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Faculty of Physical Chemistry, University of Belgrade, Strudentski trg 12-16, 11001 Belgr

a r t i c l e i n f o

Article history:
Received 13 March 2008
Received in revised form 14 May 2008
Accepted 25 May 2008
Available online 7 July 2008

Keywords:
Amorphous alloy
Activation energy

a b s t r a c t

The non-isothermal cryst
kinetic parameters of cryst
(KAS) methods. It was es
the degree of crystallizat
was determined using th
phase from amorphous all
Ea = 349.4.0 kJ mol−1, ln A =

1. Introduction

Amorphous alloys are relatively new materials offering a spe-
cific combination of properties and attracting special interest of
many scientists during the last two decades. The metallic glasses
of Fe and Co alloys have attracted much attention since exhibiting

oft ferromagnetic properties which made them very applicable in
ifferent devices, including transformers, sensors, magnetic tapes
nd heads of recorder [1–5].

The amorphous state of matter is, however, structurally and
hermodynamically unstable and very susceptible to partial
r complete crystallization during thermal treatment or non-
sothermal compacting which is followed by change in their
tructural and physical properties [6]. The crucial limitation with
espect to using amorphous alloys for high temperature applica-
ions arises from their restricted thermal stability. The onset of
xothermic crystallization upon crossing the stability domain of
he glassy state results in the formation of highly stable, but brittle
ntermetallic compounds, which renders these alloys useful only
nce. The latter imposes the knowledge of the alloys stability in a
road range of temperatures due to different crystallization pro-
esses, which appears during heating.

There are three important modes of crystallization involving
ucleation and growth processes, depending on the composition
f a particular alloy: the polymorphous crystallization, primary
rystallization and eutectic crystallization [7]. The polymorphous
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of �-Fe in

erbia

tion of �-Fe from Fe81B13Si4C2 amorphous alloy was investigated. The
tion process were determined by Kissinger and Kissinger–Akahira–Sunose
hed that the kinetic parameters of transformation do not change with

the range of 0.1–0.7. The kinetic model of the crystallization process
lek’s procedure. It was established that the primary crystallization �-Fe
n be described by Šesták–Berggren autocatalytic model with kinetic triplet
6 and f(˛) = ˛0.72(1 − ˛)1.02.

© 2008 Elsevier B.V. All rights reserved.

crystallization occurs without any change of composition so there
is no concentration difference across the reaction front. Primary
crystallization is the process in which a phase of one of the alloy
constituents first crystallizes. The dispersed primary crystallized
phase coexists with the amorphous matrix and may serve as the
nucleation site for secondary or tertiary crystallization. Eutectic
crystallization is the simultaneous crystallization of two crystalline
phases by discontinuous reactions.

The crystallization of a metallic glass upon heating is induced

in several ways. In calorimetric measurements, two basic methods
are in use, isothermal and non-isothermal. However, the results
of the crystallization process can be explained in terms of several
theoretical models [8].

The present paper gives a detailed study of the crystallization
kinetic of the Fe81B13Si4C2 amorphous alloy in forms of ribbon.
The kinetic parameters of the glass-crystallization transformation
were investigated under non-isothermal conditions applying two
different methods: classic and isoconversion.

2. Experimental procedure

2.1. Materials and methods

The ribbon shaped samples of Fe81B13Si4C2 amorphous alloy
were obtained using the standard procedure of rapid quenching
of the melt on a rotating disc (melt-spinning). The obtained ribbon
was 2 cm wide and 35 �m thick.

