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a b s t r a c t

A method to estimate solid vapor pressures (PS) for organic and inorganic compounds using an artificial
neural network (ANN) is presented. The proposal consists of training an ANN with PS data of a defined
group of substances as a function of temperature, including as learning variable five physicochemical
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properties to discriminate among the different substances. The following properties were considered:
molecular mass, dipole moment, temperature and pressure in the triple point (upper limit of the subli-
mation curve), and the limiting value PS → 0 as T → 0 (lower limit of the sublimation curve). 152 substances
(1520 data points) have been used to train the network. Then, the solid vapor pressures of 60 other solids
(600 data points) have been predicted and results compared to experimental data from the literature.

propo
e use
roperty estimation
hermodynamic properties

The study shows that the
vapor pressures and can b

. Introduction

The pressure exerted by a vapor in equilibrium with the solid
f the same substance is a good definition of solid vapor pressure
PS). All solids have a tendency to evaporate to a gaseous form so a
ubstance with easily evaporates is referred to as volatile, and the
ressure exerted by a vapor in equilibrium with the solid of the
ame substance is called solid vapor pressure.

A new trend in chemical applications is the use of supercriti-
al solvents either in purifying operations on mixtures of complex
harmaceutical molecules or in stripping on polluted stuff. The
ptimization of this process can be performed only if the depen-
ence of the solubility both on pressure and temperature can be
ccurately described and for this purpose, the solid vapor pres-
ure is considered as a key property [1]. This importance of the
olid vapor pressure is apparent when writing the equations for
he solubility of a solid in the supercritical phase [2]:

2 = PS
2

P�2
exp

[
VS

2 (P − PS
2)

RT

]
(1)

This equation is derived from the equifugacity condition

etween the solid and the fluid phase, under the assumptions that
he solubility of the solvent in the solid phase is negligible, the solid
s incompressible and the saturated vapor of the pure solid solute at
ublimation behaves like an ideal gas. PS

2 is the solid vapor pressure
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d with confidence for any substances.
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of the pure substance, VS
2 is the solid molar volume, all at the tem-

perature T and ϕ2 is the fugacity coefficient of solid at the pressure
P.

The solid vapor pressure is relatively small as compared to vapor
pressures of liquids at room temperature. However, although small,
the solid vapor pressure is needed in applications such as extraction
of solids, in particular substances of biological origin, using high
pressure gases [3,4]. Considering the valuable information which
may be derived either directly or indirectly from sublimation data,
it is rather surprising that there is so little quantitative informa-
tion available in the literature on the sublimation process [5]. In
addition, experimental techniques cannot in many cases be used to
accurately obtain the solid vapor pressure [6–8].

For some substances, generalized correlations based on the
molecular mass (M) and the melting temperature (Tf) have been
proposed [9]. Also, to directly estimate the solid vapor pressure,
extrapolation of Antoine type equations have been used by Iwai et
al. [10] and by Trabelsi et al. [11], while the Lee-Kesler equation have
been employed by Nanping et al. [12]. Group contribution methods
were applied by Coutsikos et al. [2] for predicting the vapor pres-
sures of a variety of organic solids. Goodman et al. [13] obtained
solid vapor enthalpy from functional groups and molecular param-
eters. From these data they obtained solid vapor pressure using the
Clausius–Clapeyron equation. Some researchers have estimated the
solid vapor pressure of solid from solubility data [14–17]. Nanping

et al. [12] proposed an equation for the solid vapor pressure at a
given temperature in terms of the vapor pressure of the gas over
the liquid, the solid vapor enthalpy and the melting temperature.
Neau et al. [1] proposed to estimate the solid vapor pressure using
the Peng–Robinson equation of state.

http://www.sciencedirect.com/science/journal/00406031
http://www.elsevier.com/locate/tca
mailto:jlazzus@dfuls.cl
dx.doi.org/10.1016/j.tca.2009.02.001
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Nomenclature

ANN artificial neural network
b bias of the neurons
f(N) transfer function of the neural network
M molecular weight
N inputs of the neural network
PS solid vapor pressure
PTP triple point pressure
T absolute temperature
Tf melting temperature
TTP triple point temperature
w weight of the neural network
y output of the neural network

Greek letters
� deviation
� dipole moment

Subscripts
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lit literature value

Property estimation procedures are very important in the
hysico-chemical field for development of mathematical mod-
ls, since design, optimization and advanced control of processes
epend on model parameter values obtained from experimental
ata. The relationship between the physical and thermodynamic
roperties is highly non-linear, and consequently an artificial neural
etwork (ANN) can be a suitable alternative to model the underlying
hermodynamic properties [18].

Although much has been written and published on the basics of
rtificial neural network (ANN) and on applications to a variety of
roblems. The use of ANN to correlate and predict properties such as
oiling point, critical temperature, critical pressure, vapor pressure,
eat capacity, enthalpy of solid vapor, heat of vaporization, and den-
ity, among others, have been thoroughly reviewed by Taskinen and
liruusi [19]. However, no mention about solid vapor pressure pre-
ictions is done by these authors and more recent literature shows
o applications on this.

In the method developed in this work, solid vapor pressure
ata at several temperatures (T) were used to train a neural net-
ork. To distinguish between the different substances considered

n this study, so the net can discriminate and learn in optimum
orm, the following properties were used: the molecular mass M
size), the dipole moment � in debye (polarity), the triple point
emperature TTP in Kelvin and the triple point pressure PTP in
ascal (upper end of the solid vapor pressure curve), and the lim-
ting value PS → 0 as T → 0 (lower end of the solid vapor pressure
urve).

. Computational method

Many models of neural networks have been used in the estimate
f thermodynamic properties [18–22]. In this work a feedforward
ackpropagation neural network was used, which is very effective
o represent non-linear relationships among variables. The network
rogrammed with the software Matlab, consists on a multilayer
etwork, in which the flow of information spreads forward through

he layers while the propagation of the error is back. In this process,
he network uses some factors called “weights” (wi) to quantify
he influence of each fact and of each variable. There are two main
tates in the operation of a neural network: the learning and the
alidation. The learning or training is the process for which a neural
cta 489 (2009) 53–62

network modifies the weights in answer to an entrance information
[18].

The steps to calculate the output parameter (PS), using the input
parameters, are the following ones:

The net inputs are calculated (N) for the hidden neurons coming
from the inputs neurons. For a hidden neuron:

Nh
j =

n∑
i

wh
ijpi + bh

j (2)

where the p corresponds to the vector of the inputs of the training, j
is the hidden neuron, wij is the weight of the connection among the
input neurons with the hidden layer, and the term bj corresponds
to the bias of the neuron j of the hidden layer, reached in its acti-
vation. Starting from these inputs the outputs are calculated (y) of
the hidden neurons, using a transfer function fh associated to the
neurons of this layer.

yh
j = f h

j

(
n∑
i

wh
ijpi + bh

j

)
(3)

Similar calculations are carried out to obtain the results of each
neuron of the following layer until the output layer.

