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The present study is concerned with investigating temperature evolution during weld heating phase in
a particular device. Experimental results are presented as a guide to theoretical calculations. The main
theoretical item is an attempt to solve the heat equation by considering the evolution of the source term
inside electrically heated zone. Empirical variations of both thermal and electrical conductivities are
treated and involved in the model.

© 2008 Elsevier B.V. All rights reserved.
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oubaker polynomials expansion

. Introduction

Several models of the resistance spot welding disposals and
emperature profiling have been carried out these last decades.

e can cite the works of Mohapatra et al. [1,2] who proposed
odels of thermal expansion in particular specimens, the simul-

aneous modulation model of Takegawa et al. [3] that monitored
n efficient temperature modulation technique, the numerical
odel of Ding and Cheng [4] that yielded a differential scan-

ing calorimetry protocol, and the model of Xu et al. [5] that
eveloped a conjoint measurement of the temperature profile

nd the specific heat capacity using a low sample heat diffu-
ivity and used abacus international code to develop a finite
lement model using coupled thermal–electrical–mechanical anal-
sis.
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040-6031/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
oi:10.1016/j.tca.2008.09.026
Most of these studies were inspired by the theoretical study
ublished by Morales [6] and that investigated temperature dis-
ributions in different materials.

In the last decade, the complete works of Srikunwong et al.
7–10] implemented a wide panoply of decoupled and coupled
echniques to analyze heating and cooling processes mechanisms,
hich are associated with resistance spot welding. Their works
sed a recent finite element code: SYSWELD [11] in order to

ncorporate electrical–thermal and thermal–mechanical coupling
rocedures. They proposed realistic and efficient computational
pproach which took into account the temperature dependency
haracteristics and properties of both sheets and electrodes.

An other recent finite element code: ANSYS was recently use
y Zhu et al. [12] who proceeded by updating parameter infor-
ation in an incremental manner and realized accurate thermal–
lectrical–mechanical coupled numerical analyses.
The model we propose in this paper is inspired by these last

ew ones [7–10,12]. In fact, we intended to traduce the pulsed elec-
rical supply into an incrementally incident source term and took
nto account electrical and thermal conductivities evolution at each

http://www.sciencedirect.com/science/journal/00406031
http://www.elsevier.com/locate/tca
mailto:managing_office069@yahoo.fr
dx.doi.org/10.1016/j.tca.2008.09.026
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Table 1
Variations of electrical and thermal conductivities versus temperature.

Temperature (◦C) Electrical conductivity
(�−1 m−1)

Thermal conductivity
(W m−1 K−1)

0 6000.2 52.3
200 4012.3 50.2
400 2014.5 48.0
600 1254.2 35.4
800 958.0 22.5

1000 954.8 28.2
1200 902.7 30.9
1400 857.9 34.8
1600 825.1 34.9
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Fig. 1. Schematic diagram of the studied setup.

ncrement. The resulting temperature profiles have been discussed
nd successfully compared to similar results.

. Model presentation

The studied device is presented in Fig. 1.
The weld operation is carried out by a combination of heat and

ressure. The resistance of the sheets to current flow causes a local-
zed heating in the central part. The pressure exerted by electrode
xtremities, through which the current flows, holds the opposite
arts in intimate contact during the welding process. The dura-
ion of the operation is determined mainly by sheets thickness and
ype, the current intensity and the dimension of the electrodes. The

aterial’s transformation phases due to the velocity of cooling are
ot taken into account in this study.

The studied zone (nugget) geometrical features are presented in
ig. 2.

. Theory
.1. Coupled electrical–thermal heat equation

In the studied area described in Fig. 2, the coupled electrical–
hermal heat equation traduces the energy balance in the central

Fig. 2. Approximated schematic diagram of the nugget.
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800 802.3 35.7
000 784.2 36.0

one. This equation [13,14] is expressed by (1):

� × C ∂T(t, r)
∂t

= −∇q+ Pe

q = −K × ∇T(t, r)
T(t, r) = Tr(r) × Tt(t)

(1)

here � is the density, K the thermal conductivity, C the specific
eat capacity, T the absolute temperature and Pe is the received
lectric power in one pulse.