The crystallization process was investigated by the differential
scanning calorimetry (DSC) in a nitrogen atmosphere using SHI-
MADZU DSC-50 analyzer. In this case, samples weighing several

http://www.sciencedirect.com/science/journal/00406031
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milligrams were heated in the DSC cell from room temperature to
650 ◦C in a stream of nitrogen with a flowing rate of 20 mL min−1

and at the heating rates of 5, 10, 20 and 30 K min−1.
In order to investigate the structural transformations by X-ray

diffraction (XRD), the samples of amorphous alloy Fe81B13Si4C2
were annealed at the different temperatures, in the temperature
range of 473–1103 K, in a stream of nitrogen during 30 min. The X-
ray powder diffraction patterns for as-prepared alloy as well as for
annealed samples were recorded on a Philips PW-1710 automated
diffractometer using a Cu tube operated at 40 kV and 30 mA. The
instrument was equipped with a diffracted beam curved graphite
monochromator and Xe-filled proportional counter. For the routine
characterization, the diffraction data was collected in the range of
2� Bragg angles (4–100◦ counting for 0.1 s). Silicon powder was used
as an external standard for calibration of diffractometer. All XRD
measurements were done with solid samples in a form of ribbon at
ambient temperature.

3. Kinetic analysis

The kinetic information can be obtained from dynamic exper-
iments by means of various methods. The methods of thermal
analysis, such as DTA or DSC, are very popular for kinetic analysis
of crystallization processes in amorphous solids. All kinetic stud-
ies assume that the isothermal rate of conversion d˛/dt, is a linear
function of the temperature-dependent rate constant, k(T), and a
temperature-independent function of the conversion, f(˛), that is

d˛

dt
= k(T)f (˛), (1)

where t represents time, ˛ is the extent of reaction, T is the tem-
perature, k(T) is the temperature-dependent rate constant and f(˛)
is a function that represents the reaction model [9].

According to Arrhenius’s equation, the temperature-dependent
rate constant, k(T) is defined as

k(T) = A exp
(

− Ea

RT

)
, (2)

where A is the pre-exponential factor independent of temperature,
Ea is the activation energy and R is the gas constant.

From these equations, the relation obtained was

d˛

dt
= A exp

(
− Ea

RT

)
f (˛). (3)
The extent of reaction (˛) is deduced from DSC measurements
using Borchardt’s assumption [10]:

˛ = �H(t)
�H

⇔ d˛

dt
= 1

�H

dH

dt
, (4)

where �H(t) and �H are the partial and total integrals of the mea-
sured signal, respectively; dH/dt is the rate of the transformation
heat power.

By drawing the straight line between the beginning and the end
of the peak as the baseline, it is always possible to obtain ˛ and
d˛/dt from DSC curves. Eq. (4) shows that the rate of conversion
d˛/dt is proportional to the measured specific heat flow. For non-
isothermal measurements at constant heating rate ˇ = dT/dt, Eq. (3)
is transformed to

ˇ
d˛

dT
= A exp

(
− Ea

RT

)
f (˛), (5)

where d˛/dt ≡ ˇ(d˛/dT).
The overall activation energy of crystallization of an amorphous

alloy under linear heating condition can be determined by the
Kissinger as well as by the Ozawa peak methods relating on the
imica Acta 474 (2008) 41–46

dependence of the exothermic peak temperature Tp on the heating
rate ˇ [11].

Kissinger [12] proposed that the activation energy can be deter-
mined according to the equation:

ln

(
ˇ

T2
p

)
= ln

(
AR

Ea

)
− Ea

RTp
. (6)

In this case, the plot of ln(ˇ/T2
p ) versus 1/Tp yields a straight line

with a slope of −Ea/R and an intercept of ln(AR/Ea).
For the determination of the activation energy in non-

isothermal conditions Ozawa [13] proposed the equation:

ln ˇ = ln
AEa

R
− 1.0516

Ea

RTp
, (7)

where the plot of ln(ˇ) versus 1/Tp yields a straight line with a slope
of −Ea/R and an intercept of ln(AEa/R).

