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1. Introduction

The classical thermodynamics [1–7] is a phenomenological the-
ory the foundations of which were basically laid down in the second
half of the 19th century by Carnot, Rankine, Joule, Mayer, Clausius,
Kelvin and Gibbs providing accordingly a most general description
of thermal processes in real systems without making use of their
molecular (atomic) structure. The classical thermodynamics is thus
considered to be a well-established and logically closed theory
above and beyond the disciplines of analytical mechanics and the-
ory of electromagnetic field which is essentially free of arbitrary
assumptions. Various axiomatic forms of classical thermodynam-
ics together with the use of decidedly sophisticated mathematics
seem to guarantee the absence of internal inconsistencies and abso-
lute clearness of concepts involved. These are the reasons for widely
admitted belief that this theory provides a reliable and quite general
frame for further development of particular microscopic models
enabling deeper understanding of the nature of real thermal pro-
cesses.
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ternative approach to thermal physics and to its affiliated thermodynamics
oncerning the related problems of its fundamental nature. We reason that
uffers considerably from a misinterpretation of experimental facts known
f Energy and Heat and from the resulting introduction of a troublesome
clear physical meaning within the traditional thermodynamics. As this

ain of paradoxes connected mainly with the Second Law of Thermodynam-
tructure and the conceptual basis of thermal physics prior to the solving
olving, e.g., the application of quantum or stochastic electrodynamics to
ena. We argue that a good candidate for such a more satisfactory theory

ntroducing an old–new physical quantity historically named caloric. An
g the reader with the basic ideas of this alternative version of the classical
Principal relations of the caloric theory are presented, together with illus-
mon tasks of the thermal physics. Use of the caloric theory to description
ented.
That such belief may be mere an illusion has recently been
revealed, e.g. during a rather confusing discussion concerning the
validity of the Second Law of Thermodynamics for small quantum
systems [8,9]. Moreover, the discussion evoked a strong suspicion
that we have to do with a problem which is linked directly with pos-
sible flaws in the conceptual basis of classical thermodynamics.1

Serious objections against the logical correctness of the funda-
ments of classical thermodynamics already exist and are relatively
well documented [10–16]. In spite of that, these works are unjustly
ignored in the relevant literature.

As we are convinced, the very origin of the difficult understand-
ing of thermodynamics is connected just with an inconvenient
choice of conceptual basis more than 150 years ago. Since the
Principle of Equivalence of Energy and Heat looks quite plausible,

1 Let us recall that the history of science provides numerous examples of cognate
situations where additional introduction of an abstract, as a rule not quite intelli-
gible, mathematical structures, compensate, to a certain extent, for the mistakes in
a construction of the conceptual basis of particular scientific theory. The resulting
theory, of course, being free of internal contradictions and in reasonable agreement
with the experience was, naturally, considered to be a “good” theory. In case, how-
ever, where a really complex problem had to be faced the accumulation of abstract
entities effectively disabled its solution or even led to absurdity (e.g., let us recall in
this connection the phlogiston theory).
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absolute value of conversion factor between work and heat. There-
fore, we claim that Joule, in fact, rather postulated then proved this
principle (Notice, once anticipated the equivalence between energy
and heat this conversion factor between different kinds of energy
has to be automatically universal and temperature independent.)
His way of thinking was probably due either to influence of Rum-
ford or to the reasoning that in the experiment heat appears just
when mechanical work disappears and ipso facto these two enti-
ties must be identical. Such an extremely suggestive but logically
incorrect conclusion was later, probably under the strong influence
of kinetic theory of gases, boldly canonized by Clausius [21] who
J.J. Mareš et al. / Thermoc

traditionally the most obscure is the revelation of the concept of
entropy and rather an exceptional form of the Second Law of ther-
modynamics. Whereas the universal laws have mostly the form of
conservation laws, the logical structure of the Second Law is quite
different. Ultimately formulated, it is a law of irreparable waste
of “something” (pessimistic version) or of creation of “something
new” (optimistic version) in every real physical process.

In the recent decade an unprecedented number of challenges
have been raised against the Second Law from the position of
quantum mechanics [8]. However, these arguments are, as a
rule, enormously complicated with numerous approximations and
neglects and thus eventually questionable. Moreover, it is a very
old empirical fact that the thermal processes in the nature are sub-
mitted to certain restrictions strongly limiting the class of possible
processes. The exact and sufficiently general formulation of these
restrictions is extremely difficult and sometimes, no wonder, incor-
rect (cf. e.g. the principle of Antiperistasis [17], or Braun-le Chatelier’s
principle [18]). In spite of that just these principles belong to the
most inspiring achievements in the field. That is why the authors of
this paper believe that the Second Law, or another law which puts
analogous limitations on thermal processes, does reflect experi-
mental facts with an appreciable accuracy and thus it should be
incorporated into the formalism of thermal physics, as was already
done in the case of thermodynamics.

On the other side, as we are convinced and as we discuss in the
following section, the introduction of the Principle of Equivalence of
Energy and Heat and of closely related First Law of Thermodynamics
might be destructive for the development of an intelligible the-
ory of thermal processes and should be avoided. Being then aware
that the contemporary structure of thermodynamics with its rigid
conceptual basis may have intrinsic difficulties, we claim that it
has only a little sense to criticize or deny e.g. the Second Law from
the positions of another disjunctive physical theory (e.g. quantum
mechanics) prior to the correction of these imperfections is made
within the theory of heat itself.