To minimize the error the transfer function f it should be dif-
ferentiable. In the net two types of transfer function were used:
the lineal function f(Njk) = (Njk) and the hyperbolic tangent function
(tansig) defined by the equation:

f (Njk) = eNjk − e−Njk

eNjk + e−Njk
(4)

All the neurons of the network have an associate activation value
for a given input pattern, the algorithm continues finding the error
that is presented for each neuron, except those of the input layer.
After finding the value of the gradient of the error the weights of
network are actualized, for all layers.

This process repeats for the total number of patterns to training,
for a successful process the objective of the algorithm is to mod-
ernize all the weight and bias of the neural network minimizing
the total mean squared error. Fig. 1 presents a block diagram of the
program developed.

The most basic architecture normally used for this type of appli-
cation involves a feed-forward backpropagation neural network
consisting of three or four layers [19]. There is no specific approach
to determine the number of neurons of the hidden layer, many alter-
native combinations are possible. The optimum number of neurons
was determined by adding neurons in systematic form and evaluat-
ing the average absolute deviations of the sets during the learning
process. Fig. 2 shows this methodology.

3. Database used

In this study, 1520 data points of 152 substances (10 points for
each substances), were used to train the network and then values of
solid vapor pressures of 60 substances (600 data points), not used
in the training process, were predicted. To distinguish between the
different substances considered in this study, so the net can dis-
criminate and learn in optimum form, the following properties were
used: molecular mass M (size), dipole moment � in debye (polar-
ity), the triple point temperature TTP in Kelvin and the triple point
pressure PTP in Pascal (upper end of the sublimation curve), and
the limiting value PS → 0 as T → 0 (lower end of the sublimation

curve). This last condition adds an interesting desirable condition
for the network to learn and has been discussed in detail by Diu
et al. [23], based on purely thermodynamic grounds these authors
showed that the solid vapor curve reaches the origin in the T–PS

plane, with a quasi-universal behavior. In other works based on
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Fig. 1. Flow diagram for the AN

eural networks, the inclusion of the dipole moment proved to be
articularly useful in distinguishing isomers [21,22]. All the input
arameters were selected arbitrarily. Molecular mass and dipole
oment were chosen to characterize the different molecules. The
olecular mass has been used previously to estimate sublimation

roperties [9]. The dipole moment has been used to predict vapor
ressure [24]. Both properties have also been used recurrently in
pplications QSPR [25]. The other properties were used to char-
cterize the sublimation curve of each substance [1,13,23]. All 212
ubstances (163 organics and 49 inorganics), and the properties of
nterest (M, �, TTP, PTP) are listed in Table 1. This table also shows the
ange of temperature and the range of solid vapor pressure of the
ata used. These values are of especial importance to verify that an
cceptable range of temperature is covered in the study and to see
he order of magnitude of the solid vapor pressure. In other works
or estimating the solid vapor pressure [1,2], the authors compare

heir models with a great number of experimental data points for
ifferent substances. The problem is that the reliability of these
xperimental data is never established. Uncertainties are not given
or any of the experimental data, which makes it impossible to inter-
ret the deviations between the models and the experimental data.
gram developed for this work.

This is especially troubling given the history of unreliable experi-
mental data that have been collected for the sublimation curve [5].
It would be much more useful and productive to select only the best
experimental data sets (with well established uncertainties), and to
use these data sets to develop and test models. In this work the data
were taken from different sources: all the properties of interest (M,
�, TTP, PTP) and the solid vapor pressure data of 179 substances were
taken from the DIPPR database [26] that includes estimated uncer-
tainties for the experimental data, and only for 33 substances the
solid vapor pressure data were taken from the Handbook of Chem-
istry and Physics [27], that has been used for similar applications
[2,28]. Only ten values that cover the total range of the solid vapor
pressure of each substance were taken from ranges published in
these databases [26,27].

As seen in Table 1 both the temperature and the solid vapor
pressure cover wide ranges, going from 11 to 4000 (K) and 0.001

to ≈4000000 (Pa). Examples of this wide range of temperatures
and pressures that the ANN must treat for training and prediction
are the high values of solid vapor pressure (325–100000 Pa) at low
temperatures (130–192 K) for acetylene; or at high temperatures
(1728–2175 K) and low pressures (0.002–2.5 Pa) for vanadium; or
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Table 1
Substances and properties used in the Neural Network model and deviations during training and prediction.

Substance Propertiesa Deviations

No. Formula Name M � (D) TTP (K) PTP (Pa) �TS (K) �PS (Pa) %�PS
min

%�PS
max %�PS |%�PS|

Training set
1 Ag Silver 107.9 0.000 1234.0 0.2 1034–1224 0.001–0.2 2.3 11.4 0.2 6.1
2 AlCl3 Aluminum chloride 133.3 2.030 465.7 233000.0 373–466 137–228750 1.3 14.5 0.4 7.1
3 AsH3 Arsine 77.9 0.201 156.2 2985.2 131–155 134–2679 0.5 19.0 −1.8 8.2
4 Br2 Bromine 159.8 0.000 265.9 5853.4 169–266 0.05–6277 0.2 7.3 1.1 3.8
5 C Carbon 12.0 0.000 4530.0 10436000.0 2300–4000 0.002–53204 0.1 4.7 0.1 2.5
6 Ca Calcium 40.1 0.000 1115.0 208.9 700–1112 0.003–201 0.0 4.6 −0.1 2.3
7 CF4 Carbon tetrafluoride 88.0 0.000 89.6 109.0 76–90 2.9–108 1.4 9.9 0.1 4.6
8 CH3I Iodide, methyl 141.9 1.619 206.7 254.6 176–205b 5–199b 0.4 4.2 0.0 2.3
9 CH4 Methane 16.0 0.000 90.7 11696.0 79–89 1710–9294 0.0 5.9 −0.2 2.6