On the basis of dynamic DSC measurements for different heating
rates, isoconversional method of Kissinger–Akahira–Sunose (KAS)
method enabling the determination values of Ea over a wide range
of conversions ˛ without knowing the conversion function was also
used [12,14]. This model known as “model-free method”, involves
measuring the temperatures T˛ corresponding to fixed values of
the crystallized volume fraction, ˛, for different heating rates, ˇ,
and the plotting ln ˇ against 1/T˛, according to the equation:

ln

(
ˇ

T2
˛

)
= ln

(
AR

Ea(˛)
F(˛)

)
− Ea(˛)

RT˛
. (8)

The left-hand side of Eq. (8) is linear with respect to the inverse
temperature, 1/T˛, and enables the activation energy to be evalu-
ated by using a linear regression method. In the case of a single step
process, a constant value of Ea(˛) is obtained, while the dependence
of Ea(˛) upon ˛ indicates a complex process involving more than
one step having different activation energies [15].

General equation enabling the analysis of conversion kinetics
involving nucleation and growth in solid phase was proposed by
Avrami [16]:

˛(t) = 1 − exp[−(kt)n], (9)

where k = k0 exp(−Ea/RT), ˛(t) is a degree of transformed volume, n
is a kinetic exponent.

Differentiation of this equation with respect to time gives the
rate equation usually known as the JMA equation:
d˛

dt
= kn(1 − ˛)[−ln(1 − ˛)]1−1/n. (10)

The JMA equation is based on assumptions of isothermal crys-
tallization, homogenous nucleation or heterogeneous nucleation at
randomly dispersed particles of the second phase. The growth rate
of the new phase is independent of time and controlled by temper-
ature and low anisotropy of growing crystals. However if the entire
nucleation process takes place during the early stage of transfor-
mation and becomes negligible afterward, the JMA equation can
also be applied in non-isothermal conditions [17].

The validity of listed assumptions is not given a priori, and a
simple and reliable testing method was developed [18,19]. Once
the apparent activation energy has been determined, it is possible
to find the kinetic model which best describes the measured set of
thermoanalytical data. It can be shown that, for this purpose, it is
useful to define two special functions y(˛) and z(˛), which can easily
be obtained by a simple transformation of the experimental data.
The conversions, in which the y(˛) and z(˛) functions exhibit the
maximum values are designated as ˛∗

y and ˛∗
z , respectively. In non-

isothermal conditions, these functions can be expressed as follows
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Fig. 1. DSC curves for Fe81B13Si4C2 ribbon at different heating rates.

apparent activation energy and pre-exponential factor calculated
by Kissinger’s and Ozawa’s methods.

According to the values of shape factor S, asymmetry of conver-
sions curves increases with the decrease of heating rates indicating
that the heating rate have a strong influence on crystallization pro-
cess which can occur in more than one step.

Fig. 2 shows the XRD patterns of the Fe81B13Si4C2 amorphous
ribbon as prepared and after isothermal annealing the different
isothermal temperatures (298, 473, 673, 823, 873 and 1103 K).

The presence of only a spread halo at the 2� range of 20–45◦

suggests an amorphous structure of as-prepared alloy. The diffrac-
tion pattern of alloy annealed at the temperature of T = 473 K shows
beside of a spread halo and one very sharp peak at 2� = 83.4 ◦C
indicating the presence of a crystal phase in a matrix of an amor-
phous phase. The increase of the annealed temperature results
in an increase of the peak intensity. Starting from temperature
T = 823 K, the diffractograms show a new sharp peak with the
D.M. Minić, B. Adnad̄ević / The

[18–20]:

y(˛) =
(

d˛

dt

)
exp

(
Ea

RT

)
= Af (˛), (11)

z(˛) ≈
(

d˛

dt

)
T2. (12)

The maximum of the y(˛) function for the JMA model depends
on the value of the kinetic exponent:

˛∗
y = 0 for n ≤ 1,

˛∗
y = 1 − exp(n−1 − 1) for n > 1.

The value of ˛∗
y is always lower than the maximum of value for

˛∗
z . For JMA model, ˛∗

z = 0.632. This value is a characteristic “fin-
gerprint” of the JMA model, and it can be used as a simple test of
the applicability of this model.