This paper thus deals with an alternative approach to the
phenomenological theory of heat differing in fundamental assump-
tions from the classical thermodynamics. In Section 2 we consider
the reasons why the principle of equivalence of work and heat led to
inconvenient treatment of the quantity of heat in classical thermo-
dynamics. Section 3 introduces a concept of caloric as a replacement
of the usual concept of heat as energy. In Section 4, basic con-
stitutive relations related to the caloric concept are outlined and
fundamental laws of thermodynamics are reformulated in terms

of caloric theory. The principal possibility to measure the quantity
of caloric is discussed in Section 5. Finally, Section 6 presents ele-
mentary examples manifesting applicability of the caloric theory
to common problems solved by traditional thermodynamics.

2. Equivalence of energy (work) and heat: principal corner
stone of classical thermodynamics

Decisive for the establishment of dynamic theory of heat in the
second half of the 19th century was the formulation of the First Law
of Thermodynamics which is logically fully dependent on the accep-
tance of the Principle of Equivalence of Energy and Heat. Indeed, on
the basis of this principle it is assumed that work and heat are quan-
tities of the same physical nature, i.e. that they have particularly the
same physical dimension, energy. Therefore, these two quantities
can, with proper signs, directly enter the energy balance equation
describing a given process. The kernel of the First Law of Thermody-
namics is, however, the introduction of a new state function known
as the internal energy completing the said energy balance equation.
As the First Law is mostly expressed just in the form of such a bal-
Acta 474 (2008) 16–24 17

ance equation it is frequently believed that it is nothing but the
universal Law of Conservation of Energy in thermal physics.2

The first step toward the Principle of Equivalence of Energy and
Heat was probably made by Benjamin Count of Rumford by the gen-
eralization of his observations made at an arsenal in Munich (1789)
[19]. Accordingly, it was possible to produce practically unlimited
quantity of heat only by mechanical action, i.e. by boring cannon
barrels by a blunt tool and this experimental fact was analyzed by
Rumford as follows: “It is hardly necessary to add, that any thing
which any insulated body, or system of bodies, can continue to fur-
nish without limitations, cannot possibly be a material substance: and
it appears to me extremely difficult, if not quite impossible, to form
any distinct idea of anything, capable of being excited and commu-
nicated, in the manner the heat was excited and communicated in
these experiments, except it be motion”. The same idea that heat
absorbed by a body, which is particularly responsible e.g. for the
increase of its temperature, is identical with the kinetic energy of
its invisible components, was about 50 years later apparently sup-
ported by arguments due to J.P. Joule [20]. Results of his famous
paddle-wheel experiment have been summarized into two points:
The quantity of heat produced by the friction of bodies, whether solid
or liquid is always proportional to the quantity of force expended. The
quantity of heat capable of increasing the temperature of a pound of
water by 1 ◦F requires for its evolution expenditure of a mechanical
force represented by the fall of 772 lbs through the space of one foot.
(Notice, here the term “force” has evidently meaning of mechani-
cal energy.) In spite of clearness of these correct statements, Joule
did not stress out explicitly important facts that his experiment
was performed only at a single (room) temperature and that we
have to do only with one-way transformation of work into the
heat there. Instead he tacitly treated throughout the paper the
heat as if it were a physical entity fully equivalent or identical
with mechanical energy being interested mainly in obtaining the
proclaims a subject of thermodynamics to be “die Art der Bewe-
gung, die wir Wärme nennen”, i.e. the kind of motion we call heat
[22].

In the history of thermodynamics objections appeared against
such an interpretation of the heat. Unfortunately, these objections
were only rare and with no adequate response. One of the earliest
ones is due to E. Mach [10,12]. Accordingly, it is quite easy to realize
a device of Joule’s type where a given amount of energy is com-
pletely dissipated and simultaneously “equivalent” amount of heat

2 There are numerous forms of the First Law which, however, are all in some way
related to the principle of equivalence of heat and work. Modern representative ver-
sion of the First Law, using time parameterization [4], is a postulate of the existence
of a certain state function, internal energy, the rate of which is the sum of “working”

and “heating”, i.e. of independent time derivatives of work,
•

W, and heat in calories,

J
•
Q. The work W and the heat JQ then have a character of transfer quantities depend-

ing on the way how they are supplied in or extracted from the system. The analysis
of various formulations of the First Law in thermodynamics is not the subject of
this contribution; it deals only with the precursor of the First Law, the Principle of
Equivalence of Energy and Heat.
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caloric ς from a hotter bath (by d�) into bulb of thermometer
filled with the perfect gas is obviously equal to p dV. As in this case
the empirical temperature scale � is per definition identical with
Kelvin’s perfect gas scale, T, we can write dL = R dT = R d� where R is
a certain constant (in SI units for 1 mol of gas in bulb it equals univer-
18 J.J. Mareš et al. / Thermoc