By introducing the thermal diffusivity term: D = K/�C and con-
idering that the power current is modulated under the pulsation
= 2�f, this equation alters, in cylindrical coordinates to (2):

∂

∂r2
+ 1
r

∂

∂r

]
Tr(r) = jω

D
Tr(r) + Pe

K
(2)

.2. Solution using 4n-order Boubaker polynomials expansion

At this stage, Tr is expressed as an infinite expansion of the
oubaker polynomials [15–22]:

r(r) = T0

2N0

N0∑
n=1

�nB4n

(
r
˛n
rm

)
(3)

here N0 is a prefixed integer, ˛n are the minimal positive roots
f the Boubaker 4n-order [15–17] polynomials B4n, rm is the max-
mum nugget radial range (Fig. 2) and �n are coefficients to be
ound.

The Boubaker polynomials expansion has been used in many
pplied physics problems solutions [18–22]. The main characteris-
ics of these polynomials and expansion are presented in Appendix
.

The derivation of the temperature expression is achieved by
eplacing the expression (3) in the main equation (2) and intro-
ucing initial conditions.

For a date which is an m-multiple of�t = 0.1 s, the total received
ower is Eq. (4):

Pe
∣∣
m

= 1
m�t

∫ m�t

0

[
2H
�mS

× I2t
]

dt (4)

here H is sheet thickness and S is the heated subdomain section

rea. The indexed values of �m, the sheet–sheet global instan-
aneous electrical conductivity are obtained trough local poly-
omial regressions deduced from the given experimental values
Table 1).
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Fig. 4. 3D temperature profile.
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ig. 3. Conjoint variations of thermal and electrical conductivities versus tempera-
ure.

By introduction of the expression (3) in the Eq. (2), we obtain
q. (5)

N0

n=1

�n ·
[(
˛n
rm

)2
B"

4n(	˛n) + ˛n
rm

· B′
4n(	˛n) − jω

D
B4n(	˛n)

]

= 2N0
Pn
KmT0

; 	 = r

rm
(5)

here Km is the temperature-dependent thermal conductivity. We
an write (6):

N0∑
n=1

�n
n(	) = 2N0
Pm
KmT0


n =
(
˛n
rm

)2
B"

4n(	˛n) + ˛n
rm
B

′
4n(	˛n) − jω

D
B4n(	˛n)

(6)

he indexed values of Km are given by the empirical expression
ersus temperature, deduced from Table 1 and Fig. 3.

For resolution purposes, the relevant boundary conditions are
athered in Table 2.

Then, a uniform p-sampling is carried out along the r-axis
Fig. 2):

N0∑
n=1

�n
n(	p) =
N0∑
n=1

�n n,p = 2N0
Pm
kmT0

; 	p = p
rm
N0

∣∣∣
p=1...N0

 n,p = 
n(	p)
(7)

his sampling leads to a matricial formulation (8):

A] × [�]m = [B] (8)

he system (8) is solved using Householder [23] algorithm applied
o Petrov-Galerkin method [24–25].
Calculation details of the arrays [A], [�]m and [B] are presented
n Appendix B.

The solution is obtained by introducing the calculated coef-
cients of the vector [�]m in the expression (3), the obtained
emperature profile is presented in Fig. 4.

5

t

able 2
oundary conditions.

oundary location Temperature, T Temperature fi

= 0 T0 0
= rm T∞ /= 0
Fig. 5. Temperature variations versus time (precedent studies).

. Discussion

The present theoretical profile (Fig. 4) is in concordance with
he lastly [22] developed one (Fig. 5). In fact we can notice,
.e. that the location of the A3 point location is approximately
r(A3) ≈ 2.95 mm). This distance is quite the same as in the tem-
erature evolution yielded by a precedent study (Fig. 5).