If the y(˛) function exhibits a maximum in interval ˛∗
y ∈ (0, ˛z)

and ˛∗
z 	= 0.632, the empirical Šesták–Berggren kinetic model gives

the best description of the investigated process [21,22]. This model
is based on the equation:

f (˛) = ˛M(1 − ˛)N, (13)

where M and N represents the kinetic exponents.
In this case, the expression for reaction rate of the investigated

crystallization process can be given as

d˛

dt
= A exp

(
− Ea

RT

)
˛M(1 − ˛)N . (14)

For this model, the ratio of the kinetic parameter p = M/N can be
calculated from the maximum of the y(˛) function [20]:

p = M

N
= ˛∗

y

1 − ˛∗
y

(15)

Introducing this equation in Eq. (14) gives

ln
[(

d˛

dt

)
exp

(
Ea

RT

)]
= ln A + N ln[˛p(1 − ˛)]. (16)

This equation very well describes the processes of nucle-
ation and growth in non-crystalline solids. The parameters M
and N define relative contributions of acceleratory and decay
regions of the kinetic process. From the linear dependence
ln[(d˛/dt)exp(Ea/RT)] = f(ln[˛p(1 − ˛)]), it could be possible to
obtain the kinetic exponent N and the pre-exponential factor, ln A.

The value of kinetic exponent M then can be obtained directly from
Eq. (15).

4. Results and discussion

The crystallization kinetics of �-Fe in the amorphous alloy was
studied by differential scanning calorimetry at different heating
rates of the alloy (5, 10, 20 and 30 K min−1).

Fig. 1 shows the continuous DSC curves of Fe81B13Si4C2 ribbon
taken at four different heating rates.

All the DSC curves have a single well-formed exothermic peak
representing crystallization in the temperature range 770–830 K.
The exothermal peaks are significantly shifted to higher temper-
atures with an increasing heating rate. This is in accordance with
the presumption about the thermal activation of the crystallization
process. The influence of the heating rate on the values of initial,
Ti, maximal, Tp and final Tf temperatures is shown in Table 1. The
shape of DSC curves depends on the heating rate, too. The values of
shape factor, S, obtained as the ratio of half-widths of crystalliza-
tion peak for a particular heating rate, are presented in the same
table together with the values of kinetic parameters, the overall
 Fig. 2. XRD patterns for the alloy annealed at different temperatures.
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heating at different heating rates

Ozawa Kissinger

Ea (kJ mol−1) A (×1022 min−1) Ea (kJ mol−1) A (×1021 min−1)

338.0 ± 1.8 1.10 ± 2.28 351.2 ± 1.8 3.06 ± 2.28
44 D.M. Minić, B. Adnad̄ević / The

Table 1
The values of Ti , Tp, Tf and S for the amorphous Fe81B13Si4C2 alloy upon continuous

ˇ (K min−1) Ti (K) Tp (K) Tf (K) S

5 765 785 815 0.59
10 774 793 819 0.59
20 782 804 827 0.70
30 786 811 833 0.75

maximum located at 2� = 45.3◦. A further increase of the anneal-
ing temperature causes an increased intensity of that peak and a
decrease of its half width indicating the increase of crystallinity
of alloy. Thoroughly studying diffractograms by the comparative
semi-qualitative analysis of annealed alloy, according to JPCDS card
no. 06 6698, gives evidence of the presence of �-Fe crystals in
annealed alloy beside an amorphous phase indicating the primary
crystallization amorphous alloy during heating.

These results show that probably even at ambient tempera-
ture, in the alloy exists highly disordered �-Fe clusters which being
ordered by annealing already at 673 K. The annealing of alloy at
the temperatures in the range of 673–823 K, leads further to the
ordering of structure. The dimensions and concentrations of the
formed �-Fe nuclei at T = 823 K are enough to cause a spontaneous
growing of �-Fe nuclei. The rate of nuclei growth increases with the
increasing of annealing temperature of the considered alloy.

