Contents lists available at ScienceDirect



## Thermochimica Acta



journal homepage: www.elsevier.com/locate/tca

# Densities and apparent molar volumes of myo-inositol in aqueous solutions of alkaline earth metal salts at different temperatures

Qiang Zhao<sup>a</sup>, Zhen-Jun Sun<sup>b</sup>, Qian Zhang<sup>a</sup>, Sheng-Kai Xing<sup>a</sup>, Min Liu<sup>a</sup>, De-Zhi Sun<sup>a,\*</sup>, Lin-Wei Li<sup>a,\*</sup>

<sup>a</sup> College of Chemistry and Chemical Engineering, Liaocheng University, Wenhua Road, Liaocheng, Shandong 252059, China
<sup>b</sup> Department of Chemistry, Guangxi Teachers Education University, Nanning, Guangxi 530001, China

#### ARTICLE INFO

Article history: Received 21 July 2008 Received in revised form 31 December 2008 Accepted 1 January 2009 Available online 15 January 2009

Keywords: Apparent molar volumes Myo-inositol Alkaline earth metal chlorides

#### ABSTRACT

Apparent molar volumes  $(V_{\varphi})$  of myo-inositol in water and in aqueous solutions of alkaline earth metal salt MCl<sub>2</sub> (M = Mg, Ca, Sr, Ba) under various concentrations and temperatures ranging from 293.15 K to 318.15 K have been measured by a precise vibrating-tube digital densimeter. The calculated partial molar volumes  $(V_{\varphi}^0)$  have been used to obtain the corresponding transfer partial molar volumes  $(\Delta_{trs}V_{\varphi}^0)$  of the polyol from water to various salt solutions. The experimental results show that  $V_{\varphi}^0$  of myo-inositol increases with enhancement of salt concentration and ascension of temperature. The interpretation is that these results arise from the dominant interaction of MCl<sub>2</sub> with the charged centers of myo-inositol.  $\Delta_{trs}V_{\varphi}^0$  of myo-inositol increases with enhancement of concentration of MCl<sub>2</sub> while decreases with the ascension of temperature. The change tendency of volume property of myo-inositol has been rationalized in the light of weak interactions between myo-inositol molecules, the polyol molecules and coexistent ions as well as the polyol molecules and solvent molecules with a cosphere overlap model applied.

© 2009 Elsevier B.V. All rights reserved.

#### 1. Introduction

Myo-inositol (MI), a cyclic polyol, is the most biologically abundant stereo-isomer of the inositols. It is an essential nutrient for most living cells, including protozoa [1,2]. Kiyoshima et al. [3,4] also found the contents of MI and mannitol in both human and rat brain tissues. Inositol levels change in association with ischemic state and edema in animal models [5,6]. MI plays multiple important roles in all organisms [7] and it can be found in many biological fluids, which are not pure water but complicated aqueous solution containing many kinds of bio-molecules and ions. So investigating the influence of solvent components on properties of MI is essential for its research and biochemical engineering application. There are some investigations on properties of MI [8-10], but no systematic studies, to our best knowledge, exist on the voluminal properties of MI in alkaline earth metal salt solutions although ions of alkaline earth metals are often found in bio-system. As a continuation of our earlier work in obtaining thermodynamic data of aqueous solutions [9-13] of MI and for complete understanding of the influence of electrolytes on properties of the polyol, in this paper, we present the densities ( $\rho$ ), apparent volumes ( $V_{\omega}$ ), apparent molar volume  $(V_{\varphi}^{0})$  in aqueous MCl<sub>2</sub> (M = Mg, Ca, Sr, Ba) solutions and transfer molar volumes ( $\Delta_{trs} V_{\varphi}^0$ ) from water to aqueous MCl<sub>2</sub> solutions at different temperatures (from 293.15 K to 318.15 K). Alkaline earth metal salts ( $MCl_2$ ) have been chosen for this part study to observe the relative effects of the change of cation of electrolyte, especially change of radius of cation.

#### 2. Experimental

### 2.1. Materials

Myo-inositol (MI) was a product of Aldrich, and the stated purity was better than 99%. It was dried under reduced pressure at 323 K before use. Magnesium chloride (MgCl<sub>2</sub>), calcium chloride (CaCl<sub>2</sub>), strontium chloride (SrCl<sub>2</sub>) and barium chloride (BaCl<sub>2</sub>) were all analytical reagents (purity > 99%) purchased from Shanghai Chemical Reagent Company (Shanghai, China), recrystallized from distilled water and dried under reduced pressure at 393 K before use. All of the reagents were stored over  $P_2O_5$  in a vacuum desiccator for 72 h at room temperature prior to use. Twice-distilled water was used in the experiment. Solutions of different compositions were prepared by weight using a METTLER TOLEDO AG 135 analytical balance with a precision of  $\pm 1 \times 10^{-5}$  g. All liquids were degassed with ultrasonic waves and used within 12 h of preparation.

#### 2.2. Density measurements

The densities of solutions were determined by a vibratingtube digital densimeter (DMA 5000 Anton Paar) thermostated

<sup>\*</sup> Corresponding authors. *E-mail address:* lilinwei50@163.com (L.-W. Li).

<sup>0040-6031/\$ -</sup> see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.tca.2009.01.003

**Table 1**The densities ( $\rho$ ) of MI–salt aqueous solutions and the apparent molar volumes ( $V_{\varphi}$ ) of MI at different temperatures.