is evolved. On the other side, as far as it is known, there is no single
real case where the same amount of heat is transformed back into
mechanical work only by reversion of the original process. Simi-
larly useless for work production is “the heat of a closed, throughout
equally heated system of bodies.” Mach thus concluded that “Con-
sidering the things unbiased, one has to ask, whether it ever has a
scientific meaning and purpose, the heat which can no more be trans-
formed into the work still treat as energy”. This groundlessly ignored
argument should be, as we are convinced, taken quite seriously.
It is, namely, not a marginal fact that the very generic property of
the energy, its principal convertibility into another form of energy
without any limitation, logically excludes the possibility that the
heat is a kind of energy. Of course, postulating, in spite of that, the
equivalence of energy and heat, we are simultaneously defining a
set of special operative methods and units for the measurement of
heat and a meaningful mathematical theory of thermal processes
can be and actually has been established in this way (the classi-
cal thermodynamics serves as an example!). The price paid for the
Principle of Equivalence of Energy and Heat is, however, rather high.
The energy being heat attains exclusive properties, which the entity
called energy has not in other branches of physics. Why it should
be so, is answered neither by experiments nor theory of thermody-
namics. Moreover, together with the equivalence principle entered
into thermodynamics a highly abstract quantity, entropy, lacking,
in contrast to statistical physics, clear physical content there.

3. Caloric concept

3.1. Heat as entropy: introduction of caloric

Astonishingly an elegant way leading out of the problems men-
tioned above was very likely for the first time suggested by Callendar
[11] and later in a more sophisticated and complete form worked
out by Job in his impressive book [13]. The main idea is that the
heat in common sense (i.e. a cause of temperature elevation, of
the change of dimensions or aggregation state of bodies exposed
to the heating) should not be identified with a kind of energy but
rather with entropy as is known from classical thermodynamics. It
was further shown by Larmor [23] and especially by Lunn [24] in
a very pregnant way that the heat can be measured in energy and
entropy units as well. In the latter case the heat = entropy concept
attains the content almost identical with the concept of Carnot’s
“caloric”. This circumstance opens a possibility to reintroduce this
old–new romantic concept of caloric back into the phenomeno-

logical theory of thermal processes [25,26] and simultaneously, it
enables one completely to avoid an inadequate use of term entropy.
This term, namely, playing at present an important role in differ-
ent branches of science, mathematics and even in the humanities
has there, as a rule, not exactly the same content. The confusion of
formally similar but in nature essentially different concepts having
the same name, is obviously harmful, tempts to unjustified gen-
eralizations and may be totally destructive especially in solving
interdisciplinary problems [27].

3.2. Basic relations for caloric: an intuitive approach

Caloric as a physical quantity corresponding to the common
term heat can be introduced without a-priori knowledge of entropy
using Carnot’s principle which is an early generalization of experi-
ence with optimizing the motive power gain of heat engines. The
principle can be stated as follows [28]:

Carnot’s principle (postulate)
“The motive power of heat is independent of the agents set at work
to realize it; its quantity is fixed solely by the temperatures of the
a Acta 474 (2008) 16–24

bodies between which, in the final result, the transfer of the caloric
occurs.”

Notice that such a formulation having some features of univer-
sality is in fact related to a special class of periodic processes known
as Carnot’s cycles and that the principle is logically closed only if
heat and caloric are synonyms. In such a case is the principle not
dependent on an a-priori definition of physical quantity measuring
caloric (heat) or definition of temperature, either; every empiri-
cal temperature scale � is thus usable [11]. Following then Carnot’s
more or less intuitive way of thinking, the small amount of work dL
(“motive power”) done by caloric ς falling over a small temperature
difference d� can be expressed by the formula

dL = ςF ′(�)d�, (1a)

where F′(�) is so called Carnot’s function which must be determined
experimentally respecting the operative definitions of quantities ς
and �. 3 It is a remarkable fact that according to Eq. (1a) caloric is
not consumed in producing work but only loses its temperature by
d�. Therefore, the caloric has there a character of some special sub-
stance, temperature plays the role of its thermal potential and the
thermal energy may be defined as a product caloric time temper-
ature. If, moreover, the conservation of caloric takes place during
transferring it back to the boiler at the expense of external work,
the process is reversible. The perfect analogy with other potentials
known from the physics, such as gravitational for mass and elec-
trostatic potential for charge, is evident. As is shown below, such a
view of caloric must be somewhat corrected in case where the dis-
sipative, essentially irreversible, process (friction, heat transport)
is involved.

As we have already noticed, prior to the practical use of Eq.
(1a) or its integration it is necessary to determine Carnot’s function
experimentally. It is an empirical result of research into rarefied
gases that Carnot’s function F′(�) can be reduced to the univer-
sal constant = 1 using, instead of arbitrary empirical temperature
scale �, the perfect (ideal) gas temperature scale T equivalent to
the absolute Kelvin scale [29]. Indeed, the amount of motive power
dL extracted reversibly by means of a constant pressure gas ther-
mometer (serving here as a peculiar heat engine) by transferring
sal gas constant ≈ 8.31 J/mol K). The comparison of these relations
with formula (1a) gives R = ςF′(T). Taking into account the fact that
caloric is conserved by reversible operations, the quantity ς must
be independent of temperature and, consequently, Carnot’s func-
tion F′(T) has to be also constant. Putting then F′ = 1, one defines
the unit of caloric fully compatible with the SI system which may
be, according to Callendar’s [11] suggestion, appropriately called
“Carnot” (Abbreviation “Cn”). 1 Cn is then that quantity of caloric
which is in a reversible process capable of producing 1 J of work
per 1 K temperature fall. Simultaneously, if such a system of units
is used, Eq. (1a) may be rewritten in a very simple form

dL = ςdT. (1b)