10 CNCl Cyanogen chloride 61.5 2.820 266.9 44649.0 196–267 133–42693 0.5 3.5 0.2 2.0
11 C2Cl4F2 Ethane, 1,1,1,2-tetrachlorodifluoro 203.8 1.391 313.8 16103.0 262–314 1301–17103 0.2 6.1 0.1 2.2
12 C2Cl6 Ethane, hexachloro 236.7 0.000 460.0 107000.0 286–447 31–73618 1.2 15.8 0.2 6.3
13 C2F6 Ethane, hexafluoro 138.0 0.000 173.1 27054.0 98–169 3.4–10316 1.4 19.2 −2.6 9.3
14 C2H2 Acetylene 26.0 0.000 192.4 127450.0 133–187 325–99337 0.9 15.5 0.4 6.3
15 C2H2O4 Oxalic acid 90.0 2.629 462.7 2152.3 328–378 0.8–70 0.3 2.6 0.1 1.3
16 C2H4 Ethylene 28.1 0.000 104.0 126.0 77–102 0.04–66 0.8 11.8 0.2 4.7
17 C2H4Br2 Ethylene dibromide 187.9 1.010 282.9 753.3 252–281 47–543 0.1 3.3 −0.1 1.4
18 C2H4N4 Dicyandiamide 84.1 8.214 482.7 5054.9 420–448 0.1–1.0 0.3 2.3 0.0 1.1
19 C2H5NO2 Glycine 75.1 12.801 509.4 304.8 408–431 0.1–1.2 0.8 6.9 0.0 3.7
20 C2H6 Ethane 30.1 0.000 90.4 1.1 81–89 0.05–0.8 1.9 22.7 0.3 12.7
21 C3H2N2 Malononitrile 66.1 3.717 305.0 19.7 256–305 0.1–23 0.0 14.7 0.3 6.8
22 C3H4 Propadiene 40.1 0.000 136.9 18.3 110–137 0.04–18 0.0 0.9 0.1 0.4
23 C3H4N2 Pyrazole 68.1 2.215 341.7 1350.6 253–313 26–4412 0.5 16.3 0.4 8.1
24 C4F8 Cyclobutane, octafluoro 200.0 0.000 233.0 19034.0 177–233 643–18670 2.7 23.5 4.9 11.2
25 C4H10O 2-Propanol, 2-methyl 74.1 1.670 299.0 5884.3 253–298 134–5455 0.3 5.1 0.3 2.0
26 C4H2N2 Fumaronitrile 78.1 0.000 369.7 3972.5 245–281 0.1–5 0.5 19.0 −0.4 7.6
27 C4H2O3 Maleic anhydride 98.1 3.927 325.7 289.8 308–325 48–292 0.2 14.4 0.2 5.2
28 C4H4N2 Pyrazine 80.1 0.240 327.2 10847.0 288–327 657–11229 0.3 6.3 0.9 3.5
29 C4H4N2 Succinonitrile 80.1 3.927 331.2 12.0 279–298 0.1–1.0 0.4 4.1 0.1 1.9
30 C4H4O3 Succinic anhydride 100.1 3.830 393.0 862.8 365–388 133–667 0.2 3.7 0.0 1.6
31 C4H4S Thiophene 84.1 0.540 234.9 185.6 193–235 1.4–189 0.4 4.4 0.1 2.1
32 C4H6O2 trans-Crotonic acid 86.1 2.129 344.6 807.3 293–343 24–880 0.6 6.3 1.1 3.3
33 C4H7NO Acrylamide, 2-metha 85.1 3.133 383.7 2825.1 325–375 14–905 0.3 3.0 0.1 1.2
34 C4H8 Cyclobutane 56.1 0.000 182.5 180.1 181–214b 131–2795b 1.4 9.3 0.5 5.2
35 C5H8N4O12 Pentaerythritol tetranitrate 316.1 2.479 413.7 339.5 370–411 0.08–10 0.5 3.3 0.1 1.3
36 C5H8O4 Glutaric acid 132.1 2.641 370.1 1.8 292–320 292–320 0.3 4.7 0.1 1.7
37 C5H12O2 Neopentyl glycol 104.1 2.698 403.3 5267.3 338–401 158–3301 0.0 3.7 0.0 1.7
38 C5H12O4 Pentaerythritol 136.1 2.009 538.7 2216.0 379–408 0.02–0.7 0.1 3.8 −0.1 1.6
39 C6F6 Benzene, hexafluoro 186.1 0.330 278.3 3931.0 216–269 9–1936 0.8 13.0 0.2 5.1
40 C6H3Cl3 Benzene, 1,2,3-trichloro 181.4 2.440 325.7 183.0 289–303 8–27 0.3 7.1 0.1 3.4
41 C6H3Cl3 Benzene, 1,3,5-trichloro 181.4 0.309 336.7 651.8 282–301 7–31 0.9 25.1 2.0 12.5
42 C6H3N3O6 Benzene, 1,3,5-trinitro 213.1 0.411 398.4 8.5 359–387 0.6–7 0.4 6.1 0.1 2.6
43 C6H4N2O4 Benzene, o-dinitro 168.1 6.296 390.1 108.4 343–391 0.3–13 0.1 7.9 0.5 3.2
44 C6H4N2O4 Benzene, m-dinitro 168.1 3.837 363.2 30.2 332–361 0.3–3 0.0 1.6 0.0 0.5
45 C6H4N2O4 Benzene, p-dinitro 168.1 0.000 446.6 3045.0 339–398 0.08–11 0.4 21.1 −2.0 9.4
46 C6H4O2 Quinone 108.1 0.000 388.9 11651.0 250–388 0.1–11234 0.3 7.8 0.9 4.2
47 C6H6ClN Aniline, p-chloro 127.6 2.989 343.1 218.9 290–332 1.3–133 0.0 5.4 0.1 2.2
48 C6H6O2 Benzene, 1,4-dihydroxy 110.1 1.781 444.7 2229.7 341–400 0.4–91 1.9 16.9 −1.7 7.1
49 C6H6O2 Hydroquinone 110.1 1.781 444.7 2229.7 406–437b 138–1417b 0.7 3.8 1.7 1.7
50 C6H7N Pyridine, 3-methyl 93.1 2.401 255.0 34.7 228–255 1–33 0.1 5.9 0.1 2.1
51 C6H7N Pyridine, 4-methyl 93.1 2.581 276.8 186.5 230–257 10–316 0.4 7.3 0.2 4.0
52 C6H8N2 Benzene, 1,2-diamino 108.1 1.529 377.0 338.4 298–373 1.6–326 0.5 10.4 2.2 2.9
53 C6H8N2 Benzene, 1,4-diamino 108.1 1.529 413.0 1388.2 298–373 0.5–144 0.1 10.6 −0.9 4.4
54 C6H10O4 Adipic acid 146.1 2.320 425.5 78.1 359–406 0.06–9 0.2 12.3 0.0 5.4
55 C6H11NO �-Caprolactam 113.2 3.867 342.3 39.8 294–314 0.1–1.4 1.1 12.8 0.2 5.0
56 C6H12 Cyclohexane 84.2 0.000 279.7 5362.5 268–278 2699–4935 0.7 11.3 −3.6 5.1
57 C6H12N4 Formamine 140.2 0.860 553.2 99745.0 298–453 0.1–2675 0.1 9.0 0.4 2.6
58 C6H12O Cyclohexanol 100.2 1.859 296.6 76.5 269–298 7–93 0.8 14.8 0.7 7.5
59 C6H14 Hexane 86.2 0.000 177.8 1.0 168–178 0.1–1 0.5 23.9 −0.7 12.9
60 C7H6N2O4 Toluene, 2,4-dinitro 182.1 4.317 342.7 7.9 277–344 0.002–5 0.5 4.9 0.1 3.0
61 C7H6N2O4 Toluene, 2,6-dinitro 182.1 2.809 337.9 25.0 277–323 0.004–1.8 0.1 13.0 0.2 4.5
62 C7H6O2 Phenol, p-formyl 122.1 3.957 390.2 106.7 312–337b 0.04–0.6b 0.4 16.4 0.4 5.5
63 C7H8O o-Cresol 108.1 1.451 304.2 65.3 276–304 3.2–72 0.2 12.3 −3.0 5.3
64 C7H8O m-Cresol 108.1 1.589 285.4 5.9 273–285 2–6 1.8 26.2 1.7 12.8
65 C7H8O p-Cresol 108.1 1.559 307.9 34.5 278–308 2–41 0.4 24.6 4.7 7.6
66 C7H8O2 Phenol, p-methoxy 124.1 1.919 328.7 11.5 278–300 0.04–0.7 0.9 10.5 −0.7 5.0
67 C7H12O4 Pimelic acid 160.2 2.389 379.2 1.2 325–379b 0.002–1.1b 0.7 16.4 0.5 6.3
68 C7H16 Heptane 100.2 0.000 182.6 0.18 175–179 0.04–0.14 1.6 18.7 1.0 9.2
69 C8H4O3 Phthalic anhydride 148.1 5.290 404.2 790.0 303–333 0.1–2.9 1.0 6.0 0.2 3.2
70 C8H6O4 Isophthalic acid 166.1 2.269 619.2 2820.7 493–563 95–2969 0.3 5.3 0.2 1.5
71 C8H6O4 Terephthalic acid 166.1 2.434 700.2 4574.9 523–675 98–92669 0.1 8.1 0.0 3.8
72 C8H8O2 Phenol, p-acetyl 136.2 3.777 382.2 22.0 320–348b 0.05–0.9b 0.2 4.9 0.2 1.9
73 C8H9NO Acetanilide 135.2 4.047 387.7 118.3 303–324 0.03–0.2 0.6 8.5 0.2 3.3
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Table 1 (Continued )