| m <sub>inositol</sub> /mol kg <sup>-1</sup> | $ ho/{ m gcm^{-3}}$  | $V_{arphi}/\mathrm{cm}^3\mathrm{mol}^{-1}$ | $ ho/{ m gcm^{-3}}$ | $V_{\varphi}/\mathrm{cm}^3~\mathrm{mol}^{-1}$ | $ ho/{ m gcm^{-3}}$ | $V_{arphi}/\mathrm{cm}^3~\mathrm{mol}^{-1}$ | $ ho/{ m gcm^{-3}}$ | $V_{\varphi}/\mathrm{cm}^3\mathrm{mol}^{-1}$ | $ ho/{ m gcm^{-3}}$ | $V_{\varphi}/\mathrm{cm}^3 \mathrm{mol}^{-1}$ |
|---------------------------------------------|----------------------|--------------------------------------------|---------------------|-----------------------------------------------|---------------------|---------------------------------------------|---------------------|----------------------------------------------|---------------------|-----------------------------------------------|
|                                             | 293.15 K             |                                            | 298.15 K            |                                               | 303.15 K            |                                             | 308.15 K            |                                              | 318.15 K            |                                               |
| H <sub>2</sub> O                            |                      |                                            |                     |                                               |                     |                                             |                     |                                              |                     |                                               |
| 0.09984                                     | 1.006205             | $99.46 \pm 0.12$                           | 1.004972            | $100.59\pm0.20$                               | 1.003508            | $101.61\pm0.15$                             | 1.001835            | $102.58\pm0.18$                              | 0.997362            | $103.98\pm0.24$                               |
| 0.19881                                     | 1.014161             | $99.96 \pm 0.21$                           | 1.012856            | $101.10\pm0.12$                               | 1.011331            | $102.08\pm0.12$                             | 1.009601            | $102.99\pm0.12$                              | 1.005546            | $104.35\pm0.13$                               |
| 0.29711                                     | 1.021023             | $100.46\pm0.09$                            | 1.019662            | $101.50\pm0.09$                               | 1.018083            | $102.48\pm0.14$                             | 1.016307            | $103.52\pm0.15$                              | 1.012215            | $104.77\pm0.03$                               |
| 0.39659                                     | 1.029428             | $100.86 \pm 0.15$                          | 1.027989            | $101.95 \pm 0.17$                             | 1.026347            | $102.96 \pm 0.11$                           | 1.024521            | $103.80 \pm 0.18$                            | 1.020272            | $104.97 \pm 0.11$                             |
| 0.49524                                     | 1.036371             | $101.28 \pm 0.28$                          | 1.034883            | $102.35 \pm 0.23$                             | 1.033191            | $103.38 \pm 0.21$                           | 1.031312            | $104.35 \pm 0.22$                            | 1.027054            | $105.36 \pm 0.16$                             |
| $m_{MgCl_2} = 0.09953  \mathrm{m}$          | nol kg <sup>-1</sup> |                                            |                     |                                               |                     |                                             |                     |                                              |                     |                                               |
| 0.09929                                     | 1.014249             | $100.09\pm0.22$                            | 1.012982            | $101.10\pm0.19$                               | 1.011497            | $102.06\pm0.11$                             | 1.009811            | $102.98\pm0.12$                              | 1.005889            | $104.40\pm0.15$                               |
| 0.19888                                     | 1.021770             | $100.65\pm0.31$                            | 1.020442            | $101.71 \pm 0.21$                             | 1.018897            | $102.57\pm0.15$                             | 1.017159            | $103.53\pm0.19$                              | 1.013155            | $104.93 \pm 0.25$                             |
| 0.29722                                     | 1.028919             | $101.15 \pm 0.16$                          | 1.027526            | $102.24 \pm 0.23$                             | 1.025924            | $103.08 \pm 0.16$                           | 1.024137            | $104.03 \pm 0.07$                            | 1.020217            | $105.44 \pm 0.20$                             |
| 0.39593                                     | 1.036658             | $101.65 \pm 0.13$                          | 1.035200            | $102.72 \pm 0.09$                             | 1.033543            | $103.49 \pm 0.13$                           | 1.031700            | $104.52 \pm 0.11$                            | 1.027487            | $105.91 \pm 0.10$                             |
| 0.49559                                     | 1.043691             | 102.10 ± 0.06                              | 1.042180            | $103.19 \pm 0.15$                             | 1.040476            | $103.96 \pm 0.20$                           | 1.038592            | $104.97 \pm 0.13$                            | 1.034344            | $106.36 \pm 0.09$                             |
| $m_{MgCl_2} = 0.29436  \mathrm{m}$          | nol kg <sup>-1</sup> |                                            |                     |                                               |                     |                                             |                     |                                              |                     |                                               |
| 0.09940                                     | 1.029884             | $100.51 \pm 0.10$                          | 1.028553            | $101.56\pm0.22$                               | 1.027024            | $102.58\pm0.11$                             | 1.025317            | $103.48\pm0.21$                              | 1.021186            | $104.79\pm0.18$                               |
| 0.19866                                     | 1.036945             | $101.07 \pm 0.19$                          | 1.035561            | $102.15 \pm 0.11$                             | 1.033979            | $103.14 \pm 0.07$                           | 1.032219            | $104.14 \pm 0.10$                            | 1.028436            | $105.24 \pm 0.15$                             |
| 0.29799                                     | 1.044176             | $101.58 \pm 0.25$<br>102.07 ± 0.22         | 1.042727            | $102.65 \pm 0.19$                             | 1.041093            | $103.64 \pm 0.09$                           | 1.039285            | $104.64 \pm 0.02$                            | 1.034854            | $105.54 \pm 0.21$                             |
| 0.39604                                     | 1.051120             | $102.07 \pm 0.22$<br>$102.52 \pm 0.13$     | 1.049015            | $103.14 \pm 0.10$<br>$103.59 \pm 0.23$        | 1.047930            | $104.14 \pm 0.13$<br>$104.59 \pm 0.21$      | 1.040078            | $105.15 \pm 0.21$<br>105.59 $\pm 0.18$       | 1.041914            | $106.03 \pm 0.10$<br>$106.29 \pm 0.05$        |
| 0.43333                                     | 1.055551             | 102.52 ± 0.15                              | 1.058025            | 105.55±0.25                                   | 1.050284            | 104.33 ± 0.21                               | 1.054500            | 105.55 ± 0.18                                | 1.043740            | 100.23 ± 0.05                                 |
| $m_{\rm MgCl_2} = 0.48305  {\rm m}$         | nol kg <sup>-1</sup> |                                            |                     |                                               |                     |                                             |                     |                                              |                     |                                               |
| 0.09942                                     | 1.044769             | $100.92 \pm 0.26$                          | 1.043376            | $101.94 \pm 0.30$                             | 1.041805            | $102.92 \pm 0.11$                           | 1.040068            | $103.82 \pm 0.21$                            | 1.035816            | $105.16 \pm 0.20$                             |
| 0.19910                                     | 1.051580             | $101.48 \pm 0.31$                          | 1.050139            | $102.60 \pm 0.19$<br>102.10 ± 0.20            | 1.048520            | $103.58 \pm 0.23$                           | 1.046738            | $104.53 \pm 0.14$                            | 1.042726            | $105.64 \pm 0.06$                             |
| 0.29744                                     | 1.057685             | $101.98 \pm 0.18$<br>$102.47 \pm 0.09$     | 1.056195            | $103.10 \pm 0.20$<br>103.59 $\pm 0.08$        | 1.054530            | $104.08 \pm 0.18$<br>$104.58 \pm 0.12$      | 1.052706            | $105.03 \pm 0.19$<br>105.53 $\pm 0.18$       | 1.048010            | $105.94 \pm 0.21$<br>$106.44 \pm 0.15$        |
| 0.49537                                     | 1.072521             | $102.93 \pm 0.03$                          | 1.070918            | $103.03 \pm 0.00$<br>$104.05 \pm 0.11$        | 1.069156            | $104.03 \pm 0.02$<br>$105.03 \pm 0.09$      | 1.067244            | $105.98 \pm 0.18$<br>$105.98 \pm 0.20$       | 1.063010            | $106.67 \pm 0.11$                             |
| 0110007                                     | 1                    | 102103 1 0123                              | 1107 0010           |                                               | 1000100             | 100100 ± 0100                               | 1007211             | 100100 ± 0120                                | 1000010             | 100107 ± 0111                                 |
| $m_{MgCl_2} = 0.66604  \text{m}$            | nol kg <sup>-1</sup> | 101.07 . 0.10                              | 1 0 5 0 0 6 5       | 100.07 . 0.00                                 | 1 050 400           | 100.00 + 0.10                               | 1 05 40 40          | 10100 - 010                                  | 1050500             | 105 50 1 0 10                                 |
| 0.09979                                     | 1.059504             | $101.37 \pm 0.16$                          | 1.058065            | $102.37 \pm 0.06$                             | 1.056466            | $103.33 \pm 0.12$                           | 1.054649            | $104.20 \pm 0.12$                            | 1.050708            | $105.58 \pm 0.12$                             |
| 0.19877                                     | 1.005944             | $101.84 \pm 0.35$<br>$102.34 \pm 0.20$     | 1.004430            | $102.93 \pm 0.12$<br>103 43 $\pm$ 0.0         | 1.062806            | $103.89 \pm 0.22$<br>$104.39 \pm 0.23$      | 1.061005            | $104.86 \pm 0.21$<br>105.36 $\pm 0.19$       | 1.056993            | $105.98 \pm 0.07$<br>106.18 $\pm$ 0.18        |
| 0.39714                                     | 1.072820             | $102.34 \pm 0.23$<br>$102.83 \pm 0.18$     | 1.078838            | $103.43 \pm 0.0$<br>103.93 + 18               | 1.003331            | $104.59 \pm 0.25$<br>$104.89 \pm 0.17$      | 1.007743            | $105.30 \pm 0.13$<br>$105.86 \pm 0.06$       | 1.0000078           | $106.13 \pm 0.13$<br>$106.67 \pm 0.15$        |
| 0.49524                                     | 1.086290             | $102.00 \pm 0.07$<br>$103.29 \pm 0.07$     | 1.084655            | $104.38 \pm 0.13$                             | 1.082865            | $105.35 \pm 0.19$                           | 1.080922            | $106.31 \pm 0.25$                            | 1.078607            | $107.03 \pm 0.21$                             |
| 0.02200                                     | 11                   |                                            |                     |                                               |                     |                                             |                     |                                              |                     |                                               |