As was mentioned above, Eq. (1b) is valid only for the case
where no irreversible process is present. Taking into account the

3 We are using for caloric Greek final-letter ς as this letter involves graphics of
both, usual S for entropy and C for caloric. The caloric ς is in contrast to Clausius’s
entropy, an entropy-like quantity for which is the “arbitrary” additional constant
identically equal to zero.
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fact that the friction and heat leakage cannot be avoided in any real
device, this equation representing an ideally reversible case should
be corrected. Such a correction was in fact already introduced by
Carnot and can be found in his posthumously edited works [30]. The
main idea is that the caloric circumventing heat engine by some
side channel uselessly falling from a higher to a lower tempera-
ture has to produce an additional amount of caloric just equivalent
to the motive power which would be otherwise produced, i.e. to
the “wasted motive power”. Alternatively, the motive power of the
engine may be wasted also by friction. In this case the part of motive
power already produced is immediately destroyed by friction, and
we can imagine that the developed caloric is conveyed to a sink
kept at a lower temperature. This is obviously nothing but another
type of realization of a side channel for the transfer of an original
amount of caloric from high temperature to the cooler. Generaliz-
ing, the increase of caloric in a dissipative irreversible process due to
the heat conduction or friction is measured by the wasted motive
power not realized in an engine simply because of its non-ideal
nature. In order to describe the role of thermal leakage quantita-
tively, let us assume that an amount of caloric ς taken from the
boiler of temperature T1 is conveyed directly to the cooler kept at
slightly lower temperature T2 < T1. The motive power which might
be potentially delivered from such a process is given by expression
(1b) where we insert instead of dT a finite difference T1 − T2

LW = ς(T1 − T2). (2)

This motive power LW, being not re-established in the form
of macroscopically observable useful mechanical, electric or mag-
netic work is, however, “wasted”. The only remaining form in which
the energy LW can reappear is thus the potential energy of caloric
ς′ newly created at the temperature of cooler T2; we thus have
ς′ = LW/T2 and for the thermal energy delivered at cooler we can
write

T2(ς + ς′) = T2ς + T2

[
ς(T1 − T2)

T2

]
= ςT1. (3)

Eq. (3) can be, for the sake of compatibility with Eq. (1b), recast
back into the terms of infinitesimally small increments of temper-
ature or caloric by making the following substitutions: T1 → T + dT,
dT > 0, and T2 → T. For the caloric passing the leak we further write
ς and for the caloric delivered at the cooler ς + ς′ → ς + dς. From
this we obtain for such restricted case

dLW = Tdς (4)
i.e. the wasted motive power can be expressed as Tdς where T is
the temperature of the cooler and dς the increment of caloric there.
Generalizing thus Eq. (1b) for the net motive power delivered in an
irreversible process, the wasted power dLW must be subtracted and
we eventually obtain the fundamental relation of the caloric cyclic
process in the frame of intuitive approach

dL = ςdT − Tdς. (5)

Besides, comparing both sides of Eq. (3), we can conclude that
the thermal energy reaching the cooler by the thermal conduc-
tion is exactly the same as that leaving the boiler. This fact may
be expressed in the form of

Corollary 1. “By thermal conduction the energy flux remains con-
stant”.

This corollary, belonging to both, caloric and dynamic theory
of heat, plays an important role in calorimetry, as established by
Black and Richman [10] the gist of which is the preservation of total
amount of energy in an enclosed calorimeter during the equal-
ization of temperature. From this point of view the realization
of zero energy flux condition at boundary of the calorimeter is
Acta 474 (2008) 16–24 19

essential. The technical mean preventing during a thermal pro-
cess the unwanted exchange of energy between the system and
its environment is known as an adiabatic (or thermal) insula-
tion (“adiabatic” is a word of Greek origin meaning “impassable”,
˛ = negation, ı��́ = through, ˇ˛�́�ε�� = to go). In case where the adi-
abatic insulation of the system is complete, the thermal process
taking there place is called adiabatic.

4. Outline of caloric theory

4.1. Constitutive relations of caloric theory

Building caloric theory of heat, relations (1b) and (5) intro-
duced in the preceding paragraph and specifying very intuitively
the properties of caloric should serve as a guide for a more sys-
tematic treatment of constitutive relations controlling the real
systems. Constitutive relations which are determined experimen-
tally depend sensitively on definitions of relevant quantities and
measurement methods; as these are to some extent arbitrary, very
different descriptions of thermal phenomena can be created, in
principle. Not only for practical reasons, but also not to deny great
achievements of our predecessors, have we preferred to follow the
lines of classical thermodynamics as close as possible [31].

In the following treatment, limited only to the simplest case
of isotropic fluid, the existence of the thermal equation of state is
assumed. It is a relation defined in the positive quadrant of V–T
(volume–temperature) plane by a relation

p = p(V, T), (6)

where “p” means the pressure. It is an experimental fact that this
relation cannot be always inverted for V (cf. anomalous behavior of
water). Therefore, p and T cannot be, in general, used as indepen-
dent variables for the description of a thermal process. The pressure
function p representing an intensive parameter conjugate [32] to
the extensive parameter V, volume, enables moreover to evaluate
the “motive power” dL in terms known from fluid mechanics as

dL = p(V, T)dV (7)

The net gain of a caloric by a given body in any thermal process,
dς, entering e.g. Eq. (5), can be expressed using certain functions
of V and T as follows:

dς = �V(V, T)dV + KV(V, T)dT (8)
These constitutive functions, �V and KV, which are assumed
to be continuous together with their partial derivatives, are called
latent caloric with respect to volume and caloric capacity for constant
volume of a given body, respectively. These quantities may be spec-
ified also with respect to another variable (e.g. pressure) or special
conditions. A corresponding subscript is then used.