Substance Propertiesa Deviations

No. Formula Name M � (D) TTP (K) PTP (Pa) �TS (K) �PS (Pa) %�PS
min

%�PS
max %�PS |%�PS|

74 C8H10 p-Xylene 106.2 0.000 286.4 575.5 247–286 12–546 1.1 14.1 −1.7 4.6
75 C8H10N4O2 Caffeine 194.2 3.687 509.2 4751.0 446–509 117–4715 1.0 8.4 0.1 3.9
76 C8H10O Phenol, p-ethyl 122.2 1.781 318.2 46.0 262–316 0.04–30 0.6 5.6 0.2 2.8
77 C8H10O Phenol, 2,3-dimethyl 122.2 1.250 345.7 362.0 265–343 0.05–314 0.9 5.6 −0.2 2.4
78 C8H10O Phenol, 2,5-dimethyl 122.2 1.430 348.0 561.2 264–347 0.04–500 0.5 11.6 −1.0 5.5
79 C8H10O Phenol, 2,6-dimethyl 122.2 1.409 318.8 165.3 248–317 0.05–150 0.1 3.4 0.7 1.7
80 C8H10O Phenol, 3,4-dimethyl 122.2 1.769 338.3 115.4 270–337 0.05–100 2.6 25.1 10.2 12.5
81 C8H10O Phenol, 3,5-dimethyl 122.2 1.760 336.6 119.7 267–334 0.05–100 5.9 17.5 −9.5 9.5
82 C8H18 Butane, 2,2,3,3-tetramethyl 114.2 0.000 374.0 86930.0 252–340 97–22992 3.5 24.8 0.5 12.6
83 C9H8O4 Acetylsalicylic acid 180.2 2.090 408.2 280.4 313–364b 0.02–7b 0.7 17.1 −2.0 7.8
84 C9H16O4 Nonanedioic acid 188.2 2.350 379.7 0.5 330–379b 0.002–1.1b 0.3 15.2 0.2 5.7
85 C10H6O2 1,4-Naphthoquinone 158.2 0.000 401.5 852.0 310–325b 0.2–1.4b 0.0 8.8 3.6 3.8
86 C10H8 Naphthalene 128.2 0.000 353.4 991.3 279–294 1.4–7 1.2 3.6 2.6 2.6
87 C10H10O4 Dimethyl terephthalate 194.2 2.188 413.8 1257.7 373–413 62–1162 0.5 7.7 0.2 2.8
88 C10H14 Benzene, 1,2,4,5-tetramethyl 134.2 0.000 352.4 1784.8 263–348 0.3–1379 0.2 2.7 −1.0 1.7
89 C10H14O Phenol, p-tert-butyl 150.2 1.619 372.0 496.3 281–303b 0.06–0.8b 0.2 7.6 0.4 3.0
90 C10H16 Adamantane 136.2 0.000 541.2 482000.0 278–443 3–36274 0.0 14.3 0.3 7.2
91 C10H16O Camphor 152.2 3.100 453.3 51396.0 273–453 5–56047 0.3 11.0 0.2 6.0
92 C10H18O4 Sebacic acid 202.3 2.400 407.7 4.2 375–403b 0.04–1.6b 0.1 3.0 −0.2 1.3
93 C10H20O2 Capric Acid 172.3 1.679 304.6 0.15 289–301 0.01–0.1 1.5 14.8 0.3 7.9
94 C11H10 Naphthalene, 2-methyl 142.2 0.420 307.7 18.7 283–308 2–18 2.6 25.2 0.9 12.3
95 C11H16 Benzene, pentamethyl 148.2 0.069 327.5 113.0 296–313 7–38 0.6 12.0 2.7 4.5
96 C12H8O Dibenzofuran 168.2 0.881 355.3 76.6 299–346 0.5–36 1.5 24.1 0.2 7.6
97 C12H10 Acenaphthene 154.2 0.255 366.6 200.0 291–310 0.1–1.1 0.1 26.4 11.8 11.8
98 C12H10N2O2 Diphenylamine, p-dinitro 214.2 5.996 408.6 128.3 382–403 0.2–2 0.1 3.1 0.1 1.2
99 C12H11N Diphenylamine 169.2 1.079 326.2 3.0 298–324 0.09–1.6 0.0 3.0 0.2 1.0