| $m_{MgCl_2} = 0.93300 \text{ n}$            | nol kg <sup>-1</sup> | 101 70 + 0.24                              | 1 070790            | 102 69 + 0.16                                 | 1 070142            | 102 62 + 0.06                               | 1.070257            | 104 40 + 0.15                                | 1.0720.92           | 105.00 + 0.10                                 |
| 0.09964                                     | 1.081295             | $101.70 \pm 0.24$<br>$102.17 \pm 0.16$     | 1.079789            | $102.08 \pm 0.10$<br>$103.25 \pm 0.11$        | 1.078142            | $103.03 \pm 0.00$<br>$104.10 \pm 0.20$      | 1.070357            | $104.49 \pm 0.15$<br>105.16 $\pm$ 0.19       | 1.072082            | $105.89 \pm 0.10$<br>106.32 $\pm 0.18$        |
| 0.29704                                     | 1.094391             | $102.67 \pm 0.10$                          | 1.092781            | $103.75 \pm 0.21$                             | 1.091040            | $104.69 \pm 0.20$                           | 1.089190            | $105.66 \pm 0.13$                            | 1.085116            | $106.52 \pm 0.10$<br>$106.55 \pm 0.03$        |
| 0.39602                                     | 1.100855             | $103.16 \pm 0.26$                          | 1.099216            | $104.25 \pm 0.09$                             | 1.097440            | $105.19 \pm 0.12$                           | 1.095533            | $106.15 \pm 0.08$                            | 1.092576            | $107.05 \pm 0.12$                             |
| 0.49509                                     | 1.108289             | $103.62\pm0.20$                            | 1.106596            | $104.70\pm0.24$                               | 1.104781            | $105.65\pm0.11$                             | 1.102846            | $106.61\pm0.13$                              | 1.097715            | $107.50\pm0.20$                               |
| m = 0.00055 m                               | ol ka-1              |                                            |                     |                                               |                     |                                             |                     |                                              |                     |                                               |
| $n_{CaCl_2} = 0.09933 m$<br>0.08931         | 1 014481             | $100.03 \pm 0.11$                          | 1 013198            | $101.03 \pm 0.06$                             | 1 01166             | $102.04 \pm 0.21$                           | 1 009921            | $102.91 \pm 0.17$                            | 1005883             | $10445 \pm 0.15$                              |
| 0.19818                                     | 1.022356             | $100.55 \pm 0.15$                          | 1.021006            | $101.66 \pm 0.21$                             | 1.019448            | $102.67 \pm 0.21$                           | 1.017690            | $102.57 \pm 0.26$                            | 1.013652            | $104.48 \pm 0.20$                             |
| 0.29770                                     | 1.030604             | $101.05\pm0.13$                            | 1.029185            | $102.17\pm0.11$                               | 1.027577            | $103.17\pm0.14$                             | 1.025753            | $104.07\pm0.13$                              | 1.021352            | $104.98\pm0.18$                               |
| 0.39725                                     | 1.037054             | $101.54 \pm 0.20$                          | 1.035582            | $102.66\pm0.16$                               | 1.034159            | $103.67\pm0.20$                             | 1.032058            | $104.57\pm0.09$                              | 1.027855            | $105.47\pm0.09$                               |
| 0.49555                                     | 1.045463             | $101.99\pm0.07$                            | 1.043920            | $103.12\pm0.02$                               | 1.042207            | $104.12\pm0.11$                             | 1.040295            | $105.02\pm0.18$                              | 1.035655            | $105.93\pm0.06$                               |
| $m_{\rm CaCl} = 0.29303 {\rm m}$            | ol kg <sup>-1</sup>  |                                            |                     |                                               |                     |                                             |                     |                                              |                     |                                               |
| 0.08964                                     | 1.032410             | $100.43\pm0.12$                            | 1.031014            | $101.46\pm0.15$                               | 1.029438            | $102.46\pm0.19$                             | 1.027658            | $103.36\pm0.08$                              | 1.023612            | $104.73\pm0.20$                               |
| 0.19829                                     | 1.039702             | $101.07\pm0.20$                            | 1.038247            | $102.17\pm0.13$                               | 1.036638            | $103.19\pm0.14$                             | 1.034781            | $104.16\pm0.21$                              | 1.030664            | $105.39\pm0.19$                               |
| 0.29722                                     | 1.047753             | $101.58\pm0.10$                            | 1.046237            | $102.67\pm0.19$                               | 1.044555            | $103.68\pm0.21$                             | 1.042675            | $104.66\pm0.23$                              | 1.038204            | $105.56\pm0.06$                               |
| 0.39699                                     | 1.054536             | $102.07\pm0.18$                            | 1.052970            | $103.17\pm0.09$                               | 1.051267            | $104.18\pm0.09$                             | 1.049316            | $105.16\pm0.19$                              | 1.045044            | $106.06\pm0.18$                               |
| 0.49630                                     | 1.061614             | $102.53 \pm 0.15$                          | 1.059988            | $103.62 \pm 0.21$                             | 1.058246            | $104.64 \pm 0.23$                           | 1.056242            | $105.61 \pm 0.08$                            | 1.051895            | $106.51 \pm 0.11$                             |
| $m_{CaCl_{2}} = 0.48148 \mathrm{m}$         | ol kg <sup>-1</sup>  |                                            |                     |                                               |                     |                                             |                     |                                              |                     |                                               |
| 0.08911                                     | 1.049069             | $100.85\pm0.09$                            | 1.047575            | $101.86\pm0.23$                               | 1.045922            | $102.85\pm0.32$                             | 1.04407             | $103.76\pm0.32$                              | 1.039511            | $105.22\pm0.12$                               |
| 0.19877                                     | 1.056515             | $101.55\pm0.16$                            | 1.054963            | $102.67\pm0.12$                               | 1.053265            | $103.72\pm0.12$                             | 1.051363            | $104.65\pm0.12$                              | 1.047161            | $105.72\pm0.19$                               |
| 0.29764                                     | 1.064074             | $102.04\pm0.21$                            | 1.062464            | $103.17\pm0.09$                               | 1.060719            | $104.23\pm0.15$                             | 1.058772            | $105.15\pm0.09$                              | 1.054506            | $106.02\pm0.15$                               |
| 0.39703                                     | 1.071265             | $102.54 \pm 0.13$                          | 1.069609            | $103.67 \pm 0.17$                             | 1.067811            | $104.72 \pm 0.08$                           | 1.065832            | $105.65 \pm 0.13$                            | 1.061086            | $106.52 \pm 0.06$                             |
| 0.49504                                     | 1.076781             | $102.99 \pm 0.18$                          | 1.075092            | $104.12 \pm 0.25$                             | 1.073274            | $105.17 \pm 0.24$                           | 1.071238            | $106.09 \pm 0.14$                            | 1.066837            | $106.97 \pm 0.11$                             |
| $m_{CaCl_2} = 0.69410 \text{ m}$            | ol kg <sup>-1</sup>  |                                            |                     |                                               |                     |                                             |                     |                                              |                     |                                               |
| 0.08942                                     | 1.069354             | $101.28\pm0.22$                            | 1.067343            | $102.26\pm0.29$                               | 1.065378            | $103.24\pm0.35$                             | 1.065312            | $104.10\pm0.25$                              | 1.062213            | $105.56\pm0.06$                               |
| 0.19888                                     | 1.076623             | $102.00\pm0.13$                            | 1.075863            | $103.10\pm0.09$                               | 1.074165            | $104.12\pm0.11$                             | 1.072912            | $105.08\pm0.12$                              | 1.071514            | $105.97\pm0.14$                               |
| 0.29817                                     | 1.084431             | $102.50\pm0.19$                            | 1.083537            | $103.61\pm0.12$                               | 1.081296            | $104.63\pm0.16$                             | 1.079604            | $105.58\pm0.04$                              | 1.078543            | $106.47\pm0.20$                               |
| 0.39679                                     | 1.091463             | $102.99 \pm 0.07$                          | 1.088635            | $104.10 \pm 0.18$                             | 1.087171            | $105.12 \pm 0.06$                           | 1.086575            | $106.07 \pm 0.13$                            | 1.085381            | $106.97 \pm 0.08$                             |
| 0.49584                                     | 1.097243             | $103.45 \pm 0.11$                          | 1.095467            | $104.55 \pm 0.21$                             | 1.093976            | 105.58±0.22                                 | 1.092/95            | $106.53 \pm 0.08$                            | 1.091164            | $107.21 \pm 0.10$                             |
| $m_{CaCl_2} = 0.93763  \mathrm{m}$          | ol kg <sup>-1</sup>  |                                            |                     |                                               |                     |                                             |                     |                                              |                     |                                               |
| 0.08990                                     | 1.093944             | $101.57\pm0.23$                            | 1.092196            | $102.59\pm0.31$                               | 1.090348            | $103.47\pm0.26$                             | 1.088321            | $104.36\pm0.29$                              | 1.083103            | $106.01\pm0.12$                               |
| 0.19890                                     | 1.098618             | $102.40\pm0.16$                            | 1.096843            | $103.48\pm0.16$                               | 1.094967            | $104.53\pm0.20$                             | 1.092912            | $105.52\pm0.18$                              | 1.088508            | $106.50\pm0.14$                               |
| 0.29751                                     | 1.104820             | $102.90 \pm 0.11$                          | 1.103007            | $103.98 \pm 0.05$                             | 1.101109            | $105.03 \pm 0.07$                           | 1.09901             | $106.02 \pm 0.27$                            | 1.094556            | $106.91 \pm 0.04$                             |