In order to establish the influence of fractional extent of reaction

˛ on the values of kinetic parameters we applied the isoconver-
sion method, according to the Kissinger–Akahira–Sunose [12,14].
According to this method, a linear relationship of ln(ˇ/T2) versus
1/T was established, describing well data from non-isothermal DSC
measurements at the ˛ range of 0.1–0.7. The values of the appar-
ent activation energy and the intercepts ln[ARf(˛)/Ea] calculated by
means of this method are pointed out in Fig. 3.

It can be observed that the determined apparent activation
energy as well intercepts ln[ARf(˛)/Ea] for the crystallization pro-
cess of �-Fe in the amorphous Fe81B13Si4C2 alloy are practically
constant at the ˛ range of 0.1–0.7. This suggests that the appar-
ent activation energy as well as the pre-exponential factor depends
on the same way on the crystallization degree of considered pro-
cess. That could be an indication of a single step reaction. The
average value of the apparent activation energy was found to be
Ea = 352.4 ± 1.8 kJ mol−1.

The crystallization kinetics of the amorphous solids involving
the nucleation and growth of nuclei is usually interpreted by the
JMA model. The validity of this model was investigated using the
normalized y(˛) and z(˛) functions proposed by Malek [18–20],
Fig. 4.

Fig. 3. The apparent activation energies (Ea) and the intercepts as function of the
crystallized fraction ˛.
Fig. 4. Normalized y(˛) and z(˛) functions at the different heating rates.

The obtained normalized functions y(˛) and z(˛) are indepen-
dent on the heating rate, ˇ, and the both functions exhibit the
well-defined maxima which were located at an exactly defined
value of ˛ (˛∗

y for the y(˛) function and ˛∗
z for z(˛) function, respec-

tively), Table 2.
From Table 2, it can be seen that the values of ˛∗

y fall into
the range ˛∗

y ∈ (0, ˛z) (0.41 ≤ ˛∗
y ≤ 0.42) and the values of ˛∗

z are
less than 0.632 (0.51 ≤ ˛∗

z ≤ 0.55). From the obtained results, it

follows that the conditions of validity of the JMA model are not ful-
filled for the crystallization of �-Fe in an amorphous Fe81B13Si4C2
alloy. The displacement ˛∗

z in the range lower values indicates the
complexity of the process and can be caused by the influence of
surface nucleation or by the affect of released crystallization heat
on the temperature distribution within a sample. However, the
relatively high value of ˛∗

y indicates an increasing effect of the
crystallized phase to overall crystallization kinetics where the crys-
tallized phase further promotes the rate of the crystallization. Such
autocatalytic behavior can be well described by means of an empir-
ical two parameter Šesták–Berggren’s kinetic model, according to
Eq. (13).

Table 3 lists the values of kinetic exponents M and N, as well as
the values of ln A obtained by the procedure described above, for
the considered crystallization process at different heating rates.

The obtained values of kinetic exponents M and N are slightly
changed with the heating rate ˇ. The values of M vary in the range
of 0.64 ≤ M ≤ 0.81 with the average value of Mav = 0.72. The values
of N vary in the range of 0.89 ≤ N ≤ 1.17 with the average value of
Nav = 1.02. The values of the pre-exponential factor (ln A) in the lim-

Table 2
The maximum of ˛y and ˛z for the different heating rates

ˇ (K min−1) ˛∗
y ˛∗

z

5 0.41 ± 0.01 0.53 ± 0.01
10 0.42 ± 0.01 0.51 ± 0.01
20 0.42 ± 0.01 0.55 ± 0.03
30 0.41 ± 0.01 0.52 ± 0.01
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Table 3
The kinetic exponents M and N at different heating rates

ˇ (◦C min−1) M N ln A (min−1)

5 0.75 ± 0.03 1.08 ± 0.10 52.85 ± 0.06
10 0.66 ± 0.05 0.92 ± 0.05 53.03 ± 0.10
20 0.64 ± 0.05 0.89 ± 0.07 52.90 ± 0.07
30 0.81 ± 0.10 1.17 ± 0.04 53.02 ± 0.10