100 C12H12 Naphthalene, 2,7-dimethyl 156.2 0.411 368.8 375.0 333–368 20–360 1.2 21.6 1.4 9.6
101 C12H12 Naphthalene, 2,6-dimethyl 156.2 0.140 383.3 783.0 279–383 0.03–773 1.7 24.7 −7.8 14.0
102 C12H18 Benzene, hexamethyl 162.3 0.070 438.7 6141.8 289–364 0.04–40 0.9 21.0 1.5 6.6
103 C13H9N Acridine 179.2 2.150 383.2 37.2 302–343 0.01–0.8 3.1 25.8 −1.8 12.1
104 C13H10 Fluorene 166.2 0.249 387.9 281.7 306–322 0.2–1.1 1.5 17.0 1.0 8.1
105 C13H12 Methane, diphenyl 168.2 0.770 298.4 2.0 274–299 0.13–1.9 0.1 7.7 0.4 3.3
106 C13H26O2 Methyl dodecanoate 214.3 1.700 278.2 0.06 262–273 0.002–0.02 0.2 3.5 0.2 1.6
107 C13H26O2 Tridecanoic acid 214.3 1.649 315.0 0.012 304–312b 0.003–0.02b 0.6 7.9 0.0 4.2
108 C14H10 Anthracene 178.2 0.000 488.9 4950.9 338–353 0.1–0.5 0.4 4.3 0.7 2.3
109 C14H10 Phenanthrene 178.2 0.000 372.4 29.3 310–323 0.08–0.33 0.1 3.6 −0.9 1.2
110 C14H12 trans-Stilbene 180.2 0.000 397.4 233.6 318–365 0.1–12 0.7 11.8 1.9 6.1
111 C14H14 Bibenzyl 182.3 0.455 324.3 8.8 286–307 0.1–1.1 0.3 15.3 −0.8 8.4
112 C14H28O2 Myristic acid 228.4 1.679 327.4 0.026 311–325 0.003–0.03 0.0 0.9 0.2 0.4
113 C14H30 Tetradecane 198.4 0.000 279.0 0.25 268–276 0.04–0.14 0.8 16.6 0.4 8.1
114 C14H30O Tetradecanol 214.4 1.550 310.7 0.08 293–307 0.002–0.03 0.1 4.4 0.0 2.2
115 C15H30O2 Pentadecanoic acid 242.4 1.721 325.7 0.008 313–321b 0.001–0.01b 0.2 3.5 −0.1 1.9
116 C16H32O2 Palmitic acid 256.4 1.739 335.7 0.013 319–333 0.001–0.01 0.9 14.3 0.7 7.5
117 C16H34 Hexadecane 226.4 0.000 291.3 0.09 282–290 0.02–0.08 1.3 18.5 0.4 8.7
118 C16H34O Hexadecanol 242.4 1.670 322.4 0.045 308–320 0.003–0.03 1.3 13.1 0.3 7.0
119 C17H34O2 Heptadecanoic acid 270.5 1.691 334.3 0.006 326–331b 0.001–0.003b 0.2 3.0 −0.2 1.5
120 C17H36 Heptadecane 240.5 0.000 295.1 0.047 288–293 0.01–0.028 0.1 2.4 0.2 1.1
121 C18H12 Naphthacene 228.3 0.000 630.2 18421.0 421–449 0.1–1 0.6 6.1 0.0 2.5
122 C18H14 o-Terphenyl 230.3 0.103 329.4 0.41 323–333 0.3–0.7 1.2 12.5 0.4 6.4
123 C18H30 Benzene, hexaethyl 246.4 0.000 403.2 288.0 298–323 2–2669 1.0 12.6 0.2 5.1
124 C18H38 n-Octadecane 254.5 0.000 301.3 0.034 288–298 0.002–0.01 0.4 4.9 0.1 2.6
125 C18H38O Octadecanol 270.5 1.661 331.1 0.025 320–329 0.003–0.02 0.1 4.9 0.3 2.7
126 C19H16 Methane, triphenyl 244.3 0.210 365.3 3.7 325–349 0.05–0.64 0.1 1.4 0.3 0.7
127 C19H38O2 Nonadecanoic acid 298.5 1.649 341.2 0.002 337–341b 0.001–0.0034b 0.8 8.3 0.2 4.5
128 C19H40 Nonadecane 268.5 0.000 305.0 0.016 291–303 0.001–0.01 0.3 4.3 0.1 1.7
129 C20H40O2 Arachidic acid 312.5 1.670 348.2 0.004 341–348 0.001–0.004 0.1 3.4 0.0 1.7
130 C20H42O Eicosanol 298.6 1.829 338.6 0.01 327–337 0.001–0.01 0.1 2.0 0.0 0.9
131 C26H22 Ethane, 1,1,2,2-tetraphenyl 334.5 0.000 485.2 1672.0 364–423 0.004–2 0.1 10.1 0.1 4.7
132 C40H56 �-Carotene 536.9 0.000 706.2 81.0 520–700 0.002–62 0.1 3.2 −0.1 1.5
133 F2 Fluorine 38.0 0.000 53.5 252.0 32–53 0.05–269 0.2 6.7 −0.2 1.8
134 FeCl3 Ferric chloride 162.2 1.280 577.0 77743.0 425–575 3–67952 0.5 20.1 −1.5 10.4
135 GaC3H9 Gallium, trimethyl 114.8 0.000 257.5 3341.0 247–257b 1342–3159b 1.2 11.5 0.3 6.0
136 H2 Hydrogen 2.0 0.000 14.0 7220.0 12–14 1333–7993 0.1 4.4 −0.2 2.2
137 H2O Water 18.0 1.850 273.2 611.7 172–273 0.001–614 0.3 1.6 −0.1 0.8
138 H2Se Hydrogen selenide 81.0 0.240 207.5 27400.0 173–210 1359–33634 0.5 7.4 −0.5 2.7
139 I2 Iodine 253.8 0.000 386.8 12210.0 237–387 0.05–12104 0.6 19.9 0.6 10.1
140 KCl Potassium chloride 74.6 10.271 1044.0 48.9 750–877 0.002–0.3 1.0 5.8 0.1 3.1
141 KI Potassium iodide 166.0 9.234 954.0 35.7 722–898 0.02–17 0.9 5.0 0.1 2.9
142 N2O Nitrous oxide 44.0 0.167 182.3 87850.0 130–179 132–64738 0.3 11.5 0.0 5.2
143 N2O4 Nitrogen tetroxide 92.0 0.000 261.9 18559.0 234–263 1333–19993 0.8 9.5 2.9 4.9
144 Ne Neon 20.2 0.000 24.6 43300.0 16–25 72–43497 2.4 24.5 −4.1 15.3
145 NOCl Nitrosyl chloride 65.5 1.901 213.6 5437.7 176–216 128–6665 0.0 5.7 0.1 1.8
146 O3 Ozone 48.0 0.540 80.2 0.7 66–80 0.001–0.7 0.3 19.1 0.2 7.3
147 P Phosphorus 31.0 0.000 863.2 4400000.0 510–863 133–4387500 0.6 2.8 0.0 1.6
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Table 1 (Continued )

Substance Propertiesa Deviations

No. Formula Name M � (D) TTP (K) PTP (Pa) �TS (K) �PS (Pa) %�PS
min

%�PS
max %�PS |%�PS|

148 PCl5 Phosphorus pentachloride 208.2 0.000 433.2 102730.0 351–432 1306–99433 0.5 20.2 0.8 10.7
149 P4O10 Phosphorus pentoxide 283.9 0.000 693.2 486010.0 523–693b 2278–479730b 0.3 6.7 −0.1 2.6
150 SiO2 Silicon dioxide 60.1 0.579 1696.0 19.8 1273–1473 0.001–0.01 0.2 4.0 −0.1 2.0
151 SO3 Sulfur trioxide 80.1 0.000 290.0 21130.0 234–293 133–26528 1.3 21.8 1.9 11.0
152 V Vanadium 50.9 0.000 2190.0 3.1 1728–2175 0.002–2.5 0.8 8.4 0.3 4.7