### Table 1 (Continued)

| m <sub>inositol</sub> /mol kg <sup>-1</sup> | $ ho/{ m gcm^{-3}}$  | $V_{\varphi}/\mathrm{cm}^3 \mathrm{mol}^{-1}$                     | $ ho/{ m gcm^{-3}}$  | $V_{\varphi}/\mathrm{cm}^3 \mathrm{mol}^{-1}$                     | $ ho/{ m g}{ m cm}^{-3}$ | $V_{\varphi}/\mathrm{cm}^3 \mathrm{mol}^{-1}$                     | $ ho/{ m gcm^{-3}}$  | $V_{\varphi}/\mathrm{cm}^3\mathrm{mol}^{-1}$                      | $ ho/{ m gcm^{-3}}$  | $V_{\varphi}/\mathrm{cm}^3 \mathrm{mol}^{-1}$                     |
|---------------------------------------------|----------------------|-------------------------------------------------------------------|----------------------|-------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------|----------------------|-------------------------------------------------------------------|----------------------|-------------------------------------------------------------------|
|                                             | 293.15 K             |                                                                   | 298.15 K             |                                                                   | 303.15 K                 |                                                                   | 308.15 K             |                                                                   | 318.15 K             |                                                                   |
| 0.39763<br>0.49592                          | 1.110486<br>1.117920 | $\begin{array}{c} 103.40 \pm 0.15 \\ 103.85 \pm 0.05 \end{array}$ | 1.108639<br>1.116028 | $\begin{array}{c} 104.47 \pm 0.17 \\ 104.93 \pm 0.22 \end{array}$ | 1.106709<br>1.114063     | $\begin{array}{c} 105.52 \pm 0.12 \\ 105.98 \pm 0.24 \end{array}$ | 1.104577<br>1.111896 | $\begin{array}{c} 106.52 \pm 0.11 \\ 106.97 \pm 0.15 \end{array}$ | 1.100070<br>1.107135 | $\begin{array}{c} 107.45 \pm 0.16 \\ 108.19 \pm 0.20 \end{array}$ |
| m <sub>SrCl2</sub> = 0.09897 mo             | l kg <sup>-1</sup>   |                                                                   |                      |                                                                   |                          |                                                                   |                      |                                                                   |                      |                                                                   |
| 0.10067                                     | 1.020147             | $99.99 \pm 0.09$                                                  | 1.018836             | $100.99\pm0.09$                                                   | 1.017307                 | $101.99\pm0.09$                                                   | 1.015578             | $102.88\pm0.13$                                                   | 1.011582             | $104.35\pm0.10$                                                   |
| 0.19848                                     | 1.027726             | $100.48 \pm 0.12$                                                 | 1.026346             | $101.55 \pm 0.15$                                                 | 1.024/63                 | $102.56 \pm 0.15$                                                 | 1.022982             | $103.48 \pm 0.10$                                                 | 1.018905             | $104.62 \pm 0.14$                                                 |
| 0.29764                                     | 1.034918             | $100.98 \pm 0.18$<br>$101.48 \pm 0.14$                            | 1.033483             | $102.05 \pm 0.13$<br>$102.56 \pm 0.21$                            | 1.031842                 | $103.06 \pm 0.21$<br>$103.55 \pm 0.06$                            | 1.030014             | $103.98 \pm 0.09$<br>$104.47 \pm 0.20$                            | 1.025851             | $104.92 \pm 0.16$<br>$105.42 \pm 0.08$                            |
| 0.49540                                     | 1.049196             | $101.93 \pm 0.16$                                                 | 1.047643             | $102.10 \pm 0.21$                                                 | 1.045898                 | $104.01 \pm 0.13$                                                 | 1.043981             | $104.93 \pm 0.03$                                                 | 1.039657             | $105.12 \pm 0.00$<br>$105.87 \pm 0.15$                            |
| $m_{\rm SrCl_{2}} = 0.28887  \rm{mo}$       | l kg <sup>-1</sup>   |                                                                   |                      |                                                                   |                          |                                                                   |                      |                                                                   |                      |                                                                   |
| 0.09975                                     | 1.047075             | $100.39\pm0.13$                                                   | 1.045609             | $101.41\pm0.23$                                                   | 1.043942                 | $102.42\pm0.15$                                                   | 1.042098             | $103.32\pm0.30$                                                   | 1.037955             | $104.64\pm0.05$                                                   |
| 0.19796                                     | 1.053908             | $101.02\pm0.15$                                                   | 1.052395             | $102.15\pm0.16$                                                   | 1.050691                 | $103.08\pm0.11$                                                   | 1.048809             | $104.04\pm0.10$                                                   | 1.044571             | $105.07\pm0.14$                                                   |
| 0.29755                                     | 1.061631             | $101.52\pm0.08$                                                   | 1.060063             | $102.65\pm0.11$                                                   | 1.058305                 | $103.58\pm0.16$                                                   | 1.056378             | $104.54 \pm 0.21$                                                 | 1.052064             | $105.45\pm0.19$                                                   |
| 0.39758                                     | 1.068402             | $102.02 \pm 0.20$<br>102.47 ± 0.10                                | 1.066754             | $103.14 \pm 0.08$<br>102 50 ± 0.21                                | 1.064912                 | $104.08 \pm 0.20$<br>104.52 $\pm 0.26$                            | 1.062995             | $105.04 \pm 0.05$<br>105.40 ± 0.15                                | 1.058221             | $105.94 \pm 0.09$<br>106.20 ± 0.16                                |
| 0.45507                                     | 1.074546             | 102.47 ± 0.19                                                     | 1.072880             | 105.55±0.21                                                       | 1.07 1055                | 104.35 ± 0.20                                                     | 1.009032             | 105.49 ± 0.15                                                     | 1.004584             | 100.29±0.10                                                       |
| $m_{SrCl_2} = 0.46906 \text{mo}$<br>0.10003 | 1 073783             | $100.81 \pm 0.08$                                                 | 1 072177             | $10184 \pm 0.20$                                                  | 1070754                  | $102.83 \pm 0.19$                                                 | 1068804              | $10375 \pm 010$                                                   | 1064512              | $10513 \pm 0.06$                                                  |
| 0.19892                                     | 1.080796             | $100.51 \pm 0.00$<br>$101.53 \pm 0.11$                            | 1.079145             | $101.04 \pm 0.20$<br>$102.62 \pm 0.18$                            | 1.077321                 | $102.03 \pm 0.13$<br>$103.64 \pm 0.04$                            | 1.075338             | $104.55 \pm 0.09$                                                 | 1.070935             | $105.75 \pm 0.00$<br>$105.75 \pm 0.09$                            |
| 0.29770                                     | 1.087952             | $102.03 \pm 0.15$                                                 | 1.086251             | $103.12 \pm 0.16$                                                 | 1.084383                 | $104.14 \pm 0.12$                                                 | 1.082361             | $105.05 \pm 0.15$                                                 | 1.077901             | $105.96 \pm 0.11$                                                 |
| 0.39648                                     | 1.095746             | $102.52\pm0.20$                                                   | 1.093983             | $103.62\pm0.06$                                                   | 1.092066                 | $104.63\pm0.06$                                                   | 1.090011             | $105.55\pm0.16$                                                   | 1.085199             | $106.45\pm0.19$                                                   |
| 0.49546                                     | 1.100599             | $102.98\pm0.11$                                                   | 1.098811             | $104.07\pm0.12$                                                   | 1.096864                 | $105.09\pm0.22$                                                   | 1.094772             | $106.00\pm0.21$                                                   | 1.090248             | $106.90\pm0.14$                                                   |
| $m_{\rm SrCl_2}$ = 0.64118 mol              | l kg <sup>-1</sup>   |                                                                   |                      |                                                                   |                          |                                                                   |                      |                                                                   |                      |                                                                   |
| 0.09918                                     | 1.097111             | $101.24\pm0.21$                                                   | 1.095385             | $102.25\pm0.15$                                                   | 1.093504                 | $103.24\pm0.36$                                                   | 1.091471             | $104.09\pm0.36$                                                   | 1.086998             | $105.49\pm0.09$                                                   |
| 0.19888                                     | 1.105805             | $101.91\pm0.19$                                                   | 1.104031             | $102.99\pm0.20$                                                   | 1.102079                 | $104.00\pm0.19$                                                   | 1.099905             | $104.96\pm0.21$                                                   | 1.095917             | $105.98\pm0.12$                                                   |
| 0.29753                                     | 1.112890             | $102.41 \pm 0.08$                                                 | 1.111077             | $103.49 \pm 0.13$                                                 | 1.109105                 | $104.50 \pm 0.13$                                                 | 1.106992             | $105.47 \pm 0.15$                                                 | 1.102874             | $106.38 \pm 0.21$                                                 |
| 0.39631                                     | 1.11/5/5             | $102.90 \pm 0.20$                                                 | 1.115/04             | $103.99 \pm 0.09$                                                 | 1.113339                 | $104.99 \pm 0.18$                                                 | 1.111185             | $105.96 \pm 0.19$                                                 | 1.106394             | $106.88 \pm 0.19$                                                 |
| 0.49551                                     | 1.124558             | $103.36 \pm 0.23$                                                 | 1.122057             | 104.44±0.14                                                       | 1.120619                 | $105.45 \pm 0.23$                                                 | 1.118452             | $106.41 \pm 0.22$                                                 | 1.113045             | 107.13 ± 0.11                                                     |
| $m_{\rm SrCl_2} = 0.91565  \rm mo$          | 1 127072             | 101 55 + 0.22                                                     | 1126047              | 102 59 1 0 22                                                     | 1 1 2 2 0 0 2            | 102 50 1 0 41                                                     | 1 1 2 1 0 2 0        | 104 20 + 0.22                                                     | 1127446              | 105 01 + 0.12                                                     |
| 0.10008                                     | 1.15/9/5             | $101.33 \pm 0.23$<br>$102.24 \pm 0.16$                            | 1.150047             | $102.36 \pm 0.32$<br>$103.32 \pm 0.12$                            | 1.122995                 | $105.30 \pm 0.41$<br>$104.31 \pm 0.25$                            | 1.131626             | $104.39 \pm 0.23$<br>$105.26 \pm 0.16$                            | 1.12/440             | $105.81 \pm 0.12$<br>106.26 $\pm 0.08$                            |
| 0.29832                                     | 1150230              | $102.24 \pm 0.10$<br>$102.74 \pm 0.18$                            | 1148243              | $103.32 \pm 0.12$<br>$103.82 \pm 0.15$                            | 1146423                  | $104.91 \pm 0.23$<br>$104.81 \pm 0.13$                            | 1143879              | $105.20 \pm 0.10$<br>$105.76 \pm 0.25$                            | 1138749              | $106.20 \pm 0.00$<br>$106.66 \pm 0.13$                            |
| 0.39657                                     | 1.156125             | $102.71 \pm 0.10$<br>$103.23 \pm 0.09$                            | 1.154101             | $103.32 \pm 0.13$<br>$104.32 \pm 0.46$                            | 1.151957                 | $105.31 \pm 0.19$                                                 | 1.149788             | $106.26 \pm 0.14$                                                 | 1.144714             | $107.16 \pm 0.20$                                                 |