As we assume that caloric scales linearly with the amount of
material involved in the system under investigation, i.e. being an
extensive quantity, it may be related to e.g. 1 mol and the physi-
cal dimensions of �V and KV in SI will be then [Cn/m3 mol] and
[Cn/K mol], respectively. Basing on Eq. (8) and taking into account
the fact that ς should be, according to Carnot’s principle a state
function, we may express the functions � and K also in differential
forms, for particular case related to volume V, as

�V =
(

∂ς

∂V

)
T

, (9a)

KV =
(

∂ς

∂T

)
V

. (9b)
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Notice, �V represents a “structural” part of the caloric at a
given temperature which varies with changes of volume (or another
extensive parameter) while KV represents a “kinetic” part of the
caloric the manifestations of which are the changes of temperature.
It is an important feature of caloric that it consists of two ingredi-
ents indistinguishable without a-priori knowledge of �s and Ks.
In the light of this fact, such phrases traditionally closely related
to interpretation of classical thermodynamics, as e.g. “the kind of
motion we call heat”, “kinetic theory of matter”, look somewhat
misleading.

Of an appreciable theoretical importance are thermal processes
corresponding to a closed path C in the positive quadrant of the
V–T plane called cycles, or cyclical processes. Taking into account
the above assumed properties of the derivatives of functions � and
K, the net gain of caloric ςC by a system in such a cycle can be
reckoned as Stokes’s integral

ςC =
∫ ∫
A(C)

{(
∂�

∂T

)
V

−
(

∂K

∂V

)
T

}
dVdT, (10)

where A(C) is the area in the V–T plane encircled by a path C. The
work done in a cycle may then be evaluated by an integral formula
which is a generalization of relation (7), namely

LC =
∫ ∫
A(C)

(
∂p

∂T

)
V

dVdT (11)

If a body undergoes transformations which bring it back to its
original state (the same coordinates in the V–T plane and the same
aggregation state), the content of caloric which is according to Eq.
(8) fully determined by constitutive functions of state will have to
be also the function of state. In other words, the following corollary
for caloric can be formulated

Corollary 2. “The quantity of caloric in a body is solely a function of
its state”.

As was already pointed out by Carnot and discussed in preceding
paragraph the caloric is conserved only in a restricted case, if all the
changes are reversible. It may be expressed in a form of

Corollary 3. “In any reversible cycle the caloric absorbed is just equal
to that abstracted”.

It should be stressed here that this statement is mathe-

matically, but not semantically, equivalent to Joule’s proposition
about reversible cycles according to which the heat = energy
absorbed exceeds that abstracted by just the equivalent work
done. Reversible (i.e. “isocaloric”) cycle is obviously nothing but
an abstraction. There is no exactly reversible process which can
be observed in the nature. This concept may, however, serve
as a theoretical mean which enables one to make and analyze
thought experiments (“Gedankenversuchen”) providing useful rela-
tions applicable to real systems.

4.2. Fundamental laws of thermodynamics in terms of caloric
theory

Keeping the line, we can close this section by reformulation
of two fundamental laws of classical thermodynamics in terms of
the caloric theory. After the proper terminological substitution of
caloric (i.e. heat = entropy) for heat = energy it is only a technical
problem to express these fundamental laws in a manner which is
usual in classical axiomatic thermodynamics [31], namely:

Theorem I. “Energy is conserved in any real thermal process”.
a Acta 474 (2008) 16–24

Theorem II. “Caloric cannot be annihilated in any real thermal pro-
cess”.

It is worth noticing that the First (Theorem I) and Second
(Theorem II) Laws, formulated in such a way are conceptually
disjunctive. It makes difference in comparison with classical ther-
modynamics where both fundamental laws deal in fact with the
same quantity—heat. In the caloric theory the physical entity,
energy, is liberated from limitations not existing in other branches
of physics and its role of heat takes caloric. The link between
First and Second Laws is looser, provided by formulae (1b) or (5).
Moreover, as the First Law in the caloric theory is, in contrast to
classical thermodynamics, exactly identical with the general Law
of Conservation of Energy, its explicit formulation is thus somewhat
redundant.

5. Measurement of caloric

Till now we have tacitly assumed the possibility of measure-
ment of the central physical quantity of the caloric theory—caloric
ς. As the implicit definition of this physical quantity and the cor-
responding unit (Carnot, Cn compatible with SI) has already been
given, it remains to provide a description of techniques enabling
one to measure caloric, even though only in principle.

Recall first that we have to our disposal various instru-
ments measuring energy content or energy fluxes (calorimeters,
energy-meters and power-meters) and temperature (thermome-
ters, pyrometers). On the other side, devices for the direct
measurement of caloric (i.e. heat = entropy, “entropy-meters”) are
not in general use. This circumstance is, beside the technical prob-
lems, probably due to the fact that in the science of thermal
phenomena the measurements of temperature historically pre-
ceded the definition of the meaningful concept of heat [17], which
eventually, becomes identical with energy. In thermodynamics, in
measuring the heat, the energy is measured, but it is necessary to
subtract the amount of energy for which there are good experi-
mental reasons that is not “transformed” into the heat in a given
process. Quite an analogous method may be used in experiments
arranged according to the caloric theory because of the identity of
the thermal energy with product ςT.