Predicted set
153 As Arsenic 74.9 0.000 1095.2 3698400.0 480–1088 0.007–3221000 0.3 4.3 0.3 2.1
154 As2O3 Arsenic trioxide 197.8 0.130 551.0 4131.5 400–583 0.7–8433 0.7 13.1 0.2 4.2
155 BF3 Boron trifluoride 67.8 0.000 144.8 8340.0 119–145 132–8488 0.4 6.5 −0.4 3.3
156 BrH Hydrogen bromide 80.9 0.821 185.2 29890.0 135–185 100–27400 1.1 23.3 0.9 9.9
157 CCl4 Carbon tetrachloride 153.8 0.000 250.3 1122.5 209–225 33–160 0.0 4.7 −1.2 2.0
158 CHN Hydrogen cyanide 27.0 2.980 259.8 18625.0 200–260 200–18620 1.0 13.4 0.4 6.1
159 CH2O2 Formic acid 46.0 1.415 281.5 2402.4 268–281 660–2319 3.4 23.2 −1.9 12.3
160 CH4N2O Urea 60.1 4.557 405.9 93.13 341–368 0.1–1.3 0.5 5.1 0.2 2.6
161 ClH Hydrogen chloride 36.5 1.079 159.0 13522.0 120–159b 100–13500b 0.7 12.6 0.7 5.1
162 CO Carbon monoxide 39.9 0.000 83.8 68700.0 50–68 100–15400 0.3 27.4 −4.3 11.1
163 CO2 Carbon dioxide 44.0 0.000 216.6 518670.0 130–217 32–518000 2.5 11.1 0.3 5.8
164 C2H4O2 Acetic acid 60.1 1.739 289.8 1276.9 238–283b 30–857b 0.8 7.7 0.3 4.0
165 C2H5NO Acetamide 59.1 3.747 353.3 336.4 298–350b 2.4–251b 0.1 4.8 0.1 2.2
166 C2N2 Cyanogen 52.0 0.000 245.3 73807.0 180–245 230–74470 1.2 18.5 −0.2 8.1
167 C3H6O3 Trioxane 90.1 2.081 334.7 14429.0 298–311 1694–4161 1.0 15.2 −0.5 8.3
168 C4H4Cl2 Benzene, p-dichloro 147.0 0.000 326.1 1225.0 283–323b 31–1141b 0.6 7.3 −1.2 3.8
169 C4H6 Acetylene, dimethyl 54.1 3.957 240.9 6121.2 227–241 1989–6218 0.1 4.7 0.2 1.6
170 C4H6O Succinic acid 118.1 2.200 460.7 884.9 372–401 0.5–8 0.3 8.9 0.2 4.8
171 C4H6O6 Tartaric Acid 150.1 3.627 479.2 14.4 315–330b 0.2–2b 0.4 5.8 0.1 2.9
172 C5H10O2 Neopentanoic acid 102.1 1.700 309.1 144.4 242–257 0.1–1 1.7 21.6 −3.0 11.2
173 C5H12 Neopentane 72.2 0.000 256.6 35745.0 221–255 3993–33268 1.0 18.8 1.0 9.9
174 C6Cl6 Benzene, hexachloro 284.8 0.540 501.7 10201.0 388–502 133–10523 0.0 12.4 0.1 5.2
175 C6H3Cl3 Benzene, 1,2,4-trichloro 181.4 1.260 290.2 33.1 279–298 8–45 1.3 19.3 0.8 10.4
176 C6H4ClNO2 Benzene, p-chloro-1-nitro 157.6 2.830 356.7 243.8 273–305 0.1–7 0.2 2.0 0.0 0.8
177 C6H5NO2 Benzene, 1-nitro 123.1 4.227 278.9 6.69 243–273 0.1–4 0.5 12.9 0.3 5.6
178 C6H6 Benzene 78.1 0.000 278.7 4764.2 243–278 294–4624 0.3 9.7 2.4 5.4
179 C6H6O Phenol 94.1 1.451 314.1 188.0 278–305 6–87 1.7 20.6 −0.2 10.0
180 C6H12N2 Triethylenediamine 112.2 3.358 434.3 69669.0 323–373 522–7636 0.3 8.0 0.2 2.8
181 C7H5N3O6 Toluene, 2,4,6-trinitro 227.1 1.160 354.0 0.94 323–416 0.02–406 0.1 4.7 0.2 1.8
182 C7H6O2 Benzoic acid 122.1 1.001 395.5 795.5 343–387b 12–451b 0.2 2.4 −0.4 1.1
183 C7H6O3 Salicylic acid 138.1 2.650 431.8 2802.7 368–407 30–596 0.2 3.8 0.1 1.3
184 C8H7N Indole 117.2 2.081 326.2 31.5 283–323 0.4–14 1.7 16.4 0.7 7.8
185 C8H8O3 Vanillin 152.2 2.869 355.0 11.8 298–355b 0.03–13b 0.2 4.2 0.2 1.6
186 C8H14O4 Suberic acid 174.2 2.359 416.2 22.2 379–407b 0.2–5b 0.6 9.9 0.2 4.0
187 C10H14O Thymol 150.2 1.619 323.0 37.2 273–313b 0.07–13b 0.9 8.0 −0.2 3.0
188 C12H8 Acenaphthylene 152.2 0.300 362.7 170.0 273–373 0.08–347 0.3 21.2 −6.0 12.1
189 C12H10 Biphenyl 154.2 0.000 342.2 94.2 279–299 0.13–1.1 0.3 2.7 −1.0 1.8
190 C12H24O2 Lauric acid 200.3 1.640 317.0 0.04 295–314 0.002–0.05 0.4 10.3 0.4 4.7
191 C13H10O Benzophenone 182.2 2.980 321.4 1.5 289–315b 252–6603b 0.2 3.3 0.1 1.6
192 C14H8O2 Anthraquinone 208.2 0.000 559.2 12846.0 497–559 734–14068 0.4 4.2 0.0 2.3
193 C14H22 Benzene, 1,4-di-tert-butyl 190.3 0.579 350.8 295.9 285–325 0.4–31 0.3 8.2 0.2 2.8
194 C16H10 Pyrene 202.3 0.000 423.8 70.0 345–358 0.1–0.5 2.4 23.9 0.5 12.6
195 C18H12 Chrysene 228.3 0.699 531.2 1028.0 351–423 0.001–1.6 0.0 12.7 0.3 6.0
196 C18H12 Benzanthracene 228.3 0.000 433.6 14.4 352–434 0.01–25 0.4 18.8 0.5 8.1
197 C18H27NO3 Capsaicin 305.4 0.000 510.8 67664.0 398–510b 0.01–62313b 0.1 2.3 0.0 1.3
198 C18H32O2 Stearic acid 284.5 1.670 342.8 0.006 331–340b 0.001–0.01b 0.3 3.6 0.1 1.9
199 C27H46O Cholesterol 386.7 1.721 421.7 0.75 325–421b 0.001–11b 0.3 3.8 −0.2 1.5
200 F4Si Silicon tetrafluoride 104.1 0.000 186.4 220730.0 130–186 200–220800 0.3 17.9 0.2 6.8
201 F6S Sulfur hexafluoride 146.1 0.000 223.2 232670.0 150–223 400–232700 0.9 12.6 0.5 8.4
202 GaCl3 Gallium trichloride 176.1 5.096 350.9 1366.0 321–350b 133–1314b 0.4 3.2 0.0 1.4
203 H2S Hydrogen sulfide 34.1 0.968 187.7 23200.0 140–188 200–22700 1.7 16.2 0.3 4.4
204 HI Hydrogen iodide 127.9 0.450 222.4 49326.0 160–222 200–49300 4.2 16.2 −2.5 11.6
205 Kr Krypton 83.8 0.000 115.8 73154.0 80–116b 400–73100b 3.9 14.0 −1.8 9.7
206 NH3 Ammonia 17.0 1.469 195.4 6111.0 160–195b 100–6120b 1.3 4.2 −0.1 2.7
207 NH4Cl Ammonium chloride 53.5 0.000 793.2 3500000.0 433–793 124–3327800 0.2 2.3 0.2 1.4
208 NO Nitric oxide 30.0 0.153 109.5 21890.0 85–110 100–21900 0.6 15.0 −7.8 7.8
209 PH3 Phosphine 34.0 0.570 139.4 3535.7 131–143 1333–5334 0.0 3.0 −0.8 0.8
210 S Sulfur 32.1 0.000 388.4 3.1 323–388 0.03–4 1.4 13.3 0.3 7.1
211 SbCl3 Antimony trichloride 228.1 3.927 346.6 723.7 298–346 18–719 0.4 4.8 0.1 2.2