| 0.49500                                     | 1.161197             | $103.69\pm0.25$                                                   | 1.159149             | $104.77\pm0.11$                                                   | 1.156972                 | $105.76\pm0.21$                                                   | 1.154687             | $106.70\pm0.23$                                                   | 1.149801             | $107.41\pm0.26$                                                   |
| $m_{\rm BaCl_2} = 0.09824  {\rm mc}$        | ol kg <sup>-1</sup>  |                                                                   |                      |                                                                   |                          |                                                                   |                      |                                                                   |                      |                                                                   |
| 0.08955                                     | 1.025131             | $99.92\pm0.26$                                                    | 1.023804             | $100.92\pm0.21$                                                   | 1.022254                 | $101.92\pm0.19$                                                   | 1.020524             | $102.83\pm0.19$                                                   | 1.016498             | $104.17\pm0.16$                                                   |
| 0.19840                                     | 1.033377             | $100.43\pm0.14$                                                   | 1.031984             | $101.54\pm0.19$                                                   | 1.030381                 | $102.66\pm0.05$                                                   | 1.028581             | $103.58\pm0.12$                                                   | 1.024466             | $104.68\pm0.11$                                                   |
| 0.29722                                     | 1.040818             | $100.93\pm0.13$                                                   | 1.039362             | $102.04\pm0.13$                                                   | 1.037704                 | $103.16\pm0.13$                                                   | 1.03586              | $104.09\pm0.11$                                                   | 1.031661             | $104.98\pm0.21$                                                   |
| 0.39635                                     | 1.048271             | $101.43 \pm 0.18$                                                 | 1.046752             | $102.53 \pm 0.16$                                                 | 1.045041                 | $103.66 \pm 0.15$                                                 | 1.043152             | $104.58 \pm 0.23$                                                 | 1.038872             | $105.48 \pm 0.17$                                                 |
| 0.49522                                     | 1.054/88             | 101.88 ± 0.30                                                     | 1.053221             | 102.98 ± 0.25                                                     | 1.051461                 | 104.11 ± 0.23                                                     | 1.049527             | 105.04 ± 0.24                                                     | 1.045176             | $105.73 \pm 0.23$                                                 |
| $m_{\text{BaCl}_2} = 0.28388 \text{ mc}$    | 1.064172             | 100.40 + 0.00                                                     | 1062649              | 101 20 + 0 12                                                     | 1066024                  | 102 20 + 0 22                                                     | 1050046              | 102 28 1 0 25                                                     | 1.054661             | 104 67 + 0.25                                                     |
| 0.08911                                     | 1.004175             | $100.40 \pm 0.09$<br>100.96 $\pm 0.15$                            | 1.002048             | $101.39 \pm 0.12$<br>102.03 $\pm 0.15$                            | 1.060954                 | $102.39 \pm 0.32$<br>103.08 $\pm$ 0.16                            | 1.059040             | $103.28 \pm 0.33$<br>$104.01 \pm 0.12$                            | 1.054001             | $104.07 \pm 0.23$<br>$105.10 \pm 0.30$                            |
| 0.29779                                     | 1.079581             | $100.30 \pm 0.13$<br>$101.46 \pm 0.23$                            | 1.077940             | $102.05 \pm 0.13$<br>$102.54 \pm 0.12$                            | 1.000337                 | $103.00 \pm 0.10$<br>$103.58 \pm 0.11$                            | 1.00042              | $104.01 \pm 0.12$<br>$104.51 \pm 0.24$                            | 1.069922             | $105.19 \pm 0.50$<br>$105.39 \pm 0.25$                            |
| 0.39642                                     | 1.084764             | $101.96 \pm 0.30$                                                 | 1.083088             | $102.03 \pm 0.20$                                                 | 1.081233                 | $104.07 \pm 0.17$                                                 | 1.079214             | $105.01 \pm 0.11$                                                 | 1.074731             | $105.89 \pm 0.13$                                                 |
| 0.49579                                     | 1.093801             | $102.41\pm0.21$                                                   | 1.092064             | $103.49\pm0.18$                                                   | 1.090159                 | $104.53\pm0.08$                                                   | 1.088094             | $105.46\pm0.22$                                                   | 1.083527             | $106.34\pm0.18$                                                   |
| $m_{\rm BaCl_2} = 0.45658  {\rm mc}$        | ol kg <sup>-1</sup>  |                                                                   |                      |                                                                   |                          |                                                                   |                      |                                                                   |                      |                                                                   |
| 0.09964                                     | 1.104506             | $100.80\pm0.25$                                                   | 1.102786             | $101.82\pm0.32$                                                   | 1.100901                 | $102.83\pm0.23$                                                   | 1.098859             | $103.73\pm0.25$                                                   | 1.093027             | $105.09\pm0.06$                                                   |
| 0.19844                                     | 1.109352             | $101.46 \pm 0.12$                                                 | 1.107603             | $102.54 \pm 0.18$                                                 | 1.105681                 | $103.52 \pm 0.12$                                                 | 1.103607             | $104.46 \pm 0.13$                                                 | 1.099035             | $105.46 \pm 0.13$                                                 |
| 0.29744                                     | 1.116015             | $101.96 \pm 0.14$                                                 | 1.114209             | $103.04 \pm 0.16$                                                 | 1.112245                 | $104.02 \pm 0.11$                                                 | 1.110358             | $104.97 \pm 0.16$                                                 | 1.105/23             | $105.86 \pm 0.14$                                                 |
| 0.49498                                     | 1.127856             | $102.46 \pm 0.06$<br>$102.91 \pm 0.21$                            | 1.125972             | $103.94 \pm 0.09$<br>$103.99 \pm 0.12$                            | 1.123749                 | $104.97 \pm 0.03$<br>104.97 ± 0.22                                | 1.121563             | $105.40 \pm 0.19$<br>$105.91 \pm 0.24$                            | 1.117017             | $106.50 \pm 0.19$<br>$106.51 \pm 0.21$                            |
| <i>m</i> = 0.61992 mo                       | 1 ka-1               |                                                                   |                      |                                                                   |                          |                                                                   |                      |                                                                   |                      |                                                                   |
| 0.09970                                     | 1,138209             | $101.19 \pm 0.23$                                                 | 1,136329             | $102.18 \pm 0.25$                                                 | 1,134298                 | $103.16 \pm 0.28$                                                 | 1,132123             | $104.02 \pm 0.15$                                                 | 1.127421             | 105,54 + 0.19                                                     |
| 0.19903                                     | 1.144248             | $101.90 \pm 0.23$<br>$101.90 \pm 0.21$                            | 1.142324             | $102.10 \pm 0.23$<br>$103.05 \pm 0.32$                            | 1.139847                 | $104.07 \pm 0.16$                                                 | 1.137783             | $105.06 \pm 0.37$                                                 | 1.132991             | $105.95 \pm 0.11$                                                 |
| 0.29762                                     | 1.149951             | $102.40\pm0.16$                                                   | 1.149950             | $103.55\pm0.04$                                                   | 1.145898                 | $104.57\pm0.13$                                                   | 1.143665             | $105.56\pm0.13$                                                   | 1.138656             | $106.25\pm0.05$                                                   |
| 0.39697                                     | 1.155774             | $102.90\pm0.18$                                                   | 1.153772             | $104.05\pm0.11$                                                   | 1.151633                 | $105.06\pm0.21$                                                   | 1.149363             | $106.06\pm0.25$                                                   | 1.144459             | $106.65\pm0.13$                                                   |
| 0.49573                                     | 1.161533             | $103.35\pm0.09$                                                   | 1.160336             | $104.50\pm0.20$                                                   | 1.158176                 | $105.52\pm0.28$                                                   | 1.155657             | $106.51\pm0.19$                                                   | 1.150268             | $107.30\pm0.20$                                                   |
| $m_{\rm BaCl_2} = 0.89137  {\rm mo}$        | l kg <sup>-1</sup>   |                                                                   |                      |                                                                   |                          |                                                                   |                      |                                                                   |                      |                                                                   |
| 0.09957                                     | 1.195283             | $101.50\pm0.20$                                                   | 1.193785             | $102.51\pm0.39$                                                   | 1.192301                 | $103.41\pm0.35$                                                   | 1.191883             | $104.32\pm0.28$                                                   | 1.185489             | $105.88\pm0.11$                                                   |
| 0.19831                                     | 1.200582             | $102.30 \pm 0.14$                                                 | 1.198866             | $103.42 \pm 0.12$                                                 | 1.197745                 | $104.47 \pm 0.19$                                                 | 1.194375             | $105.42 \pm 0.16$                                                 | 1.190845             | $106.31 \pm 0.19$                                                 |
| 0.29764                                     | 1.205293             | $102.81 \pm 0.22$                                                 | 1.204150             | $103.92 \pm 0.15$                                                 | 1.203081                 | $104.97 \pm 0.22$                                                 | 1.203395             | $105.92 \pm 0.13$                                                 | 1.197241             | $106.81 \pm 0.20$                                                 |
| 0.39587                                     | 1.210292             | $103.30 \pm 0.13$<br>103.75 $\pm 0.10$                            | 1.20/902             | $104.41 \pm 0.20$<br>104.87 ± 0.26                                | 1.206765                 | $105.47 \pm 0.18$<br>$105.02 \pm 0.12$                            | 1.205298             | $106.42 \pm 0.20$<br>$106.87 \pm 0.00$                            | 1.200379             | $107.31 \pm 0.15$<br>$107.76 \pm 0.20$                            |
| 0.45540                                     | 1.213072             | $103.75 \pm 0.19$                                                 | 1.213413             | 104.07 ± 0.20                                                     | 1.213045                 | $103.52 \pm 0.15$                                                 | 1.210572             | 100.07 ± 0.09                                                     | 1.200043             | 107.70±0.29                                                       |