There are, however, more direct methods enabling one to mea-
sure or to dose caloric, utilizing the changes of the “structural” part
of caloric bound to a suitably chosen substance with respect to an
extensive state parameter (e.g. volume). For example, let us use as

a standard substance a mole of an ideal, i.e. sufficiently rarefied
gas for which the latent caloric with respect to volume �V is given
simply by

�V = R

V
. (12)

The content of caloric in such a system is then, at constant tempera-
ture, solely determined by its volume. Indeed, by integration of Eq.
(8) for dT = 0, we immediately obtain

ς =
∫ V2

V1

dV = R ln
(

V2

V1

)
. (13)

A corresponding device which may be tentatively called a
“caloric syringe” is depicted in Fig. 1. It is a tube provided with
a movable piston and a diathermic bottom which is in contact with
the system under investigation. Changing the volume of the gas
enclosed in the tube a well-defined amount of caloric may be thus
injected in or extracted from the system. Of course, the “caloric
syringe”, because of a lot of technical problems involved, is a device
of a little practical use. Nevertheless, the same idea of the con-
version of caloric measurements to the measurements of some
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Fig. 1. Schematic view of the “caloric syringe”, a device for the direct measurement
or dosage of caloric in terms of volume of ideal gas enclosed. T = const., for details
see the text.

extensive state parameter of a system containing a substance with
an already known constitutive function � may be very fruitful e.g.
for research into magnetic or dielectric materials.

As an example of practical device measuring the caloric with
an appreciable accuracy on the same principle as “caloric syringe”,
we can mention the so called Bunsen’s ice calorimeter [33]. It is
a device enabling a very precious measurements of total volume
of co-existing solid (ice) and liquid phases of water. The exchange
of caloric between the system under investigation and Bunsen’s
calorimeter taking place at the melting temperature of ice (∼273 K)
is accompanied by a phase change resulting in a volume change
of the water–ice system. As the latent caloric of fusion of ice is
a known constant (�∗

V ∼ 1.35 × 10−2 Cn/m3 mol), the amount of
caloric corresponding to the observed volume change (V1 − V2) can
be easily computed by a formula

ς = �∗
V (V1 − V2). (14)

6. Basic properties of caloric in examples

6.1. Joule’s paddle-wheel experiment

The somewhat controversial touching point between classical
thermodynamics and caloric theory is related to the interpretation
of Joule’s paddle-wheel experiment [18] where the dissipation of
measured quantity of work in a fluid system has as a consequence a
certain, well-defined increase of its temperature. Within the frame
of caloric theory the dissipated (wasted) mechanical work should
correspond to the isothermal caloric production which is accord-
ing Eq. (4) given by dLW = Tdς. As the experiment is performed at
constant external pressure the following increase of temperature

should be given by Eq. (8) rewritten in terms of Kp

dT = dς

Kp
= dLW

Kp T
. (15)

On the other hand, in accordance with the classical thermo-
dynamics the dissipation of a given quantity of work dLW in the
apparatus brings it into a new state characterized by internal energy
which is just the same as if the system were reversibly supplied by
an “equivalent” amount of heat dQ (measured in calories) given by
a relation

dLW = JdQ. (16)

The temperature independent universal conversion factor J > 0
(J ∼ 4.185 J/cal) called the mechanical equivalent of heat can be then
determined from the observed temperature increase dT and from
the a-priori known thermal capacitance of the device. Comparing
formulae describing the same experimental situation within the
frame of caloric theory and of thermodynamics some useful rela-
tions for “translation” between languages of both theories may be
established.
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Comparing thus Eqs. (4) and (15) with Eq. (16), we immedi-
ately obtain the relation between equivalent heat (=energy) and
produced caloric in a form

dς = JdQ

T
, (17)

which is at first glance formally resemble to the famous formula
for reversibly exchanged entropy in which the heat is measured
in energy units. This correspondence between equivalent entropy
and produced caloric, may serve as a very effective heuristic tool
for finding the properties of caloric by exploitation of results known
from classical thermodynamics. The peculiar form of (17) is in fact
due to the cunning identification of empirical temperature scale
with Kelvin’s absolute (ideal gas) scale in classical thermodynamics
and caloric theory as well. In both these cases, namely, the spe-
cial choice of just this temperature scale T effectively simplifies
Carnot’s function F’(�) connecting “heat” and “work” in formula
(1a). As was already shown in Section 3.2, in caloric theory in this
case F′(�) is reduced to a constant. In thermodynamics, quite similar
considerations [3] then lead to the result

F ′(T ) = J

T
, (18)

fully compatible with Eq. (17). From this point of view it is clear that
the caloric theory is not at odds with the results of paddle-wheel
experiment and that factor J determined by Joule had rather to do
with the establishment of a particular system of units then with the
general proof of equivalence between heat and energy.

6.2. Efficiency of heat engines

Central question of the theory of heat engines is the evaluation of
their efficiencies. In the caloric theory the solution is given directly
by slightly modified principal Eq. (1b). Accordingly, the amount of
caloric ς entering the ideal reversible continuously working heat
engine at temperature T1 and leaving it at temperature T2 will
produce a motive power of amount L there. Carnot’s efficiency 	C
defined as a ratio L/ς (Ref. [11]) is then given simply by the temper-
ature drop measured in the ideal gas temperature scale, i.e.