8166

t
b
w
a

212 Xe Xenon 131.3 0.000 161.4

a Taken from reference [26].
b Taken from reference [27].
he low values solid vapor pressure (below 0.001 Pa) for several car-
oxylic acids in the whole range of temperature. Also, substances
ith high variation of solid vapor pressure with temperature (such

s neon and cyclohexane) to substances with low variation (such as
8.0 110–161 300–81700 1.1 13.0 −1.8 7.1
silver and silicon dioxide) must be simultaneously considered by
the network. In addition, the substances included in the study have
very different physical and chemical characteristics. Low molecu-
lar weight substances such as carbon (M = 12) or methane (M = 16)
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Table 2
Overall minimum, maximum, and average deviations for the calculated solid vapor
pressure for all the substances using the neural network model.

ANN model %�PS
min

%�PS
max %�PS |%�PS|
ig. 2. Average absolute relative deviation found in correlating the solid vapor pres-
ure of all substances as function of the number of neurons in the hidden layers (1st
L = first hidden layer, 2nd HL = second hidden layer). Grey line is the training error
nd black line is the prediction error.

o high molecular weight substances such as cholesterol (M = 387)
r �-carotene (M = 537), or non-polar substances (� = 0) such as
enzene, sulfur hexafluoride and xenon, to highly polar substances
uch as potassium iodide (� = 9.2), potassium chloride (� = 10.3)
nd glycine (� = 12.8) are part of the substances considered. Thus,
he problem is not straightforward and probably is one of the rea-
ons why the solid vapor pressure has not been treated using neural

etwork as proposed in this paper.

Several network architectures were tested to select the most
ccurate. The accuracy was checked using the average relative devi-
tion %�PS and average absolute deviation |%�PS| between the
alculated value of PS after training and the data from the literature.

Fig. 3. Comparison between experimental and calculated values of the s
Training set 0.00 26.41 0.22 4.84
Prediction set 0.00 −27.39 −0.29 5.03

Total set 0.00 −27.39 0.08 4.89

The deviations were calculated as:

%�PS = 100
N

N∑
i=1

[
PS

calc − PS
lit

PS
lit

]
i

(5)

|%�PS | = 100
N

N∑
i=1

∣∣∣∣PS
calc − PS

lit

PS
lit

∣∣∣∣
i

(6)

Fig. 2 shows the average absolute relative deviation found in
correlating the solid vapor pressure of all substances as function of
the number of neurons in the hidden layers (1st HL = first hidden
layer, 2nd HL = second hidden layer). The network that gave the low-
est deviation during training was one with 5 neurons in the input
layer, 20 and 15 neurons in the hidden layers, and one neuron in
the output layer.

4. Results and discussion

The results are presented as the relative deviation %�PS, the
absolute deviation |%�PS|, the minimum deviation, %�PS

min and the
maximum deviation %�PS

max (Eqs. (5) and (6)). Table 1 presents the
results. The last four columns in the Table show these deviations.
Also shown at the end of the Table 1 are the deviations for the 62
substances used to check the prediction capabilities of the trained

network. As observed in this table, the minimum, maximum, aver-
age and absolute average deviations for these substances are within
the same ranges found during training.

Table 2 shows the overall minimum, maximum, and average
deviations for all the substances using the proposed network 5-20-

olid vapor pressure: (a) during training and (b) during prediction.
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Table 3
Weights and biases of the 5-20-15-1 network.

wij 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 −0.6924 1.4748 1.1150 −1.9326 0.1552 0.5560 −0.6392 0.7832 −0.5316 2.8702 0.4137 −0.7350 0.1834 −0.1554 2.7805 0.9211 0.1522 8.9517 −1.6899 −0.7055
2 −4.2660 1.2580 −7.1784 −2.1381 7.7084 −2.4206 4.7676 5.4564 16.9890 −1.7208 −2.7257 −1.4163 −5.8151 4.2833 −13.313 5.0593 −4.4952 0.5271 0.9413 −1.7167
3 6.6955 −2.7893 3.3925 1.7563 −3.6261 6.2783 7.5138 −1.8996 −4.8416 −7.4996 9.3669 −9.6478 7.5579 −1.7612 0.1662 −8.4096 −0.1788 −2.0633 1.0730 −12.625
4 7.8172 0.4642 −4.0925 1.1421 −5.9928 0.6225 −3.4369 −3.6360 −0.4791 4.1322 −8.0065 9.1037 −0.2293 1.3348 5.9353 −10.319 −1.8094 −0.1869 −4.9576 0.5897
5 −9.2963 0.1984 6.9873 −1.0866 −0.6739 −6.3154 −6.5740 0.1030 −3.1064 2.3006 1.9355 −1.2141 5.8806 −2.6250 2.4534 −6.1613 −10.072 −0.6445 3.3928 5.4948
bj −6.7628 −0.4444 3.0448 0.1304 2.7843 −1.4295 4.4618 3.1556 9.9103 0.2693 5.6905 −6.4927 5.4491 1.0076 −4.6665 −7.6898 −11.526 7.8351 −0.8259 −8.9110