| Q      |
|--------|
| N      |
| 5      |
| ao     |
| e      |
| ā      |
| 1      |
| $\sum$ |
| L,     |
| er     |
| m      |
| 00     |
| hi     |
| m      |
| ici    |
| 7      |
| lc1    |
| a      |
| 4      |
| ~      |
| N      |
| 0      |
| 60     |
| 9      |
| ī      |
| $\sim$ |

| <b>1</b><br>F | T <b>able 2</b><br>Partial molar volu | mes $(V^0_{\varphi})$ and trans | fer partial molar volum | les ( $\Delta_{ m trs}V_{arphi}^0$ ) of MI ir | n aqueous MCl <sub>2</sub> solutio | ns at different temj | peratures. |         |
|---------------|---------------------------------------|---------------------------------|-------------------------|-----------------------------------------------|------------------------------------|----------------------|------------|---------|
|               |                                       | 1/0/31-1                        | A V0/31-1               | 1/0/31-1                                      | A 1/0/31-1                         | 1/0/31-1             | A V0/31-1  | 1/0/31- |

| m <sub>MCl2</sub> /mol kg <sup>-1</sup>                                  | $V_{\varphi}^0/\mathrm{cm}^3\mathrm{mol}^{-1}$                                                                           | $\Delta_{ m trs} V_{\varphi}^0/ m cm^3~mol^{-1}$                                                                 | $V_{\varphi}^0/\mathrm{cm}^3\mathrm{mol}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\Delta_{ m trs} V_{\varphi}^0/ m cm^3~mol^{-1}$                                                                 | $V_{\varphi}^0/\mathrm{cm}^3\mathrm{mol}^{-1}$                                                                             | $\Delta_{ m trs} V_{\varphi}^0/ m cm^3~mol^{-1}$                                                                 | $V_{\varphi}^0/\mathrm{cm}^3\mathrm{mol}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\Delta_{ m trs} V_{arphi}^0/{ m cm}^3~{ m mol}^{-1}$                                                            | $V_{\varphi}^0/\mathrm{cm}^3\mathrm{mol}^{-1}$                                                                             | $\Delta_{\rm trs} V_{\varphi}^0/{\rm cm}^3~{\rm mol}^{-1}$                                                       |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|                                                                          | 293.15 K                                                                                                                 |                                                                                                                  | 298.15 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  | 303.15 K                                                                                                                   |                                                                                                                  | 308.15 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  | 318.15 K                                                                                                                   |                                                                                                                  |
| H <sub>2</sub> O<br>0                                                    | $99.04\pm0.22$                                                                                                           | 0                                                                                                                | $100.13\pm0.26$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                | $101.17 \pm 0.31$                                                                                                          | 0                                                                                                                | $102.13\pm0.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                | $103.67\pm0.11$                                                                                                            | 0                                                                                                                |
| MgCl <sub>2</sub><br>0.09953<br>0.29436<br>0.48305<br>0.66604<br>0.93300 | $99.60 \pm 0.16$<br>$100.09 \pm 0.24$<br>$100.45 \pm 0.17$<br>$100.89 \pm 0.22$<br>$101.22 \pm 0.23$                     | $0.56 \pm 0.10$<br>$1.05 \pm 0.06$<br>$1.41 \pm 0.09$<br>$1.85 \pm 0.06$<br>$2.18 \pm 0.03$                      | $100.63 \pm 0.22 \\ 101.10 \pm 0.18 \\ 101.51 \pm 0.20 \\ 101.88 \pm 0.19 \\ 102.22 \pm 0.25 \\ 101.81 \pm 0.20 \\ 102.22 \pm 0.25 \\ 102.25 \\ 102.25 \\ 102.25 \\ 102.25 \\ 102.25 \\ 102.25 \\ 102.25 \\ 102.25 \\ 102.25 \\ 102.25 \\ 102.25 \\ 102.25 \\ 102.25 \\ 102.25 \\ 102.25 \\ 102.25 \\ 102.25 \\ 102.25 \\ 102.25 \\ 102.25 \\ 102.25 \\ 102.25 \\ 102.25 \\ 102.25 \\ 102.25 \\ 102.25 \\ 10$ | $0.50 \pm 01$<br>$0.97 \pm 0.08$<br>$1.38 \pm 0.06$<br>$1.75 \pm 0.07$<br>$2.09 \pm 0.09$                        | $101.62 \pm 0.28 \\ 102.11 \pm 0.21 \\ 102.47 \pm 0.23 \\ 102.87 \pm 0.26 \\ 103.17 \pm 0.24$                              | $0.45 \pm 0.03$<br>$0.94 \pm 0.10$<br>$1.30 \pm 0.08$<br>$1.70 \pm 0.05$<br>$2.00 \pm 0.07$                      | $102.51 \pm 0.09 \\ 103.03 \pm 0.17 \\ 103.38 \pm 0.08 \\ 103.75 \pm 0.21 \\ 104.05 \pm 0.16 \\ \label{eq:10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.38 \pm 0.09 \\ 0.90 \pm 0.01 \\ 1.25 \pm 0.10 \\ 1.62 \pm 0.03 \\ 1.92 + 0.02 \end{array}$   | $103.94 \pm 0.05$ $104.451 \pm 0.09$ $104.83 \pm 0.10$ $105.20 \pm 0.17$ $105.46 \pm 0.21$                                 | $0.27 \pm 0.06$<br>$0.78 \pm 0.02$<br>$1.16 \pm 0.01$<br>$1.53 \pm 0.06$<br>$1.79 \pm 0.10$                      |
| CaCl <sub>2</sub><br>0.09955<br>0.29303<br>0.48148<br>0.69410<br>0.93763 | $99.56 \pm 0.18 99.98 \pm 0.20 100.41 \pm 0.21 100.84 \pm 0.16 101 16 + 0 14$                                            | $0.52 \pm 0.04$<br>$0.94 \pm 0.02$<br>$1.37 \pm 0.01$<br>$1.80 \pm 006$<br>$2.12 \pm 008$                        | $100.58 \pm 0.22 \\ 101.03 \pm 0.18 \\ 101.44 \pm 0.20 \\ 101.85 \pm 0.18 \\ 102 19 \pm 0.17 \\ 102 19 \pm 0.17 \\ 103 19 \pm 0.17 \\ 104 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.17 \\ 105 10 + 0.1$                                                                                                                                                                                                                                 | $0.45 \pm 0.04$<br>$0.90 \pm 0.08$<br>$1.31 \pm 0.06$<br>$1.72 \pm 0.08$<br>$2.06 \pm 0.09$                      | $101.58 \pm 0.23 \\ 102.03 \pm 0.25 \\ 102.45 \pm 0.29 \\ 102.84 \pm 0.26 \\ 1031 \pm 0.24$                                | $0.41 \pm 0.08$<br>$0.86 \pm 006.$<br>$1.28 \pm 0.02$<br>$1.67 \pm 0.05$<br>$1.93 \pm 0.07$                      | $102.46 \pm 0.21 \\ 102.97 \pm 0.16 \\ 103.31 \pm 0.23 \\ 103.72 \pm 0.20 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.09 \\ 104.02 + 0.00 \\ 104.02 + 0.00 \\ 104.02 + 0.00 \\ 104.02 + 0.00 \\ 104.02 + 0.00 \\ 104.02 + 0.00 \\ 104.02 + 0.00 \\ 104.02 + 0.00 \\ 104.02 + 0.00 \\ 104.02 + 0.00 \\ 104.02 + 0.00 \\ 104.02 + 0.00 \\ 104.02 + 0.00 \\ 104.02 + 0.00 \\ 104.02 + 0.00 \\ 104.02 + 0.00 \\ 104.02 + 0.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.00 \\ 104.0$ | $0.33 \pm 0.0$<br>$0.83 \pm 0.02$<br>$1.18 \pm 0.05$<br>$1.59 \pm 0.02$<br>$1.89 \pm 0.09$                       | $103.89 \pm 0.20$<br>$104.38 \pm 0.05$<br>$104.79 \pm 0.12$<br>$105.14 \pm 0.15$<br>$105 43 \pm 0.19$                      | $0.22 \pm 0.09$<br>$0.71 \pm 0.06$<br>$1.12 \pm 0.01$<br>$1.47 \pm 0.04$<br>$1.76 \pm 0.08$                      |
| SrCl <sub>2</sub><br>0.09897<br>0.28887<br>0.46906<br>0.64118<br>0.91565 | $\begin{array}{c} 99.48 \pm 0.31 \\ 99.96 \pm 0.20 \\ 100.39 \pm 0.19 \\ 100.78 \pm 0.26 \\ 101.13 \pm 0.19 \end{array}$ | $\begin{array}{c} 0.44 \pm 0.09 \\ 0.92 \pm 0.02 \\ 1.35 \pm 0.03 \\ 1.74 \pm 0.04 \\ 2.09 \pm 0.03 \end{array}$ | $\begin{array}{c} 100.53 \pm 0.23 \\ 100.99 \pm 0.31 \\ 101.41 \pm 0.19 \\ 101.79 \pm 0.24 \\ 102.15 \pm 0.34 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 0.38 \pm 0.03 \\ 0.86 \pm 0.05 \\ 1.28 \pm 0.07 \\ 1.66 \pm 0.02 \\ 2.02 \pm 0.08 \end{array}$ | $\begin{array}{c} 101.51 \pm 0.28 \\ 102.00 \pm 0.26 \\ 102.41 \pm 0.35 \\ 102.79 \pm 0.30 \\ 103.09 \pm 0.19 \end{array}$ | $\begin{array}{c} 0.34 \pm 0.03 \\ 0.83 \pm 0.05 \\ 1.24 \pm 0.04 \\ 1.62 \pm 0.01 \\ 1.92 \pm 0.12 \end{array}$ | $\begin{array}{c} 102.42 \pm 0.09 \\ 102.90 \pm 0.16 \\ 103.28 \pm 0.13 \\ 103.69 \pm 0.21 \\ 103.99 \pm 0.23 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.29 \pm 0.09 \\ 0.77 \pm 0.02 \\ 1.15 \pm 0.05 \\ 1.56 \pm 0.03 \\ 1.86 \pm 0.05 \end{array}$ | $\begin{array}{c} 103.85 \pm 0.20 \\ 104.32 \pm 0.13 \\ 104.76 \pm 0.19 \\ 105.10 \pm 0.08 \\ 105.42 \pm 0.07 \end{array}$ | $\begin{array}{c} 0.18 \pm 0.09 \\ 0.65 \pm 0.02 \\ 1.09 \pm 0.08 \\ 1.43 \pm 0.03 \\ 1.75 \pm 0.04 \end{array}$ |
| BaCl <sub>2</sub><br>0.09824<br>0.28388<br>0.45658<br>0.61882<br>0.89137 | $\begin{array}{c} 99.42 \pm 0.19 \\ 99.94 \pm 0.26 \\ 100.35 \pm 0.30 \\ 100.75 \pm 0.22 \\ 101.08 \pm 0.16 \end{array}$ | $\begin{array}{c} 0.38 \pm 0.03 \\ 0.90 \pm 0.04 \\ 1.31 \pm 0.08 \\ 1.71 \pm 0.00 \\ 2.04 \pm 0.06 \end{array}$ | $100.47 \pm 0.23 \\ 100.94 \pm 0.19 \\ 101.38 \pm 0.30 \\ 101.78 \pm 0.25 \\ 102.11 \pm 0.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 0.32 \pm 0.03 \\ 0.83 \pm 0.07 \\ 1.25 \pm 0.04 \\ 1.65 \pm 0.01 \\ 1.99 \pm 0.08 \end{array}$ | $\begin{array}{c} 101.49 \pm 0.36 \\ 101.95 \pm 0.28 \\ 102.38 \pm 0.40 \\ 102.76 \pm 0.22 \\ 103.04 \pm 0.19 \end{array}$ | $\begin{array}{c} 0.28 \pm 0.05 \\ 0.80 \pm 0.03 \\ 1.21 \pm 0.09 \\ 1.59 \pm 0.09 \\ 1.87 \pm 0.12 \end{array}$ | $102.40 \pm 0.20 \\ 102.85 \pm 0.13 \\ 103.30 \pm 0.09 \\ 103.65 \pm 0.16 \\ 103.96 \pm 0.22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.25 \pm 0.02 \\ 0.74 \pm 0.05 \\ 1.11 \pm 0.09 \\ 1.52 \pm 0.02 \\ 1.81 \pm 0.04 \end{array}$ | $\begin{array}{c} 103.82\pm0.05\\ 104.35\pm0.16\\ 104.72\pm0.20\\ 105.08\pm0.19\\ 105.39\pm0.23 \end{array}$               | $\begin{array}{c} 0.15 \pm 0.06 \\ 0.68 \pm 0.05 \\ 1.05 \pm 0.09 \\ 1.41 \pm 0.02 \\ 1.72 \pm 0.12 \end{array}$ |