Average 0.72 ± 0.06 1.02 ± 0.07 52.95 ± 0.08

its of the experimental error are independent on the heating rate
(ˇ). It was shown that this two parameter autocatalytic model is
physically meaningful only for M < 1 [22]. The JMA model is only
a specific case of one general model where the entire nucleation
process takes place during the early stages of the transformations,
becoming negligible afterward. In that case, the crystallization rate
is defined only by temperature and does not depend on the previous
thermal history of alloy.
In order to check the established kinetic model, we applied the
“Master-plot” method [23,24] (Fig. 5). Using as a reference point
value at ˛ = 0.5, the following differential master equation is easily
derived from Eq. (3):

f (˛)
f (0.5)

= d˛/dt

(d˛/dt)0.5

exp (Ea/RT)
exp (Ea/RT0.5)

, (17)

where (d˛/dt)0.5, T0.5 and f (0.5) are the reaction rate, the tempera-
ture reaction and the differential conversion function, respectively
at ˛ = 0.5.

The left side of Eq. (17), is a reduced theoretical curve which is
characteristic of each kinetic function. The right side of the equa-
tion is associated with the reduced rate and can be obtained from
experimental data if the apparent activation energy is known and
remains constant throughout the reaction. Comparison of both
sides of Eq. (17) tells us which kinetic model describes an exper-
imental reaction process.

It can be seen that by using the average value for the appar-
ent activation energy determined from Kissinger–Akahira–Sunose
isoconversional method, the suggested kinetic model works very
well in the entire conversion range. Therefore, the Šesták–Berggren

Fig. 5. The theoretical (solid line) and experimental differential master plots of
f(˛)/f(0.5) versus ˛ for different heating rates: (�) 5 K min−1; (©) 10 K min−1; (�)
20 K min−1; (♦) 30 K min−1.
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autocatalytic model represents the best reaction model for
describing the crystallization process of �-Fe in the amorphous
Fe81B13Si4C2 alloy.

The crystallization kinetics of amorphous solids is usually
interpreted in terms of the Johnson–Mehl–Avrami (JMA) model.
However, strictly speaking, this model is valid in isothermal con-
ditions, and it can be rigorously applied to the transformations
involving a nucleation and a growth only in a limited number of
special cases in non-isothermal conditions. An example of a system
which allows the non-isothermal application of the JMA models is
one in which the entire nucleation process takes place during the
early stages of the transformation, and it becomes negligible after-
ward. In this case, the crystallization rate is defined only by the
temperature and does not depend on the previous thermal history
of alloy.

The higher value of N exponent designates that the decisive
influence on the kinetics of transformation has the formed crystal-
lization phase and the rate of growth. In the propagation process,
on account of overlapping of nuclei in growing, it comes to retard
of crystallization rate. Bearing in mind the above facts, we can
assume that in the amorphous alloy, the �-Fe embryos already
exist and at T ≤ 823 K and at T ≥ 823 K, these embryos are momen-
tarily transformed into nuclei. The established acceleration of the
crystallization process is a consequence of the significant increase
of strains in the alloy, which arise on account of �-Fe formation
process.

5. Conclusions

Kinetics of crystallization of �-Fe from amorphous Fe81B13Si4C2
alloy can be described by the Šesták–Berggren’s kinetic model with
the following expression for the reaction rate: d˛/dt = 1.11 × 1022

exp(−349.4/RT)˛0.72(1 − ˛)1.02. At T ≥ 823 K it comes to instan-
taneous nucleation of embryos which already exist in the
crystallization nuclei of �-Fe. The acceleration of the crystallization
process is a consequence of strains in the material which arise on
account of the formation of �-Fe. On the other hand, the decrease
of the transformation rate is a consequence of an overlapping of the
growing �-Fe nuclei.
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