The obtained temperature profile was also compared to the
esults yielded by Chuko and Gould [26] and Markiewicz et al.
27,28], some similarities were observed concerning the profile
ehaviour beneath the central heated zone. The maximal values
ere also concordant with the results published by Kolosov [29]

nd He et al. [30].
. Conclusion

In the present paper, we tried to give a supply to recent works on
emperature profiling inside special devices [1–7,24–29]. We tried

rst r-derivative: ∂T(r,t)
∂r

Temperature second r-derivative: ∂T(r,t)
∂r

0
/= 0
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o introduce the variations of the relevant parameters incremen-
ally, and hence solve the coupled electro-thermal balance equation
t different t-dependent stages using the Boubaker polynomials
xpansion and some developed mathematical tools. The model is
ctually revised so that calculation allows taking into account the
ocal pressure-induced constraints.

ppendix A

The Boubaker polynomials Bn(X) have the following monomial
efinition:

Bn(X) =
�(n)∑
p=0

[
(n− 4p)
(n− p)

Cpn−p
]

(−1)pXn−2p

with : �(n) =
⌊
n

2

⌋
= 2n+ ((−1)n − 1)

4

he symbol ‘� 	’ designates the floor function.
The Boubaker polynomials Bn(X) have also the ordinary gener-

ting function:

B(X, T) = 1 + 3t2

1 − 2Xt + t2
∞∑
n=0

B̃n(X)tn

hey are solutions to the homogenous differential equation:

X2 − 4)(3nX2 + 4n− 8)y′′ + 3X(nX2 + 12n− 8)y′

−n(3X2n2 + 4n2 − 24n+ 32)y = 0

and verify Christoffel–Darboux-type formula:

n

j=0

B2
j =

B
′
n+1(X) × Bn(X) − B′

n(X) × Bn+1(X)

2

he 4n-Boubaker polynomials B̂4n(X) are elements of a subset of
he Boubaker polynomial sequence: they are defined by the explicit
ormula:

ˆ4n(X) = 1 × X4n − 4(n− 1)X4n−2

+
2n∑
p=2

⎡
⎣4(n− p)

p!

2p−1∏
j=p+1

(4q− j)

⎤
⎦ (−1)pX2(2n−p)

Many interesting proprieties of the 4q-order Boubaker polynomials

nd their real roots were established and used. For example, when
function is expressed as an infinite sum of them as in Eq. (3), one

an notice useful boundary conditions:

N∑
q=1

�qB4q(r)

∣∣∣∣∣
r=0

= 2N /= 0;

N∑
q=1

�q
∂B4q(r)
∂r

∣∣∣∣∣
r=0

= 0

N∑
q=1

�qB4q(˛q(r/R))

∣∣∣∣∣
r=R

=
N∑
q=1

�qB4q(˛q)

∣∣∣∣∣
r=R

= 0;

N∑
q=1

�q
∂B4q(˛q(r/R))

∂r

∣∣∣∣∣
r=R

/= 0
ppendix B

In this appendix, the arrays of the system (8) are defined.
The system (8) is: [A] × [�]m=[B]with

[

[
[

a Acta 482 (2009) 8–11 11

A] =

⎛
⎜⎝
A1,1 A1,2 . . . . . .
A2,1 . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . AN0,N0

⎞
⎟⎠

here

i,j =
(
˛i
rm

)2
B"

4i(	j˛i) + ˛n
rm
B

′
4i(	j˛n) − jω

D
B4i(	j˛i)

oreover,

B] =

⎛
⎜⎜⎜⎜⎝

b1
b2
b3
. . .
. . .
bN0

⎞
⎟⎟⎟⎟⎠

here

j = N0
Pj
kjT0

�]m is the unknown vector which corresponds to the mth step:
�]T
m = (�1 �2 �3 · · · �N0 )m
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