to better than  $\pm 0.001$  °C. The precision of the densimeter was  $\pm 1 \times 10^{-6}$  g cm<sup>-3</sup>. The densimeter was calibrated with twice distilled water and dried air. The average of triplicate measurements was as the final result.

#### 3. Results and discussions

#### 3.1. The apparent molar volume

Apparent molar volumes ( $V_{\varphi}$ ) of MI in pure water were calculated from the density values using the equation [14]:

$$V_{\varphi} = M_{\rm b}/\rho - 1000(\rho - \rho^0)/(m_{\rm b}\rho\rho^0) \tag{1}$$

where  $M_{\rm b}$  is the molar mass of the solute (MI),  $m_{\rm b}$  is the molality of MI in solution;  $\rho^0$  and  $\rho$  are the densities of the pure water and solution.

In ternary systems  $MI + MCl_2 +$  water, the apparent molar volumes of MI can be calculated by using

$$V_{\varphi} = M_{\rm b}/\rho - (1000 + M_{\rm a}m_{\rm a})(\rho - \rho^{0'})/(m_{\rm b}\rho\rho^{0'}) \tag{2}$$

where  $m_a$  and  $m_b$  are the molalities defined per kilogram of pure water respectively for MCl<sub>2</sub> and MI in an aqueous solution;  $\rho$  is the densities of the ternary aqueous solution and  $\rho^{0'}$  is the density of MCl<sub>2</sub> + water binary solution. The densities and apparent molar volumes of MI are presented in Table 1.

#### 3.2. The partial molar volume and transfer partial molar volume

Table 1 shows the apparent molar volumes of MI ( $V_{\varphi}$ ) were a good linear function of molality of MI over the concentration range studied, so partial molar volumes at infinite dilutions ( $V_{\varphi}^{0}$ ) were obtained by least squares fitting to the equation:

$$V_{\varphi} = V_{\varphi}^0 + S_{\rm v} m_{\rm b} \tag{3}$$

where  $S_v$  is the experimental slope, and  $m_b$  is the molality of the solute (MI) in mixtures. From Table 2 we could found that the  $V_{\varphi}^0$  (100.13 ± 0.26) cm<sup>3</sup> mol<sup>-1</sup> (298.15 K), (102.13 ± 0.18) cm<sup>3</sup> mol<sup>-1</sup> (308.15 K), (103.67 ± 0.11) cm<sup>3</sup> mol<sup>-1</sup> (318.15 K) are close to the Ref. [15] (101.8 ± 1.0) cm<sup>3</sup> mol<sup>-1</sup> (298.15 K), (103.3 ± 1.1) cm<sup>3</sup> mol<sup>-1</sup> (308.15 K), (104.5 ± 1.2) cm<sup>3</sup> mol<sup>-1</sup> (318.15 K). Then the correspond-

ing transfer parameters can be calculated as defined by

$$\Delta_{\rm trs} V_{\varphi}^{0} \{ \text{water to } \mathsf{MCl}_{2}(\mathsf{aq}) \} = V_{\varphi}^{0} \{ \text{in } \mathsf{MCl}_{2}(\mathsf{aq}) \} - V_{\varphi}^{0} \{ \text{in } \text{water} \}$$
(4)

The partial molar volumes and the transfer partial molar volumes of MI at infinite dilutions with the literature method [16] were calculated and summarized in Table 2.

#### 3.3. The voluminal interaction coefficient

Friedman and Krishnan [17] considered that the thermodynamic transfer properties of solutes from solutions of pure water as solvent to aqueous electrolytic solutions could be explained in terms of the cosolutes interaction. At infinite dilutions, the interactions between molecules of the diluted solutes can be neglected, and then the transfer partial molar volume of the diluted nonelectrolyte can be expressed as

$$\Delta_{\rm trs} V_{\varphi}^0 \{\text{water to MCl}_2(\mathrm{aq})\} = 2V_{\rm ab}m_{\rm a} + 3V_{\rm aab}m_{\rm a}^2 + 4V_{\rm aaab}m_{\rm a}^3 + \cdots$$
(5)

where  $V_{ab}$  is the volumetric pair interaction coefficient and  $V_{aab}$ , and  $V_{aaab}$  are the ternary and quaternary interaction coefficients, respectively.  $m_a$  is the molalities of MCl<sub>2</sub>. The data in Table 2 were fitted to Eq. (5) using a multiple regression procedure and the interaction coefficients of MI with MCl<sub>2</sub> in the aqueous solutions were obtained (Table 3).

## 3.4. The partial molar volume at infinite dilution and the transfer partial molar volume

Table 2 clearly demonstrates that both infinite dilutions  $V_{\varphi}^0$  and  $\Delta_{trs}V_{\varphi}^0$  are positive and become more positive with the increase of MCl<sub>2</sub> molality, which can be verified by the variation tendency of  $V_{\varphi}^0$  and  $\Delta_{trs}V_{\varphi}^0$  from Figs. 1 and 2. This tendency can be explained using the cosphere overlap model [18]. For apolar species, the hydrophobic hydration gives a positive volume contribution. Thus, the overlap of two hydrophobic hydration cospheres releases some water molecules from the solvation sphere to the bulk, which gives rise to a negative change in volume. In contrast, for polar species, the volume of water molecules is smaller in the solvate sphere due to (i) the effect of electrostriction and (ii) the decrease of hydrogen-bonded network with water molecules in the sol-

Table 3

The voluminal interaction coefficients of MI in aqueous MCl<sub>2</sub> solutions at different temperatures.

| T/K      | М                 | $V_{\rm ab}/{ m cm^3~mol^{-2}~kg^{-1}}$ | $V_{\rm aab}/{\rm cm^3~mol^{-2}~kg^{-1}}$ | $V_{\rm aaab}/{ m cm^3~mol^{-2}~kg^{-1}}$ | R <sup>2</sup> | S.D.   |
|----------|-------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|----------------|--------|
| 293.15 K | MgCl <sub>2</sub> | 1.0412                                  | 0.3314                                    | -0.3003                                   | 0.9991         | 0.0531 |
|          | CaCl <sub>2</sub> | 1.6638                                  | -0.7902                                   | 0.1787                                    | 0.9998         | 0.0646 |
|          | SrCl <sub>2</sub> | 1.0617                                  | 0.4825                                    | -0.4188                                   | 0.9995         | 0.0143 |
|          | BaCl <sub>2</sub> | 1.2782                                  | 0.2689                                    | -0.3380                                   | 0.9992         | 0.0303 |
| 298.15 K | MgCl <sub>2</sub> | 1.1438                                  | 0.1714                                    | -0.2342                                   | 0.9996         | 0.0124 |
|          | CaCl <sub>2</sub> | 1.7877                                  | -0.9466                                   | 0.2348                                    | 0.9993         | 0.0515 |
|          | SrCl <sub>2</sub> | 1.1264                                  | 0.3396                                    | -0.3407                                   | 0.9995         | 0.0139 |
|          | BaCl <sub>2</sub> | 1.2143                                  | 0.3659                                    | -0.3792                                   | 0.9991         | 0.0237 |
| 303.15 K | MgCl <sub>2</sub> | 1.1524                                  | 0.1479                                    | -0.2328                                   | 0.9994         | 0.0423 |
|          | CaCl <sub>2</sub> | 1.7911                                  | -0.9228                                   | 0.2113                                    | 0.9991         | 0.0563 |
|          | SrCl <sub>2</sub> | 1.1244                                  | 0.3881                                    | -0.3986                                   | 0.9992         | 0.0226 |
|          | BaCl <sub>2</sub> | 1.2787                                  | 0.3017                                    | -0.3966                                   | 0.9996         | 0.0269 |
| 308.15 K | MgCl <sub>2</sub> | 1.4416                                  | -0.2844                                   | -0.0404                                   | 0.9995         | 0.0441 |
|          | CaCl <sub>2</sub> | 1.8536                                  | -1.0241                                   | 0.2538                                    | 0.9998         | 0.0089 |
|          | SrCl <sub>2</sub> | 1.1205                                  | 0.3989                                    | -0.4083                                   | 0.9999         | 0.0065 |
|          | BaCl <sub>2</sub> | 1.1995                                  | 0.3717                                    | -0.4210                                   | 0.9999         | 0.0042 |
| 318.15 K | MgCl <sub>2</sub> | 1.2998                                  | 0.0106                                    | -0.2083                                   | 0.9993         | 0.0343 |
|          | CaCl <sub>2</sub> | 2.0049                                  | -1.1778                                   | 0.30011                                   | 0.9993         | 0.0491 |
|          | SrCl <sub>2</sub> | 1.1538                                  | 0.3126                                    | -0.3558                                   | 0.9999         | 0.0070 |
|          | BaCl <sub>2</sub> | 1.5525                                  | -0.2837                                   | -0.0606                                   | 0.9992         | 0.0328 |



**Fig. 1.** The variation tendency of MI's partial molar volumes  $V_{\varphi}^0$  in aqueous MCl<sub>2</sub> (M = Mg, Ca, Sr, Ba) solution at different temperatures.

vate sphere transferring to the bulk [19]. So the overlap of two hydrophilic hydration cospheres releases some water molecules to the bulk giving rise to a positive change in volume. The influence of hydrophilic species on the hydrophobic hydration sphere of apolar species gives a negative volume effect. The changes in volume due to various types of abovementioned interactions were demonstrated in cosphere overlap model.

