cannot be determined
in the undercooled region. Therefore, the temperature dependence
of �G can be obtained from one of the various approximate expres-
sions [40,41]. The expression proposed by Thompson and Spaepen
(TS) [40] has been utilized for the studies of the crystallization
kinetics of Fe40Ni40P14B6 and Fe80B20 metallic glasses under non-
isothermal conditions [42]. The TS expression for �G is given by

�G = 2�HmT(Tm − T)
Tm(Tm + T)

(20)

where �Hm is the molar heat of fusion and Tm is the melting tem-
perature. Using Eq. (20) in Eq. (19) we get

�F∗

kBT
= εT3

m(Tm + T)2

T3(Tm − T)2
(21)

with ε = 4�V2�3/3kBTm(�Hm)2.
Since Tm and �Hm of the present metallic glass is not available

to the best of our knowledge, we have considered an approxi-

mate melting temperature (Tm = 1107 K) and the heat of fusion
(�Hm = 7245 J/mol) of the metallic glass of slightly different com-
position Zr65Al7.5Cu17.5Ni10 [43]. The molar volume for this system
has been calculated to be equal to 13.22 × 10−6 m3/mol. Utilizing
these values, the temperature independent parameter ε is found to
be nearly equal to 1. Then, the temperature dependence of the two
exponential terms in Eq. (18), exp(−�F*/kBT) and exp(−ED/kBT), can
be illustrated as shown in Fig. 6. ED is considered to be constant and
it is of the order of 105 J/mol. The term, exp(−(ED + �F*)/kBT), rep-
resenting the steady-state nucleation rate becomes maximum at
620 K, much before the onset (∼640 K) of the crystallization peak
in DSC. The nucleation rate then decreases in the entire temperature
range of interest, 640–680 K (Fig. 6). It has already been pointed out
in the earlier discussion that the first crystallization is an interface-
controlled process with decreasing nucleation rate. It has also been
noted from Fig. 4 that the isokinetic description of the crystalliza-
tion process in JMAK formalism in terms of the normalized heat
flow curve agrees well with the experimental results from the crys-
tallization peak. That is, nucleation becomes negligible from the
peak crystallization temperature (Tp) and the process is now mainly
governed by the growth of the previously nucleated crystals.

Fig. 6. Normalized variation of the exponential terms in Eq. (18) with temperature.
Fig. 7. Local Avrami exponent (n) derived using ˛ dependent E.

To derive the normalized heat flow curves utilizing the ˛ depen-
dent values of E, we need to calculate the values of local Avrami
exponent (˛ dependent n). The local Avrami exponent can be cal-
culated from the following equation [44]:

n(˛) = − R

E(˛)
∂ln[−ln(1 − ˛)]

∂(1/T)
(22)

The calculated values of the local Avrami exponent n(˛) for dif-
ferent heating rates are plotted as a function ˛ as shown in Fig. 7. The
Avrami exponent n shows strong dependence on ˛ for the heating
rate 2 ◦C/min. whereas the variation of n is very little in the range
of 0.2 < ˛ < 0.9 for the heating rates 4, 8 and 16 ◦C/min. Using in Eq.
(22) the E(˛) obtained from the KAS analysis (which is more accu-
rate than the FWO method [45,46]), the local Avrami exponent for
the more reliable higher heating rates of 4, 8 and 16 ◦C/min is about
4. This is consistent with a reaction dominated by continuous nucle-
ation and interface controlled growth [47]. The calculated values of
E(˛) and n(˛) are utilized to obtain the normalized heat flow curves
for different heating rates are obtained using Eqs. (16) and (17). The
solid lines in Fig. 4(a)–(d) show the normalized heat flow curves
where ˛ dependent values of E obtained by isoconversional meth-
ods are used. It can be observed that the isoconversional results,

in general, are very close to the experimental normalized heat flow
curves. Though the present approach to derive the normalized heat
flow curve does not provide any exact understanding of the mech-
anism involved in the reaction at hand, it does hint that complex
phase transformations can be dealt with help of ˛ dependent E and
n.

5. Conclusions

The study of the primary crystallization peak of
Zr69.5Cu12Ni11Al7.5 metallic glass under non-isothermal heat-
ing conditions suggests that the process of phase transformation
is not isokinetic during the entire temperature range (especially
in the initial stage of the crystallization) of the peak. Therefore,
the isokinetic description of the primary crystallization through
KJMA equation using the single activation energy and the single
Avrami exponent is not valid in the entire temperature range of
interest. However, the use of the local activation energy and the
local Avrami exponent derived using the isoconversional methods
in the KJMA equation gives a better description of the primary
crystallization of the metallic glass under consideration. Thus,
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the isokinetic methods in combination with the isoconversional
methods would provide a better understanding of the kinetics of
the crystallization process of metallic glasses.
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