wkj 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 bk

1 −7.3905 2.6655 4.6043 0.2572 −9.0951 16.350 11.923 4.9596 −3.2280 2.7695 7.8625 −5.6063 −9.8188 4.2191 −4.8660 −3.3821 −7.5293 14.2210 −2.4146 4.2374 1.4764
2 7.8847 0.5827 1.5886 2.7575 −2.3979 −0.1195 1.8688 3.2768 −3.5676 3.0063 −1.2019 0.8608 −6.1543 −0.8756 −2.3629 3.7808 −1.2401 2.8977 −1.4956 −0.5817 1.1731
3 5.4681 0.4577 1.9602 2.8028 −5.1551 −0.5376 2.4783 2.6878 2.5539 −1.1361 0.0549 2.8213 0.0575 0.8874 −0.4283 5.9295 −2.4705 2.7386 1.0089 2.8238 −0.9245
4 4.0401 2.1060 3.1305 −3.5958 5.3676 −0.9117 1.5109 −6.5559 −6.7700 3.0399 0.8897 −1.2095 −3.4133 2.7887 −2.4468 −0.7564 1.5716 3.4019 −1.4920 2.8855 −1.6608
5 −0.1315 −0.1465 4.6775 −1.9695 −0.4531 −2.4794 −0.4534 −5.3252 −6.4532 −5.0016 −0.7837 −3.3365 −1.9114 2.5493 −0.2468 4.1329 1.2177 5.2986 −2.2792 −2.2091 −4.1477
6 1.0368 0.3491 1.8390 1.2721 −0.4492 −5.5863 −1.6839 4.2807 2.4783 −5.4142 −1.0474 1.0393 1.6171 −0.6768 3.0104 −0.5012 −2.6722 6.7812 −5.2218 −1.5158 0.4099
7 −5.0198 −1.5233 3.4707 −2.8133 6.2743 −7.9386 2.9012 −11.270 −2.8383 4.6444 −3.9408 1.5686 1.6506 −3.9802 −2.4288 1.0849 −2.3655 −4.5535 0.9387 −14.495 3.1864
8 1.8816 0.5584 4.2591 −0.8034 2.1574 1.8377 0.1361 −4.3579 6.6180 1.3788 −0.7546 −3.1747 −0.6054 2.8310 0.5456 −0.7356 −2.3066 −0.4040 2.5352 4.9286 −1.8166
9 −0.8297 −3.0518 2.2891 0.7644 −6.4947 2.6269 0.7936 5.8249 −1.0313 −2.4662 3.0216 −1.5472 4.6165 6.0064 1.6699 0.9635 0.9656 −3.0207 0.8563 0.7016 1.8331

10 −2.6724 −1.0735 2.9131 0.4630 0.2659 2.1532 4.4726 2.4711 2.9340 5.1857 −2.1507 −0.1838 −1.1729 1.0782 0.9344 −1.4404 3.2118 −0.0989 0.4782 −0.1103 3.8623
11 1.0521 1.8930 −0.7765 3.2980 3.5104 1.3049 −0.6828 −2.7208 5.2032 0.7500 −3.6193 −5.0624 −0.6169 1.9190 −0.3028 −2.2168 −1.6394 −2.6579 1.6730 4.0764 1.6036
12 −1.4926 3.7789 −5.0190 2.7957 3.2334 0.8573 0.9790 −0.3709 0.3399 −0.1262 0.7389 −0.5232 1.4848 −4.0331 0.1936 −1.0113 −0.9202 −2.1908 0.2926 0.3232 −1.5699
13 0.2215 0.6154 −5.9007 1.5848 −2.5277 1.1424 −1.2666 2.4404 0.6628 1.4810 1.0360 0.4384 12.6100 −2.0339 0.0639 1.2424 1.2312 −2.8517 1.0740 0.1039 −6.5020
14 −0.5835 −0.8920 0.4162 0.4613 4.4767 −2.4462 −3.8262 −1.3560 −1.5749 0.1397 −4.1398 −2.2892 −0.6108 5.8177 0.6193 2.4288 5.5953 −3.1987 2.8629 −2.5188 −1.9047
15 −0.7787 −2.7696 0.0956 −2.4172 −1.0470 4.0493 2.4703 2.7280 4.6704 −0.4902 −3.2340 3.2410 2.0171 −9.3889 −0.0172 −0.3384 −0.9102 −2.1303 −3.2038 2.6201 0.2988

wlk 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 bl

1 0.8170 3.1649 2.6393 −6.6692 2.5623 19.889 −5.0096 12.743 −6.4043 −12.749 −10.990 8.9176 −9.8282 −5.9996 −4.7430 −5.3776
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Fig. 4. Solid vapor pressures for all substances considered in the study. T

5-1. The results show that the ANN can be accurately trained and
hat the chosen topology can estimate the solid vapor pressure with
cceptable accuracy (absolute average deviations less than 5% for
raining and average deviations of less than 5% for the 62 substances
sed in the prediction step).

Once the best architecture was determining, the optimum
eights required to carry out the estimate of the pressure of solid

apor of any substance, were obtained. Table 3 shows the optimum
eight and biases for the multilayer neural network 5-20-15-1.

Table 4 presents a comparison between some methods pro-
osed in the literature and the method proposed in this work.
he low deviations found with the proposed method indicate that
he trained ANN can estimate the solid vapor pressure with bet-
er accuracy than other methods. Neau et al. [1] with the use
f the Peng–Robinson equation of state and Coutsikos et al. [2]
sing a group contribution method predicted solid vapor pressures
ith average absolute deviations higher than 20% and maximum
eviations grater than 70%. The predictions with the proposed net-
ork show average absolute deviations below 5% and maximum
eviations are a little higher than 15%. These results represent
tremendous increase in accuracy for predicting this important

roperty and show that not only the use of the optimum network
rchitecture is crucial, but also the appropriate selection of the
ndependent variables (M, �, TTP, PTP, and PS → 0 as T → 0).

Fig. 3 shows a comparison between experimental (solid line)
nd calculated values (points) of the solid vapor pressure. Fig. 3a
hows a comparison during training between correlated and liter-

ture values of the solid vapor pressure. The correlation coefficient
2 is 0.9998 and the slope of the curve (expected to be 1.0) is 0.9996.
ig. 3b shows a comparison during prediction between predicted
nd literature values of the solid vapor pressure. In this case, the

able 4
omparison of the method proposed in this work with other methods found in the

iterature to determine the solid vapor pressure.

ethod No. of
substances

No. of data
point

|%�PS|min |%�PS|max |%�PS|

eau et al. [1] 22 259 4.60 87.40 22.80
outsikos et al. [2] 212 2774 2.00 74.00 26.73
his work 212 2120 0.43 15.30 4.89

[

[

cles are the results of the ANN while the solid lines are literature values.

correlation coefficient R2 is 0.9997 and the slope of the curve (also
expected to be 1.0) is 1.0003. Fig. 4 presents the calculated values
(circles) and the literature values (solid line) for the solid vapor
pressure for all substances included in the study. This figure, on the
other hand allows to get a general picture of the ranges of temper-
ature and solid vapor pressures that have been considered in the
study.

5. Conclusions

Based on the results and discussion presented in this study, the
following main conclusions are obtained: (i) The great differences in
structure, chemical and physical properties of the substances con-
sidered in the study impose additional difficulties on the problem
that the proposed ANN has been able to handle. (ii) The results show
that the ANN can be properly trained and that the chosen topology
(5-20-15-1) can estimate the solid vapor pressure with acceptable
accuracy. (iii) The upper and lower ends of the sublimation curve
(TTP, PTP and PS → 0 as T → 0), have influential effects on the good
training and predicting capabilities of the chosen network.
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