	C = L

ς
= (T1 − T2). (19)

Transforming the entering caloric into thermal energy T1ς, we
obtain immediately Kelvin’s dimensionless efficiency of the ideal

reversible heat engine well-known from thermodynamics,

	K =
(

1 − T2

T1

)
. (20)

Formula (20) being frequently used for the theoretical analysis of
idealized reversible processes is of great significance in theoretical
thermal physics. However, it is practically useless for the evalua-
tion of the performance of real heat engines which are optimized
not with respect to their efficiency but rather with respect to their
available output power. As a convenient model for such a case may
be taken an ideal heat engine impeded by a thermal resistance (see
Fig. 2) which can be within the caloric theory treated as follows.

The original quantity of caloric ς taken from the boiler kept at
temperature T1 is enhanced by passing the thermal resistance to
the amount ς + dς but enters the heat engine at temperature T < T1.
Therefore, according to Eqs. (1b) and (3) we can write:

L = (ς + dς)(T − T2), (21)

and

T(ς + dς) = T1ς, (22)
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Fig. 2. More realistic caloric model of a heat engine; an ideal heat engine (IHE)
impeded by a thermal resistance inserted between its input and the boiler kept at
temperature T1. The temperature of the cooler is T2, temperatures are measured in
Kelvin’s absolute scale.

from which we immediately obtain the following relation for
Carnot’s efficiency

	C = T1

(
1 − T2

T

)
. (23)

If we relate the quantities L and ς to an arbitrary time unit (we
use for this purpose superscript u), Eq. (21) becomes effectively a
rate equation, namely

Lu = ˛(T1 − T)
T

(T − T2), (24)

where for the evaluation of temperature drop across the thermal
resistance the Fourier law [34]

ςuT1 = ˛(T1 − T) (25)

with ˛ = const. was used. The condition for the optimum of the out-
put power with respect to temperature T then reads dLu/dT = 0, from
which we obtain T =

√
T1T2. Carnot’s efficiency of such a system

with optimized output power is thus given by a formula

	C = T 1

(
1 −
√

T2

T1

)
, (26)
corresponding obviously to Kelvin’s dimensionless efficiency

	K =
(

1 −
√

T2

T1

)
. (27)

Interestingly, as was shown by Curzon and Ahlborn [35] this
formula describes, probably because of enormous effort of engi-
neers optimizing the output power of real heat engines, their actual
efficiencies quite well. The most “effective” engine with efficiency
given by (19) or (20), must be reversible, i.e. must work infinitesi-
mally slowly being thus of no practical use. On the other side, any
real machine of reasonable performance, has to be irreversible with
the efficiency approaching the value given by (26) or (27) in best.

6.3. Two-chamber experiment

Very instructive for the comparison of dynamic and caloric the-
ory of heat is the analysis of so called two-chamber experiment
concerning free expansion of perfect gas into vacuum. As a rule, this
subject serves in standard textbooks of thermodynamics [1,2,5,6]
as a starting point for discussion of Joule-Thompson’s effect which
Fig. 3. Illustration to two-chamber Joule’s experiment [37]. (a) First version of exper-
imental set-up, with water calorimeter common for the whole system. (b) Second
version, both receivers and stop-cocks with piping are submerged in theirs own
calorimeters.

is of primary importance for liquefaction of gases. Let us assume
that a thermally insulated enclosure is divided by a partition into
two chambers of the same volume, V0, one of which is filled with
perfect gas of pressure p0 at temperature T0, and the other is evac-
uated. If the partition is suddenly removed, e.g. by its spontaneous
rupture, then the gas is allowed to expand freely into the vacuum
space. The end-state of such a spectacularly irreversible process
may be predicted using Eq. (5). Taking into account, namely, that no
external work was done (dL = 0) and that due to the thermal insu-
lation the content of caloric in the enclosure remained constant
(ς = const., which is a rather bold and for clearly irreversible pro-
cess an incorrect supposition), one obtains ςdT = 0, or equivalently

T = T0. The zero change of temperature of an ideal gas expanding
into vacuum, reputedly observed in experiments, is e.g. frequently
used for mathematical proof of independency of its internal energy
of volume.

An actual experiment made by Gay-Lussac [36] and in a more
sophisticated form by Joule [37] exhibits, however, not so simple
picture. The two said chambers were in Joule’s experiment realized
by metallic receivers, one pressurized and the other evacuated, con-
nected by piping with valves. The whole system was placed in a
common water calorimeter or alternatively, every receiver and the
connecting piece with stop-cock were submerged into their own
separate calorimeters (see Fig. 3a and b). In the experiment with
a common calorimeter, after the equalization of pressure in both
chambers and before reading the temperature, the water surround-
ing the whole system was thoroughly stirred for some time. In this
case a negligible change of temperature with respect to its original
value was indicated. On the other hand, the experiment performed
with the chambers and piping in separate calorimeters showed a
clear decrease of temperature in calorimeter with the originally
pressurized chamber and temperature increase in calorimeters
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containing the valves and the second chamber. Moreover, the
observed temperature decrease and increase corresponding to the
first and the second chambers, respectively, seems to compensate
each other. These experiments, which are not so easy to treat within
the frame of elementary thermodynamics using e.g. concept of
internal energy, may be described by the caloric theory as follows.