#### 3.5. Size effect of cation

For different cosolutes, under the same positive charge concentrations of MCl<sub>2</sub>, the value of  $V_{\varphi}^0$  at infinite dilution and that of  $\Delta_{\rm trs} V_{\varphi}^0$  increase following the order MgCl<sub>2</sub> > CaCl<sub>2</sub> > SrCl<sub>2</sub> > BaCl<sub>2</sub>. This phenomenon might be explained as follows: bivalent alkaline earth metal ions can partly destroy the secondary hydration layer and affect the primary hydration layer through the relatively strong interaction between the salt and MI molecule due to their electric charge. This makes it easier to partly break the hydration layer around each polylol molecule. For the different aqueous MCl<sub>2</sub> solutions with the same anion Cl<sup>-</sup>, the differences arise from the influences of cations. Mg<sup>2+</sup>, Ca<sup>2+</sup>, Sr<sup>2+</sup> and Ba<sup>2+</sup> have the same



**Fig. 2.** The variation tendency of MI's transfer partial molar volumes  $\Delta_{trs} V_{\phi}^0$  in aqueous MCl<sub>2</sub> (M = Mg, Ca, Sr, Ba) solution at different temperatures.

charge, but Ba<sup>2+</sup> has the longest ionic radius, and Mg<sup>2+</sup> has the shortest ionic radius. The longer the radius (of naked cation), the weaker the interaction between the cation and the dipolar bonds of MI molecule. Therefore, the ability to destroy the hydration layer of the polylol molecule should vary as Mg<sup>2+</sup> > Ca<sup>2+</sup> > Sr<sup>2+</sup> > Ba<sup>2+</sup>, which lead to  $V_{\varphi}^{0}$  and  $\Delta_{trs}V_{\varphi}^{0}$  of MI are the biggest for aqueous MgCl<sub>2</sub> solution, and the corresponding ones in aqueous BaCl<sub>2</sub> solution are the smallest. Therefore, it can speculated that the positive values of  $V_{\varphi}^{0}$  and  $\Delta_{trs}V_{\varphi}^{0}$  are mainly the result of interaction between the ions (M<sup>2+</sup>, Cl<sup>-</sup>) and the dipolar bonds of MI molecule.

#### 3.6. Temperature effect

Earlier reports clarified that group contributions of–OH [20] in volume increase with ascent of temperature. On the other hand, an increase in temperature weakens the electrostriction. The both factors make the  $V_{\varphi}^{0}$  increase with temperature increasing.

Table 2 also demonstrates that  $V^0_{\varphi}$  of MI increase with the ascent of temperature, however, anomalies that  $\Delta_{trs}V^0_{\varphi}$  slightly decrease with increase of temperature was also observed. The reason is that  $V_{\varphi}$  of MI is increase in both water and the aqueous solutions of MCl<sub>2</sub> with the increasing temperature, but in the aqueous solutions of MCl<sub>2</sub> the hydrophobic hydration gives more negative volume contribution to the whole system than in the water, so it induces both  $V_{\varphi}$  and  $V^0_{\varphi}$  of MI increase more in water than that do in the aqueous solutions of MCl<sub>2</sub>, and makes the increase more in water than that do in the aqueous solutions of MCl<sub>2</sub>, At last, it leads the  $\Delta_{trs}V^0_{\varphi}$ decrease a little with the temperature increasing.

#### 3.7. The voluminal interaction coefficient

The  $V_{ab}$ ,  $V_{aab}$ ,  $V_{aaab}$  are volumetric interaction coefficients [21] which determine the volume changes caused by the interaction modes of MI with MCl<sub>2</sub> in the molecular ratio 1:1, 1:2, 1:3, respectively. By observing the data in Table 3, it can be seen that the values of  $V_{ab}$  are always obviously larger than those of  $V_{aab}$  and  $V_{aaab}$  in aqueous MCl<sub>2</sub> solution at the experimental temperatures. So value of  $V_{\phi}^{0}$  is in direct ratio with  $m_{a}$  in low concentration range of MCl<sub>2</sub> and the primary interaction mode of MI molecules with MCl<sub>2</sub> is approximately 1:1. If the concentration of MCl<sub>2</sub> is not very low, the multiple interactions, i.e. one MI molecule simultaneously interacts with two or more MCl<sub>2</sub> units become evident.

#### 4. Conclusions

Apparent molar volumes  $(V_{\varphi})$  of MI in aqueous solutions of MCl<sub>2</sub> have been obtained from densities at different temperatures (range from 293.15 K to 318.15 K) measured with a vibrating-tube densimeter. These data have been used to deduce partial molar volumes  $(V_{\varphi}^0)$  at infinite dilution and transfer partial molar volumes  $(\Delta_{trs}V_{\varphi}^0)$  of MI from water to different salt solutions at different concentrations. The results indicate that the longer the radius of naked cation  $(M^{2+})$ , the larger the contribution of MCl<sub>2</sub> made to the partial volume  $(V_{\varphi}^0)$ of MI, and enhancement of temperature can enlarge  $V_{\varphi}^0$  and slightly reduce  $\Delta_{trs}V_{\varphi}^0$ . The change tendency of volume property of MI can be explained in the light of interaction between the charged centers of MI and ions as well as solvent effect.

#### Acknowledgements

The authors are grateful to the National Natural Science Foundation of China for support (No. 20773059).

#### References

- M. Einicker-Lamas, M.T.C. Nascimento, C.A. Masuda, M.M. Oliveira, C. Caruso-Neves, Exp. Parasitol. 117 (2007) 171–177.
- [2] K. Lahjouji, R. Aouameur, P. Bissonnette, M.J. Coady, D.G. Bichet, E.Y. Lapointe, Biochim. Biophys. Acta 1768 (2007) 1154–1159.
- [3] A. Kiyoshima, K. Kudo, N. Nishida, N. Ikeda, Forensic Sci. Int. 125 (2002) 127-133.
- [4] A. Kiyoshima, K. Kudo, Y. Goto, S. Tobimatsu, N. Ikeda, Legal Med. 6 (2004) 117-124.
- [5] M. Wick, Y. Nagatomo, F. Prielmeier, J. Frahm, Stroke 26 (1995) 1930-1934.
- [6] M. Nonaka, T. Yoshimine, E. Kohmura, A. Wakayama, T. Yamashita, T. Hayakawa, J. Neurol. Sci. 157 (1998) 25–30.
- [7] M. Saori, R. Michael, Q. Francoise, J.B. Hans, Plant Sci. 166 (2004) 245–252.
- [8] M.B. Blodgett, S.P. Ziemer, B.R. Brown, T.L. Niederhauser, S.M. Woolley, J. Chem.
- Thermodynamics 39 (2007) 627–644. [9] M. Liu, D.Z. Sun, R.S. Lin, X.K. Qu, X. Wang, J. Chem. Eng. Data 52 (2007) 783–788.

- [10] D.Z. Sun, W.Q. Zheng, X.K. Qu, L. Li, J. Chem. Eng. Data 52 (2007) 898-901.
- [11] W.Q. Zheng, D.Z. Sun, X.K. Qu, Acta Phys.-Chim. Sin. 22 (2006) 1277-1280.
- [12] M.Z. Song, L.Y. Zhu, X.L. Wei, S.B. Wang, D.Z. Sun, J. Chem. Eng. Data 50 (2005) 769-773.
- [13] L. Li, X.M. Qiu, D.Z. Sun, F. Liu, Y.Y. Di, B.L. Yin, Acta Phys.-Chim. Sin. 22 (2006) 215–220.
- [14] Y. Lu, X.F. Wang, G.J. Su, J.S. Lu, Thermochim. Acta 406 (2003) 233-239.
- [15] M.B. Blodgett, S.P. Ziemer, B.R. Brown, T.L. Niederhauser, E.M. Woolley, J. Chem. Thermodynamics 39 (2007) 627–644.
- [16] A.W. Hakin, M.M. Duke, S.A. Klassen, R.M. McKay, K.E. Preuss, Can. J. Chem. 72 (1994) 362.
- [17] H.L. Friedman, C.V. Krishnan, J. Sol. Chem. 2 (1973) 119–140.
- [18] H.S. Frank, M.W. Evans, J. Chem. Phys. 13 (1945) 507.
- [19] G.M. Lin, P.F. Bian, R.S. Lin, J. Chem. Thermodynamics 38 (2006) 144-151.
- [20] L. Xu, J. Yu, R.S. Lin, Acta Phys. Chim. Sin. 20 (2004) 55–59.
- [21] A.K. Mishra, J.C. Ahluwalia, J. Chem. Soc., Faraday Trans. 1 (77) (1981) 1469-1483.