First, let us imagine that the evacuated chamber is cylindrical
in form and provided with a piston moving freely without the fric-
tion inside the chamber. If we open the stop-cock (with the piston
by the side where the connecting pipe mouths) the gas will start
to expand adiabatically until the piston reaches the opposite side
of the chamber. The work done in this chamber bears evidently
character of wasted motive power, because the piston is backed only
by vacuum and eventually by the firm wall. Such a waste must be
compensated by rise of a certain amount of caloric which increases
the temperature of the gas in this chamber. On the other hand, the
cooling of the gas in the originally pressurized chamber is due to
the adiabatic expansion controlled by Poisson’s constitutive formula
[10]

TV
−1 = const., (28)

where 
 is a temperature independent constant. The caloric process
in the system may thus be described as follows. Cooling of the gas
appearing in the first chamber just after the full expansion can be
computed from the relation T0V0


−1 = T1(2V0)
−1, where T0, and T1
are the starting and the end temperature, respectively. From this
we obtain a formula

T1 = T0

2
−1
. (29)

On the other side, the increase of temperature of gas entering
the second chamber can be computed directly from the wasted
power and calorimetric properties of the gas involved. For the
power wasted by adiabatic expansion we can obviously write

LW =
∫ 2V0

V0

pdV = p0V

0

∫ 2V0

V0

dV

V
 = nRT0

(1 − 
)(21−
 − 1)
(30)

where we use the ideal gas equation of state for n mol p0V0 = nRT0
Taking now into account Poisson’s relations valid for the ideal gas,
i.e.


 = Kp

KV
, and

nR

T
= n(Kp − KV), (31)
we immediately obtain for the end temperature in the second
chamber a value

T2 = 2T0[1 − 2−
 ]. (32)

As the experiment was conducted with air (
 = 1.4) and started
at room temperature (T0 = 300 K), we immediately obtain esti-
mates T1 = 227 K and T2 = 372 K. Notice that according to formulae
(29) and (32) the resulting temperatures are independent of
initial pressure (i.e. of the amount of gas involved) and that
the computed differences with respect to the room temperature
(T0 − T1 ≈ T2 − T0 = 73 K) are much larger than those observed by
Joule ∼2.38 ◦F (≈1.32 K). It is evidently due to the large thermal
capacity of water calorimeters used. Indeed, if we take Joule’s own
figures into account (volume of the receiver V = 2.2 × 10−3 m−3,
water content of the calorimeter ∼3.7 kg, and initial pressure in
the first chamber 2.2 × 106 Pa), we obtain the differences of order
of ∼1 K in a satisfactory agreement with Joule’s observation. The
cancellation of temperature differences in the experiment with
common calorimeter cannot thus be interpreted as a preservation
of temperature during the free expansion of perfect gas because it
is rather due to the stirring of water in the calorimeter and back-
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conveying of caloric already transferred by the process of pressure
equalization.

7. Conclusions

It has recently been recognized that the treatment of some com-
plex problems belonging to the scope of small quantum systems or
stochastic electrodynamics by means of traditional tools of thermo-
dynamics, leads to numerous antinomies. We claim that the source
of much confusion and serious obstruction for the further devel-
opment of theory of thermal processes in quantum systems may
be due just to the inconvenient conceptual basis of classical ther-
modynamics as established in the second half of the 19th century.
Therefore, we have suggested modifying the structure of classical
thermodynamics, which is essentially based on the interpretation
of heat as a special kind of energy controlled by the First and the
Second Laws, in favor of an alternative admissible system where
heat is regarded as an entropy-like quantity. In order not to perplex
this quantity with entropy known from classical thermodynamics
and other branches of science a historical term “caloric” was rein-
troduced. In the present paper we prefer to show the viability of
caloric theory of heat rather then to give its rigorous exposition.
Therefore, besides the sketch of basic ideas of caloric theory a few
simply solved examples are added. These examples simultaneously
illustrate the relation between caloric and dynamical theory of heat
although no systematic comparison is made.

Acknowledgements

The work was partially supported by the Grant Agency of ASCR
Contract nos. IAA1010404 and IAA100100639. Furthermore, the
research work at the Institute of Physics was supported by Insti-
tutional Research Plan no. AV0Z10100521.

References

[1] J.K. Roberts, Heat and Thermodynamics, fourth ed., Blackie and Son Ltd., Glas-
gow, 1951.

[2] P.S. Epstein, Textbook of Thermodynamics, J. Wiley and Sons, New York, 1954.
[3] H. Cullen, Thermodynamics: an Introduction to Thermostatics, Wiley, New

York, 1960.
[4] C. Truesdell, Rational Thermodynamics, McGraw-Hill, New York, 1969.
[5] M. Bailyn, A Survey of Thermodynamics, AIP Press, New York, 1990.
[6] S.J. Blundell, K.M. Blundell, Concepts in Thermal Physics, Oxford University
Press, Oxford, 2006.
[7] G.M. Barrow, Physical Chemistry, sixth ed., McGraw-Hill, New York, 1996.
[8] D.P. Sheehan (Ed.), Proceedings of the 1st IC on Quantum limits to the Sec-

ond Law, San Diego 2002 by AIP, T.M. Nieuwenhuizen, P.D. Keefe, V. Špička
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